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Abstract. Domain-adaptive continual pretraining (DAPT) is a state-of-the-art
technique that further trains a language model (LM) on its pretraining task, e.g.,
masked language modeling (MLM), when common domain adaptation via LM
fine-tuning is not possible due to a lack of labeled task data. Although popular,
MLM requires a significant corpus of domain-related data, which is difficult to
obtain for specific domains in languages other than English, such as the process
industry in the German language. This paper introduces an efficient approach
called ICL-augmented pretraining or ICL-APT that leverages in-context learning
(ICL) and k-nearest neighbors (kNN) to augment target data with domain-related
and in-domain texts, significantly reducing GPU time while maintaining strong
model performance. Our results show that the best configuration of ICL-APT
performed better than the state-of-the-art DAPT by 28.7% (7.87 points) and re-
quires almost 4 times less GPU-computing time, providing a cost-effective solu-
tion for industries with limited computational capacity. The findings highlight the
broader applicability of this framework to other low-resource industries, making
NLP-based solutions more accessible and feasible in production environments.

Keywords: natural language processing, language models, domain adaptation,
continual pretraining, semantic search, process industry

1 Introduction

In Natural Language Processing (NLP), a low-resource language refers to one that lacks
sufficient linguistic data, resources, or tools for training and developing NLP models
[17,7]. Domain-specific German, particularly in fields such as the process industry that
are rich in professional jargon, codes, acronyms, and numerical data, falls into this
category due to the limited availability of large, publicly accessible datasets [32]. Con-
sequently, language models explicitly tailored to these specialized areas are scarce.

The process industry refers to sectors involved in continuously producing goods
through chemical, biological, or physical processes. This includes industries like chem-
icals and pharmaceuticals, where publicly available data in these domains in the German
language is considerably scarcer than in English, because most of the publications in
these areas are in English, and the proprietary data is limited to the collected volumes.
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Fig. 1. The proposed ICL-APT methodology retrieves data for continual pretraining using target
data (light green) from the domain-related document collection (orange) and in-domain data (dark
green) to create augmented target data for pretraining. The target data consists of the text logs
from the German process industry, which contain domain-specific terminology that demands
specialized knowledge of the field and a thorough understanding of the production process.

Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique for
further training a language model (LM) on its original task, such as masked language
modeling (MLM) [16]. While fine-tuning an LM for a specific downstream task is the
most common approach for LM domain adaptation, it falls short when labeled data
for a domain-specific task is limited or unavailable. Unlike model fine-tuning, DAPT
does not modify the model architecture by building additional layers on top of an LM;
instead, it continues the pretraining process by using domain-specific data. According
to [16], an LM can learn in-domain semantics by training on domain-related data af-
ter pretraining on general-domain text. As a variation of DAPT, [16] achieved optimal
performance on downstream tasks by further training an LM using human-curated task
data, specifically in-domain text that matches the target data distribution. Their find-
ings reveal that pretraining on a smaller subset of domain-specific data can significantly
improve performance compared to relying on large corpora of broadly domain-related
data.

While DAPT remains a state-of-the-art approach, it typically demands large amounts
of domain-specific text, often gigabytes of topic-related data, and substantial computa-
tional resources like GPUs. Low-resource languages, to which belong high-resource
languages within narrow domains such as the process industry in German, cannot re-
liably use DAPT. Instead, they require methods that work effectively with limited re-
sources while still delivering comparable model performance [19].

To tackle the challenges of pretraining and fine-tuning models in low-resource set-
tings, prior work has explored optimizing the training process under budget constraints
[1]. This involves balancing the size of unlabeled data used for continual pretraining,
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which affects GPU usage, and the size of labeled data for downstream tasks, which in-
fluences human annotation costs. However, relatively little research has focused on how
to obtain pretraining data that closely resembles the target task data, ensuring a similar
distribution between pretraining and fine-tuning datasets [16,29].

This paper introduces in-context learning adaptive pretraining ICL-APT, an efficient
domain-adaptive continual pretraining method that explores a set of steps for collecting,
selecting, and utilizing domain-related (DR) and in-domain (ID) data to augment target
datasets. Specifically, we explore how providing additional context for domain-specific
vocabulary can enable cost-efficient adaptive pretraining of LMs using smaller but more
domain-rich training text and fewer GPU resources and answers a RQ: How do data
augmentation techniques for domain adaptation via continual pretraining influence the
performance of the semantic search task in a specific domain?. Our experiments showed
that the best configuration of ICL-APT outperformed DAPT on the semantic search task
by 28.7% (7.87 points) while requiring almost 1/4 of the GPU hours. We conclude that
augmenting domain-specific terminology and vocabulary provides sufficient context for
ICL with DR and ID data [15,4].

2 Background

The proposed methodology of ICL-APT lies at the intersection of the two methodolo-
gies: continual pretraining and in-context learning. Both continual pretraining and in-
context learning rely on the available unlabeled data to facilitate LM domain-adaptation
and then rely on transfer learning when fine-tuned on a task-specific dataset. Below, we
explain the details of these methodologies to lay the foundation for our methodology.

Continual pretraining Gururangan et al. [16] introduced a state-of-the-art method-
ology for continual pretraining of language models (LMs) by training them on large
domain-related corpora, enabling domain shifts across various fields, for example biomed-
ical texts in Spanish [6,26] or chemistry in English [18,20]. Gururangan et al. compared
various pretraining strategies, emphasizing that data distribution, rather than data vol-
ume, is key to effective domain adaptation. They explored domain-adaptive pretrain-
ing (DAPT) using domain-related data, task-adaptive pretraining (TAPT) using task-
specific data, and human-curated task-adaptive pretraining (cTAPT) using in-domain
data. Their findings showed that while DAPT used more training data, it performed
similarly to cTAPT in some tasks and domains, but even underperformed in others. This
demonstrated that the alignment of data distribution with the task at hand can be more
important than the sheer volume of data. They proposed augmented TAPT (aTAPT)
for situations with limited human-curated data, which uses k-nearest neighbors (kNN)
to retrieve relevant training data from domain-related corpora, achieving comparable
results to DAPT while requiring fewer resources.

In-context learning The in-context learning (ICL) is a commonly known tech-
nique for the zero- or few-shot learning by prompting LLMs with the specific context
and/or examples to follow [3]. ICL is widely applied to shift large language models
(LLMs) to specific domains to improve the LLMs’ performance on the domain-specific
tasks [23]. The most recent approaches incorporate retrieval-augmented prompt gener-
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ation, helping the model learn infrequently seen terms encountered during pretraining
and automating domain adaptation of LLMs [21,22,14].

Although ICL is a technique applied during inference rather than training, [4] demon-
strated that pretraining a language model on concatenated documents related to the
same narrow topic or event can improve performance on tasks involving document
similarity, such as text summarization, semantic textual similarity, and cross-document
coreference resolution. This approach enhances the model’s ability to understand terms
and phrases within a specific context, producing effects similar to those seen with ICL.

3 Methodology: ICL-APT

The methodology of ICL-augmented pretraining (ICL-APT) revisits ICL to utilize re-
trieved data that closely resembles the target data, expanding the context for domain-
specific terminology for continual pretraining (see Figure 1). By incorporating addi-
tional context, such as definitions and explanations of abbreviations, LMs develop a
deeper understanding of domain semantics during further training tasks like masked
language modeling. This augmented data improves the effectiveness and efficiency of
the training process. Still, its success relies on the semantic similarity between the train-
ing data and the target data, which defines the specific domain. Our approach builds
upon the methodologies of aTAPT [16] and ICL [21], with two primary objectives: (1)
transferring most of the data preparation to the CPU, and (2) reducing training time
while enhancing the language model’s performance on downstream tasks.

kNN We enhance the data selection process for domain-related data using kNN,
as proposed by [16]. Our approach keeps kNN lightweight while capturing more context-
dependent semantics than the previously used VAMPIRE word embeddings. For imple-
mentation, we utilize a sentence-transformers model paraphrase-multilingual-MiniLM-
L12-v2 with the 384 dimension that supports the German language and delivers high
performance in document encoding [25]. We also use a linear search in FAISS with co-
sine distance on the normalized vectors, but through LangChain integration. LangChain
provides the flexibility to configure both the number of nearest neighbours and the max-
imum distance threshold for retrieving neighbours and adds control in more precise
retrieval, enhancing the effectiveness of data augmentation.

Sources We extend the data selection process with kNN to include both domain-
related (DR) and in-domain data (ID) rather than relying solely on DR data (see Sec-
tion 4 for details). Augmenting target data with ID data is essential because the pro-
prietary data is not present in the publicly available data to enable effective domain
adaptation.

ICL ICL adds valuable context for new or previously infrequently encountered
domain terms in the target data, i.e., a broader context with paragraphs of factual depth.
Extended context is essential for learning these terms through masked language mod-
eling (MLM), especially for the tasks that learn additional semantics from the related
texts, e.g., cross-document coreference resolution [4]. ICL is also utilized in fine-tuning
large language models (LLMs) and retrieval-augmented generation for domain-specific
tasks. This approach helps improve the quality of results by grounding them in provided
instructions and factual information, reducing the risk of hallucinations [21]. Given that
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text logs in shift books typically range from a sentence to a paragraph in length, ICL can
be applied by concatenating the top nearest neighbours while keeping the text within
the 512-token input limit of most language models.

Masked language modeling setup Following the approach of [16], we create
several versions of the randomly masked tokens within the same text. By iterating over
the text with varied masked tokens, the model is exposed to multiple domain terms
within the same context, enhancing its ability to learn them effectively. In ICL-APT,
we enhance the context by concatenating the top nearest neighbors to the target data,
thereby expanding the context from which the language model can learn.

Pipeline A dataset for ICL-APT is constructed as follows. First, we retrieved K
NNs for both DR and ID data types with a maximum cosine distance of D. The retrieved
NNs of each source were concatenated to the corresponding seed records in increasing
order of cosine distance. Hence, for one seed record, we have two context-augmented
texts. If no data was retrieved for augmentation, the seed record was used as-is. Second,
we randomly mask tokens in each context-augmented text X or Y times, depending on
the source, i.e., ID or DR, and all these versions of the masked texts are added to the
train set. Different masking ensures that several domain-specific tokens can be learned
within the same context.

4 Experiments

4.1 Experiment setup

Model We use GBERT-base as a German-only LM with the number of parameters
under 150M [5]. GBERT tokenizer is designed with a larger vocabulary of German
words and can effectively handle long tokens by preserving meaningful components
in compound words. For instance, if the compound word Wasserpumpe (water pump)
is not present in the vocabulary, it is split into two tokens: Wasser and ##pumpe. We
exclude LLMs from the consideration since running LLMs for inference requires GPUs,
and BERT-like models can run sufficiently on CPUs.

Target data We define the process industry domain using text-only data from
a custom domain benchmark designed for downstream classification tasks based on
shift logs. These text logs are sourced from multiple shift books to ensure diversity and
have been manually verified for quality. Unlike [16], who used the term ”task data”
to describe domain adaptation for a single NLP task, we use the term target data to
refer to text data spanning multiple NLP tasks within the domain benchmark. This term
reflects our distinctive approach, where multiple tasks collectively define the domain.
The target data serves as a reference point for identifying similar tasks to facilitate data
augmentation. We utilized a sample of 10K text logs for the experiments.

Source data In our experiments, we used two types of source data: domain-
related (DR) and in-domain (ID). We define DR data for the process industry as the
overlap between the chemistry, pharmaceuticals, and engineering domains. We col-
lected 10,3 GB of German domain-related data from publicly available sources, such
as dissertations [8]3, patents [13,9], Wikipedia, and EU regulations [10,12,11]. ID data

3 https://github.com/anastasia-zhukova/dissertations parser DNB

https://github.com/anastasia-zhukova/dissertations_parser_DNB
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consists of 3.2M text logs (1.51GB) from twenty shift books in the chemical and phar-
maceutical domains. Each text log is a short paragraph-sized text that describes events,
statuses, directives, or tasks in a production plant.

Semantic search task We evaluate ICL-APT on a semantic search task using
zero-shot learning, following the approach of the BEIR benchmark [28]. First, the
continually-pretrained model, its modifications, and baselines are evaluated as-is with-
out any fine-tuning as a text encoder. Second, we use the BEIR framework to fine-tune
the continually pre-trained model as a text encoder. To train a bi-encoder, we use a DR
version of German MS MARCO [24], which is created with a binary classifier. 4 The
resulting dataset contains approximately 2.27M training pairs (132K positive).

We use an ID test collection based on seven shift books, resulting in 205 search
queries over a collection of 330K documents [31]. Some portions of the text data from
this collection may appear in both the target and source datasets. This setup adheres
to the definition of TAPT, where text-only task data is used for continual pretraining,
followed by task-specific fine-tuning using labeled data.

Metrics To evaluate semantic search’s retrieval and ranking capabilities, we
compute a mean of three metrics for information retrieval: mean average precision
(MAP@10), mean reciprocal rank (MRR), and normalized commutative normalized
discounted cumulative gain (nDCG@10). We report results as a mean across the seven
shift books. To provide a comprehensive comparison across all setups, we report both
the number of training steps and the required GPU hours.

Baselines First, we compare ICL-APT to GBERT-base and the original configu-
rations of continual pretraining proposed by [16], which include: (1) DAPT: Pretraining
on the full domain-related (DR) data, (2) cTAPT: human-curated task-adaptive pretrain-
ing on the full ID data, (3) TAPT: the text-only data from the labeled benchmark data,
(4) DAPT + cTAPT: cTAPT applied after pretraining on DAPT, (5) DAPT + TAPT:
TAPT applied after pretraining on DAPT.

Second, the baselines are publicly-available bi-encoders under 150M parameters:
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 (SentTr-1), sentence-
transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned (SentTr-2), and
ibm-granite/granite-embedding-107m-multilingual (IBM-Granite). Additionally, we com-
pare the results to the state-of-the-art multilingual E5-large (mE5) text encoder (560M
parameters).

Implementation details We used one A100 v4 (24 vCPUs, 220 GiB memory)
with fixed training parameters, which are reused from [16]: probability of MLM of 0.15,
batch size of 64 (the batch size is modified to fit a single A100), gradient accumulation
steps of 1, Adam epsilon of 1e-6, weight decay of 1e-2, and warm-up ratio of 6e-2.
We adopt an implementation from HuggingFace to perform continual pretraining with
MLM. We filled out the full capacity of 512 input tokens and truncated extra or padded
missing tokens.

4 This classifier is a fine-tuned SciBERT model [2] trained on an 80K dataset that combines
fields of study (FoS) data and our ID data. The train dataset was split so that 50% consisted of
DR texts, selected by the labels that correspond to our domain, and ID texts, thereby forming
the true labels, while the other 50% was sampled from various areas of FoS.

https://huggingface.co/datasets/microsoft/ms_marco
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual
https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/datasets/allenai/scirepeval/viewer/fos
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We trained DAPT for one epoch in line with the original experiment of [16]. How-
ever, since our cTAPT corpus is significantly larger than the original setup, we also
trained cTAPT for just one epoch. While the original configuration for aTAPT involved
100 epochs, we trained ICL-APT for 20 epochs to align with a low-computation-power
scenario. Similarly, TAPT was trained for 20 epochs. To evaluate the influence of the
number of epochs, we additionally trained TAPT for 80 epochs, which resulted in
a comparable training time to ICL-APT. In our experiments, we use K=3 for kNN
but evaluate several configurations of data for ICL-APT. For example, a configuration
”10:10, 0.8” means that text records for the context-augmentation were retrieved with
a cosine distance of 0.8, both ID-augmented and DR-augmented text have 10 masking
variations, and it results in a dataset of 200K documents. To evaluate a text encoder, we
use a SentenceTransformers wrapper [25] for BERT models for document encoding,
which applies mean pooling to the output vectors. All vectors are normalized during
indexing and retrieval to ensure consistent performance.

4.2 Results and Discussion

In the original study, [16] demonstrated that cTAPT and combinations such as DAPT+
cTAPT or DAPT+TAPT achieved the best performance across multiple tasks from var-
ious domains. Our experiments investigate whether the same results can be achieved
in the process industry domain. Table 1 shows that the proposed ICL-APT achieved
the best overall performance of 35.28 and outperformed the state-of-the-art setting of
DAPT by 28.7%. Among baselines, TAPT trained for 80 epochs performed the second
best (33.86), and DAPT+TAPT performed the third best, both given even longer training
time compared to the best performing configuration of ICL-APT. We see that our re-
sults do not show any superiority of cTAPT, DAPT+cTAPT, or DAPT+TAPT, given the
described experiment setup for the low-resource model training and rather limited data
availability of the ID or DR data of production logs. We hypothesize that the language
used in these logs is highly specialized, containing numerous codes, jargon, abbrevia-
tions, and incomplete syntax. As a result, further training without providing additional
context for this specific terminology fails to deliver the expected performance.

Moreover, Table 1 shows the positive impact of the following parameters. First,
using a stricter cosine distance threshold when retrieving the K nearest neighbors for
ICL improves the quality of the context when augmenting seed records, leading to better
performance even with twice as few training epochs (32.47 with a threshold of 0.7 vs.
32.02 with a threshold of 0.8). Second, applying a larger number of token masking
variations to the ID text compared to DR test results in better performance (35.28 using
DR=10 and ID=20 vs. 32.13 using DR=20 and ID=10). Third, as expected, using a
larger number of training steps or epochs improves performance when the same training
data is used (35.04 for 15 epochs vs. 32.47 for 10 epochs). The results indicate that the
best-performing configuration used a small cosine distance, a larger number of token
masking variations in the ID data, and fewer epochs compared to other configurations.
This suggests that the quality of the training data and the ability to learn new domain-
specific terms (i.e., through context and multiple token masking variations) are more
important than the number of epochs required for training the model.
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Model
Parameters
(DR : ID,
cos. dist.)

Train data
size (GB)

Total steps/
Epochs

GPU MAP@10 MRR nDCG@10 Mean

GBERT-base – – – – 21.42 24.12 9.18 18.24
DAPT – 10.30 233K / 1 22h 31.89 34.52 15.83 27.41
cTAPT – 1.51 41K / 1 4h 29.45 32.29 14.77 25.50
TAPT – 0.01 10K / 20 1h 34.27 37.75 18.37 30.13
TAPT – 0.01 147K / 80 6h 37.18 43.19 21.22 33.86
DAPT+cTAPT – 11.81 274K / 1+1 26h 29.37 32.91 14.64 25.64
DAPT+TAPT – 10.31 243K / 1+20 23h 35.72 39.43 18.42 31.19

ICL-APT

10 : 10, 0.8 0.12 56K / 20 6h 36.37 40.29 19.43 32.02
10 : 10, 0.7 0.12 28K / 10 3h 37.10 40.27 20.05 32.47
10 : 10, 0.7 0.12 42K / 15 4.5h 40.32 43.02 21.80 35.04
20 : 10, 0.7 0.18 42K / 10 4.5h 37.09 39.92 19.37 32.13
10 : 20, 0.7 0.18 42K / 10 4.5h 39.54 44.73 21.57 35.28

Table 1. The proposed ICL-APT not only outperforms the baselines from the state-of-the-art
methods, e.g., DAPT, TAPT, and cTAPT, but also performs continual pretraining with fewer GPU
hours. A stricter threshold for the data selection and applying a larger number of masked tokens
variations to in-domain (ID) data yields the best performance across multiple configurations of
ICL-APT.

Table 2 reports the results of the ablation studies and shows the positive contribution
of each component of ICL-APT. To maintain consistency across setups with reduced
components, we limited the maximum training data size to 200K records and ensured
that the product of training size × epochs remained between 400K and 640K. This
setting guarantees that the largest dataset is trained for at least three epochs. For setups
involving DR and ID data without kNN-based data selection, we randomly sampled
200K records from each dataset. We observed that the most significant contribution in
learning domain-specific terms comes from the large variations of the token masking,
and it confirms the findings obtained from Table 1.

Models Mean δ

ICL-APT (10:10, 0.8) 32.03 –
–diff.token.mask. 27.98 -4.05
–20 epochs 27.05 -0.92
–ICL 25.60 -1.46
(ID only)

–DR-kNN 23.87 -1.73
–DR 23.87 -2.03

(DR only)
–ID-kNN 20.25 -5.35
–ID 23.73 +3.48

Table 2. Ablation studies of ICL-APT:
each component positively impacts the
proposed methodology.

Models dFT MAP@10 MRR nDCG@10 Mean
SentTr-1 - 43.84 46.99 26.90 39.24
SentTr-2 - 54.83 59.81 35.12 49.92
mE5 (560M) - 59.82 65.31 42.26 55.80
IBM-Granite - 62.42 67.45 44.67 58.18
GBERT + 62.64 66.92 45.78 58.45
TAPT (80 ep) + 61.26 65.63 42.43 56.44
DAPT+TAPT + 60.95 66.28 43.06 56.76
ICL-APT + 62.21 69.36 45.81 59.13
Table 3. Evaluation of models domain fine-tuned (dFT)
as bi-encoders using DR dataset. ICL-APT outperforms
the models continually pretrained with other continual
pretraining techniques and publicly available text en-
coders of comparable model size.
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Lastly, we evaluate the capability of ICL-APT and its baselines for domain transfer
learning when fine-tuned as bi-encoders using a DR task-specific dataset. We fine-tuned
all models for 5 epochs. Table 3 shows that ICL-APT fine-tuned on the DR version of
MS MARCO outperformed other models after continual pretraining. Although TAPT
(80 epochs) and DAPT+TAPT outperformed GBERT-base when evaluated without fine-
tuning, their performance did not proportionally grow after fine-tuning, which suggests
a decline in the capabilities of transfer learning after continual pretraining. While ICL-
APT outperforms GBERT by the mean of metrics of 0.68, it yields the best MRR (i.e.,
the position of the first hit). Moreover, ICL-APT outperforms the state-of-the-art mul-
tilingual E5, despite being five times smaller, and IBM-Granite, while, by estimation,
requiring less than 80 times the training data for all training steps.

While our experiments demonstrate significant improvements in the semantic search
task using ICL-APT, the availability of high-quality in-domain and domain-related data
plays a crucial role in optimizing performance across different domains and languages.
In scenarios where curated in-domain data is unavailable, strategies like kNN retrieval
from domain-related data can approximate target data. However, this approach may
not always match the level of contextual accuracy that a combination of in-domain
and domain-related data offers. Although techniques like ICL and MLM improve per-
formance, they may still fall short in capturing the intricate domain-specific nuances
necessary for optimal results. As a result, models pretrained with approximate domain
data may be limited by the representativeness and quality of the proxy data used.

In future work, we plan to explore whether expanding an LM’s vocabulary, coupled
with increased variations of MLM, or training for a longer time, can further enhance
the effectiveness of providing broad context for learning domain-specific terminology
[27,30]. Additionally, we aim to investigate the use of contrastive learning for vocabu-
lary expansion, which could improve the model’s ability to learn domain-specific terms,
especially when dealing with data that includes incomplete syntax or jargon, as com-
monly seen in German shift logs from the process industry [30].

5 Conclusion

Our research demonstrates that a new method for continual pretraining, ICL-APT, which
combines in-context learning (ICL) with kNN to retrieve and augment domain-specific
data using both DR and ID sources, significantly lowers the computational cost of pre-
training language models while maintaining or even improving their performance. This
method, tested in a resource-constrained applied setting, provides an efficient and scal-
able solution for domain adaptation with limited GPU resources for training and re-
quirements for CPU usage for inference.
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