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TL;DR
We explored an automated method of generating a test collection for domain-specific IR evaluation by using an ensemble of “weak”
(L)LM bi-encoders combined with an LLM for re-ranking, which is prompted with specific examples of relevance score assignments.
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An example of a shift log in a process industry in German that
document system statuses, production metrics, and any
incidents or anomalies. The domain-specific language usus a
lot of abbreviations, codes, and terminology.

Ensemble learning is a machine learning technique that combines multiple individual
models, often called "weak learners," to create a more powerful and accurate predictive
model by mitigating each other's weaknesses.

RQ: How can a principle of the ensemble learning be transferred to “weak” (L)LMs to collect evaluation dataset for semantic search?
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* The goal was to evaluate how the proposed approach agreed with how a human
assessed the query-document pairs.
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to other low-resource languages, e.g., Multilingual-E5-base, EuroLLM-9B, Salamandra-7B, etc.
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* Multi-agent LLM can facilitate solving the complicated task of the relevance score assignment.
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