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Improving Media Bias Detection with
state-of-the-art Transformers

Martin Wessel

Abstract

This thesis introduces MBIB, the Media Bias Identification Benchmark. MBIB,
inspired by GLUE [Wang et al., 2019b], consists of nine unified media bias tasks
and associated datasets. It allows for comprehensive performance analyses and the
comparison of models aimed at detecting media bias. An extensive overview of
existing media bias datasets is created. Out of this overview of 115 datasets 22
datasets are selected, preprocessed, and combined to form the data basis for MBIB.
A framework is developed to evaluate models on MBIB in a unified way. The
framework is then used to evaluate transformer models on the benchmark and to
set baseline performances. With MBIB this thesis presents a comprehensive and
demanding task collection, aimed at developing advanced methods for detecting
media bias. Additionally, it shows that the transformer model choice matters less
for performance than initially presumed. Finally, it can function as a catalog of
current datasets and provide a deeper understanding of remaining research gaps
related to media bias.
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Introduction
CHAPTER 1

We are constantly bombarded with news and media coverage. There has been a
shift from consuming news from a limited number of TV channels and subscribed
newspapers towards online resources [Kitchens et al., 2020]. Articles are being read
and widely available on social media, search engines, and other platforms. This
shift makes it increasingly difficult for readers to identify the trustworthiness and
objectivity of the media they are consuming. A collective term that describes when
media presents information that favors a certain political viewpoint or ideology is
media bias [Hamborg et al., 2019]. There are diverse reasons for the emergence of
media bias. One is the author or producer of an article trying to sway the reader
towards their own political or ideological opinion [Hamborg et al., 2019]. News
outlets trying to adjust their reporting towards the expectation of their readers for
economic benefits [Saez-Trumper et al., 2013] might constitute another cause.

Media bias can have a wide-ranging impact by spreading false or misleading in-
formation, which can result in the public forming opinions based on incomplete or
incorrect facts [Zaller, 1992]. Not only does this hinder the forming of independent
opinions but when recognized, it also endangers the trust of readers towards news in
general [Ardèvol-Abreu and Gil de Zúñiga, 2017]. Additionally, misrepresentation
can lead to certain topics, opinions, or discriminated groups not appearing in the
coverage [Min and Feaster, 2010, Singh et al., 2020, Lavery, 2013]. Media bias can
furthermore lay the foundation for the emergence of echo chambers, in which con-
sumers are only confronted with news coherent with and confirming their existing
belief system [Cinelli et al., 2021].

Because of these various influences, detecting media bias has long been of research
interest [Hamborg et al., 2019]. With the rise of electronic media consumption and
advances in machine learning techniques, automatic detection has moved into the
realm of possibilities. Having a model that automatically detects media bias gives
researchers a tool to measure the occurrences of bias. It could also help users to
easier identify the trustworthiness of an article, understand how a bias arose, and
generally make an informed decision on their news consumption. Finally, such a
model could help the producers self-control if a bias is introduced into their work or
whether they can reuse information from other news outlets. The latter could be a
decisive step to prevent the spreading and replication of misinformation.
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Media bias detection remains difficult because media bias can be inflicted at many
different stages throughout the production and consumption of a news article Ham-
borg et al. [2019]. In addition, media bias often involves subtle and complex lin-
guistic and contextual clues that are difficult for humans and machines to recognize
[Beukeboom and Burgers, 2017]. Furthermore, media bias can vary depending on
the individual, their political beliefs, and the news outlet, making it difficult to
develop a generalizable and accurate detection method. Machine learning mod-
els require a large amount of labeled data to learn and make accurate predictions
[Soekhoe et al., 2016]. With a high-quality dataset, it is easier for models to learn
these subtle and complex linguistic and contextual clues indicative of media bias.
High-quality datasets also allow researchers to evaluate and compare different media
bias detection methods and to set performance baselines.

In media bias research, new models to detect bias have been introduced contin-
uously. Like in many other natural language-related fields, recently, the usage of
transformer models has become most prominent [Spinde et al., 2021b]. However,
existing research has only utilized singular models on isolated aspects of media bias
[Spinde et al., 2021b, Fan et al., 2019, Huang and Lee, 2019]. There is no coherent
overview of which model works best and how to compare models for media bias
detection. This thesis aims to address this by introducing the Media Bias Identi-
fication Benchmark (MBIB). A media bias task collection with associated datasets
and an evaluation framework. Setting model performance baselines on MBIB aims
to enable researchers to make an informed model choice.
The construction of MBIB is inspired by a series of widely used benchmark datasets
and task collections like GLUE [Wang et al., 2019b], SuperGLUE [Wang et al.,
2019a] and BIG-Bench [Srivastava et al., 2022]. They are task collections based on
existing datasets that standardize performance measurements. To construct a simi-
lar benchmark for media bias, nine tasks are chosen to cover the biases falling under
the collective term media bias as comprehensively as possible. To find datasets for
each task, to my knowledge, the first extensive overview of existing datasets relevant
to media bias research is created. From this list of 115 datasets, 22 are chosen to
be included in MBIB. Datasets are preprocessed and brought into a uniform shape.
To set a first model baseline on MBIB, five transformer models are chosen by an
upstream proxy task. These models are then trained and tested on every task.
An evaluation of the model performances finds that though there are performance
differences, there is no best model suitable for all media bias tasks. It furthermore
allows for an evaluation of how well the models perform on individual datasets and
the composition of each task’s datasets.

Publishing the overview of available datasets gives researchers an inventory of po-
tential resources, but it also allows for assessing the current availability and quality
of datasets in the field. A wide range of datasets is found to concentrate on a few
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types of bias. For other types of bias, like reporting-level context bias, there are
close to no datasets. This finding serves as an appeal to focus research capabilities
toward these fields.
MBIB offers extensive training and testing data in a uniform shape, though publi-
cation restrictions still hinder making all associated datasets public.

The remainder of the thesis is structured as follows: chapter 2 discusses exist-
ing work related to media bias detection, benchmark dataset collections from other
fields, and motivates the need for such a benchmark in the field of media bias. chap-
ter 3 and section 3.2 describe the creation of MBIB. chapter 4 until chapter 6 present
the creation of model baselines by selecting the most suitable models and testing
them on MBIB. Finally, chapter 7 discusses current limitations and an outlook on
future steps.

Related Work
CHAPTER 2

2.1 Media Bias

Media bias, as defined by Hamborg et al. [2019] and Spinde et al. [2021c], refers
to the “slanted news coverage” that results from journalists intentionally introduc-
ing bias into articles. Media bias can be inflicted intentionally or unintentionally
[Baumer et al., 2015], and can occur at multiple stages throughout the production
and consumption of a news article [Hamborg et al., 2019].
Other definitions of media bias include one used by D’Alessio and Allen [2000], who
divide media bias into gatekeeping bias, coverage bias, and statement bias, and a
definition by Mullainathan and Shleifer [2002], who divide media bias into spin bias
and ideology bias. Gentzkow and Shapiro [2006] and Lee et al. [2021] define media
bias as “slanted reporting” that influences the opinions or judgments of readers in a
one-sided manner. Media bias can also occur in non-textual content, such as audio
or images, but this thesis focuses on text-based bias.
The influence of media bias on readers’ perceptions of events can be significant,
potentially impacting their opinions [Zaller, 1992] and even their voting behavior
[Gerber et al., 2009]. News consumption amplifies this effect through digital plat-
forms such as news aggregators [Bui, 2010].
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2.2 Automatic Media Bias Detection

Spinde et al. [2022a] divide automated approaches for detecting media bias with
computational methods into four categories. The first category includes approaches
that use traditional methods such as measuring word occurrence or frequency [Niven
and Kao, 2020, Zahid et al., 2020]. Niven and Kao [2020] use word frequency in news
articles to measure selection bias in the news of authoritarian states. Zahid et al.
[2020] count tweets and polarity rates to calculate scores on coverage and statements
of events, which they identify as the main driver for media bias.
The second category consists of machine learning methods, such as logistic regres-
sions [Recasens et al., 2013] or various classifiers [Baumer et al., 2015]. Chen et al.
[2020] use a Gaussian Mixture Model as an alternative machine learning approach.
The third category includes neural network-based approaches, such as non-transformer
deep learning models [Chen et al., 2020] and transformer-based models [Spinde et al.,
2021c].
The final category comprises graph-based approaches, such as the sentence-graph
representations used by Guo and Zhu [2022] to incorporate context from adjacent
sentences and the entire article. Spinde et al. [2022a] give a more detailed analy-
sis of the contributions in all four categories. They also show that, especially in
the last years, the research focus has shifted primarily towards transformer-based
approaches. Following Spinde et al. [2021c] and Spinde et al. [2022b], the models
compared in this thesis will aim to identify sentence-level bias induced by word
choice.

2.3 Similar Approaches in Other Areas

Over the last few years, benchmarks for natural language tasks have gained in pop-
ularity and importance by offering a standardized way of comparing how different
models and training strategies perform on these tasks. The field has four influential
benchmarks: SentEval, GLUE, SuperGLUE, and BIG-Bench. As this work aims to
set up a benchmark for the realm of media bias, a closer look at these four can give
guiding insights for MBIB’s design.

To evaluate and benchmark different sentence representations Conneau and Kiela
[2018] publish SentEval. Sentence representations are embedding techniques such as
the embeddings produced by GLoVe [Pennington et al., 2014] or Word2Vec [Mikolov
et al., 2013] designed to translate words or sentences into a vector representation.
SentEval includes datasets for various binary and multi-class classification tasks like
sentiment analysis, image retrieval tasks, and natural language inference, aiming to
determine whether a given premise sentence entails or contradicts a given hypoth-
esis sentence. Another task in SentEval is similarity detection, aimed at determin-
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ing whether two sentences convey the same meaning. The datasets for SentEval
consist of a collection of existing datasets that had been frequently used before.
Conneau and Kiela [2018] state that taking well-used datasets would increase other
researchers’ confidence in the benchmark.

Wang et al. [2019b] create the General Language Understanding Evaluation (GLUE)
benchmark, a collection of tasks designed to evaluate the performance of NLP sys-
tems in a variety of different language understanding tasks. The language under-
standing tasks covered by the benchmark include, among others, similarity tasks,
inference tasks, and question answering. Similar to SentEval, the datasets used to
construct each task are well-used from the literature. One of the key features of
GLUE is its ability to provide a single, standardized score that can be used to com-
pare the performance of different NLP systems across the different tasks included
in the benchmark. This score allows researchers to more easily compare different
systems’ relative strengths and weaknesses and helps identify areas where further
research and development are needed. Additionally, Wang et al. [2019b] evaluate
models for a baseline score on each task. They train models on each task individually
and multitask models. To ensure a fair model evaluation, Wang et al. [2019b] only
published unlabeled test data. Researchers can upload their model’s predictions to
a website to calculate a score for the predictions. The Natural Language Processing
group at Stanford University developed and maintains the website.

As a reaction towards the strong performance increases on natural language tasks
with the rise of transformer models like BERT [Devlin et al., 2019] and GPT [Rad-
ford et al., 2018] Wang et al. [2019a] publish an improved version of GLUE called
SuperGLUE. The results on GLUE got so good (and outperformed human perfor-
mances) that it is no longer an adequate benchmark. SuperGLUE mainly updates
two aspects of GLUE: A wider variety of tasks are introduced, and the difficulty
level of tasks is increased. For every task, a human baseline is measured as a per-
formance baseline. The tasks are chosen based on a public collection process where
external researchers could submit potential tasks. Interesting are the criteria which
every task had to comply with: As SuperGLUE is aimed at natural language un-
derstanding, all tasks should test an aspect of this field. Regarding the difficulty,
tasks “should be beyond the scope of current state-of-the-art systems, but solvable
by most college-educated English speakers” [Wang et al., 2019a, p.4]. To measure
the performance, every task should have a well-defined metric. In the case of Su-
perGLUE, these usually consist of an F1-Score, ROUGE, or BLEU. All tasks should
have public training data available. Finally, tasks should be in a format that is as
simple as possible. These principles, except the overall aim of tasks, will be applied
later on to the media bias benchmark.

Srivastava et al. [2022] introduce BIG-Bench, a benchmarking tool for natural
language processing systems. BIG-Bench is unique from previous benchmarks in
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that it includes a wide range of tasks, including document classification, machine
translation, and question answering, totaling 204 different tasks. The primary mo-
tivation for creating BIG-Bench is to develop an extensive and diverse set of tasks
that are yet too difficult for current models to solve completely. Srivastava et al.
[2022] also provide human baselines for every task. One of the critical features of
BIG-Bench is its ability to generate large amounts of synthetic data that can be
used to test the capabilities of NLP systems. This synthetic data is designed to be
realistic and challenging and can help researchers evaluate the performance of their
systems in a variety of different scenarios.
Tasks are created in a crowdsourced manner, with different authors handing in in-
dividual tasks. To be included, tasks must adhere to a strict set of criteria. The
criteria for accepting tasks include, among others: the difficulty, not being solvable
by memorizing the internet, novelty, size, and the use of computational resources.
Tasks must be written in valid code, be easy to read and interpret, and cleanly cap-
ture a specific capability of language models. Furthermore, tasks must be beyond
the capabilities of current models, not be solvable by looking up strings in model
training data, fill a gap in coverage by BIG-Bench, be well-justified, include at least
32 input-output pairs of examples, and use sufficient computational resources [Sri-
vastava et al., 2022]. BIG-Bench has tasks to identify a model’s bias (for instance,
whether a model exhibits signs of Gender, Racial or Religious Bias). Furthermore,
there is a task to identify social bias in models (testing how the model behaves when
confronted with different social groups). There are, however, no tasks included that
would test the models’ capability to detect media bias or one of its subtypes.

Aside from the development of benchmarks in natural language understanding,
recent work in sentiment classification has also involved the comparison and bench-
marking of models. Pipalia et al. [2020] conduct a comparative analysis of trans-
former models for sentiment analysis, comparing five state-of-the-art models. They
find that XLNet outperformed other models, such as RoBERTa and T5, on senti-
ment analysis tasks. Farha and Magdy [2021] benchmark transformer models for
Arabic sentiment analysis, focusing on the models’ training time and computational
cost. Guo et al. [2020] compared transformer models for social media text classifica-
tion, evaluating the performance of three selected models on 25 different datasets.
Mathew and Bindu [2020] compared seven other pretrained transformer models on
their ability to detect polarity in movie reviews, finding that XLNet performed the
best but also had the highest computational complexity.

2.4 Research Gap

The previous section shows that NLP benchmark dataset collections have gained
popularity and importance. They offer training data, standardized performance
measurements, and insights into the best model for a certain task. Such a bench-
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mark does not yet exist for media bias. An extensive overview of the existing datasets
in the field is not available. This thesis, therefore, aims to create an overview of
existing datasets and use them to create media bias tasks. The tasks collectively
form the media bias benchmark, MBIB.
Since the rise of transformers, the availability of different models has increased
substantially. Newer models differ in their architecture, training objective, or desig-
nated task. Current research has, however, only utilized singular models such as the
BERT transformer model [Devlin et al., 2019] for the media bias classification task
[Spinde et al., 2021b, Fan et al., 2019, Huang and Lee, 2019]. There is no exhaustive
overview and comparison of which transformer model performs best for media bias
detection. This thesis, therefore, will follow the creators of GLUE [Wang et al.,
2019b] by setting a model performance benchmark on the newly created media bias
benchmark tasks and datasets.
Creating curated benchmark datasets will give researchers access to uniformly struc-
tured training and testing data on all relevant media bias tasks. Furthermore, it will
allow for a comparable performance metric. Setting model benchmarks on each task
will give researchers insights into which models and training objectives are prefer-
able and what performances can be expected. Finally, the dataset overview will also
shed light on where datasets are needed or the existing data quality needs to be
improved.

2.4. RESEARCH GAP 7



Creation of MBIB
CHAPTER 3

Figure 1. Methodology of the thesis

To create MBIB, first, all relevant media bias tasks need to be collected. Since media
bias is an umbrella term under which many different forms of bias appearing in news
coverage are collected, this is more complex. Each task should be an independently
defined bias under the media bias umbrella term. This requirement facilitates the
definition, delimitation, and interpretation of each task. To be selected, the bias
needs to fulfill two criteria:

• When occurring in media coverage, the bias constitutes a form of media bias.
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• A task is either part of the media bias framework introduced by Spinde et al.
[2022a] or is an independent, distinguishable research field of societal impor-
tance.1

MBIB introduces nine media bias tasks. Four tasks are based on the media bias
framework [Spinde et al., 2022a]. These tasks center around how a bias is induced
and are to date the only conceptualization aimed at fully covering media bias. Five
tasks are independent research fields.
After the task creation, datasets for the tasks needed to be collected. An overview
of 115 datasets from in the media bias literature is created. From this overview, a
selection of datasets for each task is made based on the datasets’ suitability, avail-
ability, size, and quality. The data for each task is then preprocessed into a uniform
shape and balanced.
After completing the tasks and their datasets, the last thing missing for MBIB is a
framework that defines a standardized procedure to evaluate models on each MBIB
task. A proxy task is created based on a small but high-quality dataset to filter the
best suitable models from the wide availability of existing transformer models. By
using the five best-performing models and the developed performance framework
baseline performances are set for each MBIB task.
Finally, an in-depth analysis of the results is performed to investigate whether there
is one best model choice, how performances differ on individual datasets, what ex-
plains the performances, and what improvements can be made.

3.1 MBIB Tasks

A systematic categorization of media bias is needed to construct a task collection
that consists of meaningful tasks which fully cover media bias. That is why four
MBIB tasks are based on the framework introduced by Spinde et al. [2022a]. Next
to these four tasks, there is a wide range of task candidates constituting independent
research areas. Examples of such independent tasks are gender bias or hate speech
detection. These tasks constitute media bias when they occur in media coverage
but might overlap with the tasks based on the media bias framework. For instance,
a linguistic bias might simultaneously induce gender bias. The framework-based
tasks already fully cover media bias (as every form of media bias would fall into
these tasks). While this framework is new, the independent media bias tasks are
well-established in the literature. Including them increases acceptance of the bench-
mark. Furthermore, these fields are of high societal interest and importance. It is,
therefore, relevant to how well models do on these specific tasks.
To find independent tasks candidates the media bias literature collection provided

1Note that this criterion implies that the tasks are not necessarily exclusive.
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by Spinde et al. [2022a] is assessed for the main types of bias that the research fo-
cuses on.2 The detection of every bias type identified here is considered a potential
task for MBIB. After excluding three candidate tasks (reasons for that are discussed
at the end of subsection 3.1.2) five tasks remain that complement MBIB.

The tasks introduced by Spinde et al. [2022a] often consist of multiple subtasks.
These are taken into account during the dataset collection. To avoid the number of
tasks becoming unmanageable and to compensate for the lack of data available for
individual subtasks, MBIB only includes higher-level tasks.

3.1.1 Media Bias Framework Tasks

The tasks based on the media bias framework [Spinde et al., 2022a] consist of lin-
guistic, text-level context, reporting-level context, and cognitive bias.

Linguistic Bias constitutes the most researched area of the four. Linguistic bias
describes all biases that are induced by lexical features. These features describe
which words are used and how they are used to form a sentence [Beukeboom and
Burgers, 2017]. Spinde et al. [2022a] divide this task into:
Linguistic intergroup bias, which describes the usage of subtle abstraction forms that
deviate objective descriptions to subjective ones so that they reinforce stereotypes
between groups [Dragojevic et al., 2017]. An example of linguistic intergroup bias
could be using the term “welfare recipients” to refer to people receiving government
assistance, as opposed to using the more neutral term “low-income individuals”. This
subtle abstraction reinforces the stereotype that these individuals are primary ben-
eficiaries when they may be working hard while struggling with poverty.
Framing bias (also called priming) refers to the usage of one-sided words and re-
peated phrases favorable of one opinion, aimed at guiding the reader’s opinion to-
wards it [Entman, 2007]. An example of framing bias could be using the phrase
“taxpayer money” to refer to government spending instead of using a more neutral
term like “public funds”. The phrase can be used by people who are opposed to
government spending. Using this phrase, the writer can guide the reader’s opinion
against government spending.
Similar to framing bias but more subtle, epistemological bias focuses on the usage of
verbs or adjectives that induce certain assumptions on the veracity of a statement
and the speaker’s viewpoint on the matter [Recasens et al., 2013]. An example of
epistemological bias could be the phrase “it is widely accepted” when referring to a
certain belief or opinion. This phrase implies that the belief is true, even though it
may not be supported by evidence or fact. By using the phrase, the speaker tries to
induce the assumption that the belief is true and tries to get the listener to accept
it.

2The same literature collection is used later on to create the overview of media bias datasets.

10 Martin Wessel



Bias by semantic properties describes the same as framing bias not by individual
words but by sentence structure [Greene and Resnik, 2009]. Bias by semantic prop-
erties could be stating that “the unemployment rate is increasing” to describe a
situation where the rate of people out of work is growing. The sentence structure
implies that the situation is negative and suggests that something needs to be done
to address it.
Finally, connotation bias describes the introduction of connotations to alter a state-
ment’s meaning. While seemingly an objective statement, the existence of conno-
tations for certain words may completely change the interpretation [Rashkin et al.,
2016]. An example of connotation bias could be the phrase “government handouts”
to refer to government programs designed to help people in need. This phrase car-
ries a negative connotation and implies that the people receiving the assistance are
undeserving.

Text-Level Context Bias acknowledges that a statement rarely stands on its
own and puts the focus on how context, the text surrounding a statement, changes
the interpretation of the statement. One subtask of text-level context bias is state-
ment bias, which refers to the author introducing his own opinion into a text. State-
ment bias can already occur through criticizing one side more often than the other
[D’Alessio and Allen, 2000]. An example of statement bias is when an author writes
a biased article about a particular political candidate. The author might frequently
comment negatively about the candidate while praising their opponent. They might
also use loaded language to portray the candidate negatively or exaggerate certain
facts to make the candidate look bad.
Other subtasks include phrasing bias, context-dependent non-neutral words [Hube
and Fetahu, 2019], and spin bias, including unnecessary or excluding necessary in-
formation [Mullainathan and Shleifer, 2002]. An example of phrasing bias is when
an author uses an inflammatory word such as “scandal” to refer to a much less se-
rious event. An example of spin bias is that an author leaves out that a particular
political candidate supported certain legislation to make it appear as though they
are against it.

Just like text-level context bias Reporting-Level Context Bias is focused on
the surroundings of statements. However, not on the surrounding text but the re-
porting circumstances. One of the most apparent biases in this task is selection
bias. It describes bias that arises through decisions made by editors and journalists
on what events to report on and what sources to use [D’Alessio and Allen, 2000].
There are limitations on the topics and events that newspapers can cover, but how
they choose the most relevant might be influenced by multiple factors, e.g., by what
they think the audience wants to read or personal preferences. An example of selec-
tion bias in the media can be seen in the 2016 US presidential election. Before the
election, many major news outlets declared support for one of the candidates, and
much of the coverage is focused on events that favored that candidate [Patterson,
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2016]. This type of media bias can have a powerful influence on public opinion and
shape election outcomes.
Like selection bias, coverage bias focuses on how balanced the news production pro-
cess takes place. Coverage bias occurs when one side is disproportionately presented
more than the other sides [D’Alessio and Allen, 2000]. This bias can be within a
single article and the number of articles released for a certain topic or opinion. One
example of coverage bias in Europe can be seen in the media coverage of the Euro-
pean migrant crisis. Here British media overwhelmingly reported negatively about
the events compared to outlets in other European countries [Bennett et al.].
Proximity bias describes a bias occurring when news outlet favor covering events
that happen close by. Either geographically by preferring local or national news or
predominantly iterating opinions close to those of the readers [Saez-Trumper et al.,
2013]. For example, a local news outlet may focus on a crime that happened in their
city while ignoring a similar crime that happened in another city.

Cognitive Bias focuses on the bias induced by the reader’s perception of news.
Like on the reporting level, readers might introduce bias by reading articles from
outlets and sources based on their worldview. Media consumers might also be more
prone to believe sources that approve of their opinions and choose to in the future
only consume articles from these sources, making the effect self-reinforcing [Nicker-
son, 1998].
According to Spinde et al. [2022a], cognitive bias can be divided into selective ex-
posure and partisan bias. Selective exposure focuses on consumers choosing which
articles to read and aligning them with priorly formed opinions [Spinde et al., 2022a].
Social media can amplify this effect, as friends and like-minded acquaintances share
articles. One example of selective exposure is a reader only following news outlets
that align with their political beliefs. For instance, if a person identifies as progres-
sive, they might follow news outlets such as Die Zeit, taz, or the Guardian instead
of Fox News, Die Welt, or The Daily Mail. By only following outlets that agree
with their preexisting beliefs, they are less likely to be exposed to news that would
challenge their beliefs and reinforce their existing biases.
Partisan bias describes the effect of readers being more likely to believe an article
is true if it is consistent with their worldview. Vice versa, they are also more likely
to dismiss the veracity of articles with opposing views [Gawronski, 2021]. An ex-
ample of partisan bias can be seen in how people interpret the same information.
Depending on their political beliefs, people may interpret the same facts differently
and come to different conclusions. For example, when presented with the same eco-
nomic data, one may argue that it is evidence of a strong economy. In contrast,
another individual may argue that it is evidence of a weak economy.
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3.1.2 Independent MBIB tasks

The following types of bias (hate speech, fake news, racial bias, gender bias, and
political bias) constitute a form of media bias when occurring in news articles.
However, they have developed independently as areas of research. Reasons for this
might be a big societal interest in these specific topics and often clear identification.
Because of this relevance, including the following five tasks into MBIB makes the
benchmark more meaningful. The tasks are, however, not exclusive from the me-
dia bias framework tasks. In fact, they are often induced by the above-described
concepts. Since the independent tasks are often easier to apprehend and make out,
they can be valuable in explaining why a statement is biased and why the bias might
have harmful impacts.

Most researchers agree that Hate Speech contains directing toward a specific
target a threat of violence or hate [Fortuna and Nunes, 2018]. Definitions differ on
whether offensive language already constitutes such a case [Mathew et al., 2021].
After comparing multiple definitions from the literature [Fortuna and Nunes, 2018,
p.85:5] conclude that hate speech is a “language that attacks or diminishes, that
incites violence or hate against groups, based on specific characteristics such as
physical appearance, religion, descent, national or ethnic origin, sexual orientation,
gender identity or other, and it can occur with different linguistic styles, even in
subtle forms or when humor is used.” Examples of hate speech are, e.g., from the
HateXplain dataset [Mathew et al., 2021]: “I will call my friends and we go [...] up
that [...]”, or from Golbeck et al. [2017]’s online harassment corpus: “[...] and [...]
are abominations. The [...] love them”. Soral et al. [2018] find that hate speech
through desensitization increases prejudice and influences intergroup perception.
While commonly occurring on social media in the news domain, it is much rarer.
This is also mirrored in the availability of datasets that exclusively come from non-
news domains. Due to its damaging impact, however, being able to detect hate
speech in the news remains relevant. Zannettou et al. [2020] expand the detection
to comments posted under news articles where hate speech is common. Since the
comments are often consumed simultaneously with the articles, this increases the
relevance of hate speech detection in media. Mozafari et al. [2020] fine-tune a BERT
transformer model [Devlin et al., 2019] to build a hate-speech classifier by utilizing
some of the datasets also included in MBIB and find that it significantly outperforms
previous approaches.
Hate speech detection is included as an independent media bias task because news
organizations need to pay special attention not to amplifying hate speech spreading
on social media. When occurring, it creates unsafe and hostile environments for the
targeted groups while not being limited to any group, region, or ideology.

Fake News describes published content based partly or completely on false claims
and premises. This false content is presented as being true to deceive the reader
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[Tandoc Jr., 2019]. In its intent to deceive the reader, it differs from parodies or
fiction, which might fulfill the same criteria but are recognizable as such. Fake news
has increasingly been used in a politicized context to defame opposing news outlets
[Tandoc Jr., 2019]. Social media is often cited as the main distribution platform for
fake news as there is not one central responsible news outlet, but users can share
faked news articles with each other.
Fake news can have serious consequences. For instance, Rocha et al. [2021] found
that fake news concerning the Covid-19 pandemic led to severe psychological disor-
ders. With external and context knowledge, fake news can be easier to identify. For
example, “Phoenix Arizona is the No 2 kidnapping capital of the world” or “Under
the Iran nuclear deal we give them 150 billion we get nothing” from the liar dataset
by Wang [2017] can only be identified as false when fact-checking it.
Research on fake news detection is often based on two strategies: Detecting fake news
through linguistic features or comparing content to verified information. Verifying
news by comparing it to a ground truth database is an obvious yet labor-intensive
strategy. When setting model baselines in chapter 6, fake news will solely be detected
through linguistic features, as this strategy is applied to all tasks. However, other
approaches, e.g., fact-checking events against a database, are possible on MBIB.
Other types of bias, such as spin bias, might also use misleading information. How-
ever, fake news is distinct in its deceiving intent. Additionally, it is tough to iden-
tify. Combined with fake news being a globally occurring problem with serious
consequences, it makes it an important task to be tackled by media bias-detecting
methods.

Chiazor et al. [2021] propose that in the context of media, systemic Racial Bias
can be found in “news that attempts to portray in a negative light any minority
group more than it portrays in a negative light any majority group and vice versa”.
This bias is often identified by the wording used [Adegbola et al., 2018] and induced
by linguistic or text-level context bias. Examples of these kinds of racially biased
statements are, e.g., “black people have a high crime rate therefore black people
are criminals” or “black people are just inherently criminals” (RedditBias dataset
[Barikeri et al., 2021]). Fair [1993] find, e.g., that with ’Africa’ words like ’other,’
’black,’ or ’primitive’ are overrepresented. However, research also suggests that
racial bias in the news (especially regarding Africa) has recently declined [Nothias,
2018]. Racial bias might also influence the selection of events in news coverage.
Min and Feaster [2010] find that in the reporting of missing children cases in the
US, children with an African American background are disproportionately under-
represented. In the US, numerous studies find that criminals with African American
backgrounds and Caucasian victims are overrepresented in news coverage [Min and
Feaster, 2010]. Closely connected to reporting-level bias, this might be either caused
by news outlets trying to appeal to a certain audience or mirror the journalist’s social
background. Racial bias in news coverage can severely impact affected minorities, as
it can strengthen stereotypes and discrimination [Dukes and Gaither, 2017]. While
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openly racist statements in news coverage might be rare, the continuing existence of
discrimination through wording or representation and the severe societal impact it
can have make racial bias a relevant task to consider when researching media bias.
Racial bias is often associated with hate speech. While there can be cases of hate
speech based on racist motives, the two tasks are distinct. Some statements are
racially biased but not hate speech, for instance, the statements from the Reddit-
Bias dataset given earlier. Xia et al. [2020] find that there often is a racial bias in
the annotation of hate speech datasets, with African American English being more
likely to be annotated as hateful.
There have been numerous methods proposed to detect racial bias in the media.
Jacobs et al. [2018] identify racial bias by counting co-occurrences of specified word
pairs in news articles. In such an approach, however, semantic nuances of the state-
ments are not captured. Kroon et al. [2021] improve the detection by using word
embeddings trained on 3 million Dutch news articles. The word embeddings of rele-
vant words are then analyzed on whether they contain ethnic association. Mozafari
et al. [2020] also fine-tune their BERT model to detect racial bias. As racial bias
is a bias that has been shown to occur in news coverage is distinct, and can have a
severe societal impact it is included in MBIB as an independent task.

Gender Bias describes treating one sex either more favorably or discriminating
against it. This discrimination often manifests in the underrepresentation of a gen-
der. Examples of gender bias, induced through framing and word choice, in this
case discriminating against women are, e.g., “For a woman that is good.” or “Leave
running the company up to men” (from the workplace sexism dataset [Grosz and
Conde-Cespedes, 2020]).
Gender bias can be induced by all four cognitive bias tasks, linguistic bias through
word choice or framing, text-level context bias through sexist phrasing, reporting-
level context through underrepresenting a gender in reporting, and, finally, cognitive
bias through reader-projected stereotypes. The presence of gender bias in the media
can have severe impacts on, for instance, the perception and choice of professions, as
some jobs will be perceived not as suitable for a certain gender and role models are
missing in the public perception [Singh et al., 2020]. Another impact gender bias
can have is on voting decisions through the underrepresentation or discrimination of
certain candidates [Lavery, 2013]. The severe societal impact that gender bias can
have makes it a relevant additional task for media bias research and MBIB.
In the NLP research area, gender bias is a well-researched field. One string of re-
search focuses on using NLP methods to detect gender bias. Another focuses on gen-
der bias induced through, e.g., language models [Costa-jussà, 2019]. Bolukbasi et al.
[2016] investigate the latter by examining word embeddings for their gender charac-
teristics. Based on the direction of these word embedding vectors regarding the word
embedding vectors of gendered words (e.g., by a projection of

−−−→
word · (

−→
he −

−→
she)),

they show that not only are many words associated to one gender. Also, sexist
operations with word embeddings are possible. These algorithmic biases are intro-
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duced through gender bias present in the training corpus. Based on the direction of
word embeddings, Bolukbasi et al. [2016] propose a method to correct gender bias
by neutralizing the gender direction of a word embedding. Gonen and Goldberg
[2019], however, show for this and other neutralization methods that the changes
made only appear to work on the surface while the underlying gender association
remains. Also, the transformer models used in this survey will not be free of this
underlying bias arising from biased training corpora.
In the research utilizing NLP models to detect gender bias in news articles, Dacon
and Liu [2021] conduct a large-scale analysis of news abstracts produced by news
recommender systems. They classify each abstract as belonging to a certain gender
(or none) by counting male or female possessive nouns in each abstract. Dacon and
Liu [2021] then measure the gender distribution over all abstracts and the gender
association of certain professions and adjectives. Dacon and Liu [2021] find that not
only are women underrepresented in news articles but also stereotypes manifest in
words associated with women. Grosz and Conde-Cespedes [2020] use an LSTM deep
learning model to detect sexism in workplace contexts automatically. Other fields of
research include gender bias in advertisements [Sweeney, 2013] , in law [Pinto et al.,
2020], or in educational materials [Raina, 2012].

Political Bias, also referred to as partisan bias, describes a news article having
a political leaning or ideology. Political ideologies “operate at the societal level to
organize political debate by allowing political parties to offer more or less coherent
policy platforms” [Feldman, 2013, p.591]. Often, these ideologies are connected to
specific political stances (e.g., a strong welfare state vs. a minimal state). Typically,
the ideologies in news articles are divided into “left” and “right” leaning. An article
is biased if it tries to influence the reader in either direction. An example of political
bias is “Generally happy with her fiscally prudent, dont-buy-what-you-cant-afford
approach, German voters are poised on Sunday to give Mrs. Merkel [...] a third full
term in power in Berlin.” classified “right”. Opposing to that stands “Ms. Merkel
has softened her stance saying that Germany is open to stimulus to spur growth and
some German voters have also begun to question austerity.” classified “left” (both
examples from the BigNews Corpus by Liu et al. [2022]). Political bias occurs either
through lexical features as a form of linguistic bias or is induced by the reader’s
political opinion as a form of cognitive bias. With the focus on political leaning,
the political bias task is distinct from the other media bias tasks. The presence of
political bias in media can have a decisive influence on political decisions as, e.g.,
the media can influence the reader’s political opinion and ultimately their voting
behavior [DellaVigna and Kaplan, 2007]. With its clear distinction from the other
bias task and high societal relevance and research interest, political bias constitutes
the last MBIB task.
Many approaches have been proposed to detect political bias in the media. The
most simplistic approaches are based on counts of the appearance of certain po-
litical parties or ideology-associated words in news articles [Lazaridou and Krestel,
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2016] or simply analyzing manually annotated articles [Budak et al., 2016]. To
detect political bias automatically, Chen et al. [2020] utilize a Recurrent-Neural-
Network to detect political bias in news articles classified by allsides. Sinno et al.
[2022] compare multiple deep learning strategies for political bias detection based on
a multi-dimensional dataset they curate themselves in which they split the political
bias into the topics: economical, social, and foreign. Their fine-tuned BERT-based
detection system works best compared to LSTM-based approaches.

There are other candidate tasks that are omitted from MBIB. Two of these are
framing effects and group bias. Framing effects refer to how media organizations
present information to the reader to influence their perception and understanding
of it. This framing is done by emphasizing certain aspects while downplaying or
ignoring others to create a particular interpretation [Spinde et al., 2022a, Entman,
2007]. However, it remains unclear how this differentiates itself from the framing bias
discussed as a subtask of linguistic bias. Group bias refers to bias toward a specific
group. It serves as an umbrella term for gender bias, racial bias, and religious
bias. Group bias can have other overlaps with, for instance, hate speech. To avoid
overlaps, it is not considered for MBIB. However, it could serve as an alternative task
to gender and racial bias. Religious bias, a bias arising when discriminating against
a group based on their religion [Hart et al., 1980], is another potential additional
media bias task. It is mainly not included due to a lack of research (only one mention
in the collection of media bias literature).

3.1.3 Media Bias-Related Concepts

All previously mentioned tasks are subtasks of media bias (if present in media cov-
erage). Apart from these tasks, there are numerous media bias-related tasks. These
tasks are closely related to media bias detection but do not necessarily identify forms
of media bias. One of these tasks is sentiment analysis: The detection of the senti-
ment of an article, often classified as “positive” or “negative”. Also, stance detection,
the identification of the stance of an article towards a particular topic, and topic
detection, the identification of an article’s topic, are media bias-related fields. Not
being subtasks of media bias and well-researched areas, they are not considered fur-
ther in this work. They do, however, have the potential to improve the detection
of media bias through multi-task approaches [Spinde et al., 2022b] or by applying
findings from these areas to media bias research.
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3.2 Dataset Collection, Selection, and Preprocessing

3.2.1 Creation of Media Bias Dataset Overview

After defining tasks for MBIB in section 3.1 the next step in creating MBIB consisted
of finding suitable datasets for every task. These datasets should be in line with the
task guidelines mentioned in section 2.3 set by Wang et al. [2019a] publicly available
and already well used in research practice. Both criteria ensure the acceptance and
usage of the chosen datasets later on. Finding suitable datasets for each task is
challenging because no extensive overview of the datasets used in the area of media
bias exists to date. That is why an overview is created to capture all datasets
belonging to the realm of media bias research.
The dataset overview is constructed based on the Spinde et al. [2022a]’s crawl of
scientific media bias articles. For this crawl websites, such as “Google Scholar”,
are crawled for articles containing media bias research-related words. The crawled
articles are then manually reviewed, classified, and added to an extensive literature
list on media bias [Spinde et al., 2022a]. For the dataset overview, every article from
this list is checked on which datasets it uses. The datasets are then reviewed for
availability, size, feature level, either article or sentence level, and feature source,
e.g., Wikipedia or Allsides.com. In addition, it is recorded whether the datasets are
labeled and by what annotation source, e.g., Mechanical Turks or self-annotation.
Additionally, the datasets’ task classification, the paper they are introduced in, and
a dataset description are added to the overview. The task classification of each
dataset is based on the task they are used for in the respective article.
322 media bias-related articles are manually checked for the overview, resulting in
an overview of over 100 used datasets. Afterwards, a search is conducted to find
datasets not mentioned in the articles crawled by Spinde et al. [2022a], resulting in
an overview of 115 datasets. The dataset overview is publically available as it is
a valuable resource for other researchers to find suitable datasets and to see where
data availability is still scarce.3

3.2.2 Properties of the Datasets

Though the overview consists of a variety of datasets, the properties of the datasets
vary substantially. Most importantly, around 60% of the datasets found are not
publicly available. Datasets are retrieved after contacting the authors for some of
these deemed of high potential value for MBIB. The main data sources are news
sites, Wikipedia, or social media platforms such as Twitter and Reddit. The sizes
varied from small, often manually annotated, to large, often automatically anno-

3The complete dataset overview created can be found under https://docs.google.com/
spreadsheets/d/1BXcDcnBluSzv1bwwAEpRH61ObXd3Mxf66qsOVxilTXM/edit?usp=sharing
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tated datasets. Automatically labeled datasets retrieve the label for a single article
from the outlet’s bias score. However, they are always based on a human label (for
example, the outlet). Since these approaches rely on a distant human label, here,
they are called distantly labeled.
The feature level ranges from individual sentences over paragraphs to entire arti-
cles. Labels vary from binary, over multi-class, to continuous labels. The data
also contains many other annotations, such as bias-inducing words or context data.
Though the majority of datasets are labeled, some of the datasets also only consist
of unlabeled data. They are included since they might be helpful in later research
involving unsupervised language tasks. Most importantly, the available documenta-
tion of datasets differed widely. While it is straightforward how the data is stored
for most, some completely lack available documentation, making it hard to interpret
how and where the data is stored.

3.2.3 Dataset Selection

The next step in the construction of MBIB consists of selecting fitting datasets for
each task from the dataset overview. Only if the chosen datasets sufficiently cover
a task is the benchmark meaningful.
In benchmarks like SuperGlue [Wang et al., 2019a] and BigBench [Srivastava et al.,
2022] one dataset is used per task. A single dataset per task requires having a
dataset for every task that is sufficient in size and quality and that covers the entire
task. For media bias, no such single dataset per task exists. Either the datasets are
too small, only cover a certain aspect of a task, or the data foundation is too far
removed from news articles. That is why every task is based on multiple datasets.
Only a subset of datasets is chosen (as opposed to using every dataset) to remain
computationally feasible and reduce preprocessing expenses. As the tasks are not
exclusive and datasets have been used for various tasks, some datasets will be found
in multiple tasks.

The dataset selection for MBIB is based on multiple criteria. Most importantly,
datasets need to be available and labeled. Furthermore, size and data quality are
assessed. Since bigger datasets are proportionally less work to preprocess and allow
for a more balanced model training, they are preferred. However, the big datasets
are often only labeled distantly, while many of the smaller ones are manually labeled
and of higher quality. Therefore, the goal is to construct a mixture of high-quality
and large-size datasets. Only very small datasets are discarded immediately. The
third criterion is the ability to put all the datasets in one task in a consistent binary
shape so that combining datasets is possible.
Reporting Level needs to be excluded from MBIB for now since too few datasets
are available. Once sufficient data for Reporting Level Bias is available, it should be
added back into MBIB. An overview of the final MBIB tasks and selected datasets
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can be found in Table 1.

Table 1. MBIB tasks and datasets
Linguistic Bias Cognitive Bias Text Level Context Bias Hate Speech

Dataset Size Dataset Size Dataset Size Dataset Size

Wikipedia NPOV 11,945 BIGNEWS 2,331,552 Contextual Abuse Dataset 26,235 Kaggle Jigsaw 1,999,516
BABE 3,673 Liar Dataset 12,835 Multidimensional Dataset 2,094 HateXplain 20,148

Wiki Neutrality Corpus 362,991 RedditBias 10,583
UsVsThem 6,863 Online Harassment Corpus 20,427
RedditBias 10,583

Media Frames Corpus 37,622
BASIL 1,726

Starbucks 842

Sum 433,677 2,344,387 28,329 2,050,674

Gender Bias Racial Bias Fake News Political Bias

Dataset Size Dataset Size Dataset Size Dataset Size

RedditBias 3,000 RedditBias 2,620 Liar Dataset 12,835 UsVsThem 6,863
RtGender 15,351 Wasseem 7,700 PHEME 5,222 BIGNEWS 2,331,552

WorkPlace sexism 1,136 RacialBias 751 FakeNewsNet 6,337 SemEval 9,783
CMSB 13,634

Sum 33,121 11,071 24,394 2,348,198

One drawback of the data selection that will also become visible in the next section
subsection 3.2.4 is that many of the datasets are not based on news articles but on
social media or Wikipedia. As both these sources differ from news articles in many
aspects, this limits MBIB. Though ideally, all datasets would be solely based on
news articles, for many tasks little to no such dataset exists. To get at least an
approximation of how well the classifiers build for media bias detection do on these
tasks, non-news article-based datasets are included.

3.2.4 Datasets

The following section gives a short overview of all 24 selected datasets for the eight
MBIB tasks.

3.2.4.1 Linguistic Bias

BABE is introduced by Spinde et al. [2021b]. BABE contains 3,673 manually an-
notated news article-based sentences and incorporates the MBIC dataset introduced
by Spinde et al. [2021a]. It is specifically designed for media bias research and stands
out through its thorough annotator training. Annotators are required to have a sub-
stantial background in the media bias domain, underwent specific training, and are
provided with annotation guidelines. BABE provides binary bias labels and various
information on biased words, label opinions, or outlet labels. The BABE dataset
has been used previously to set a benchmark for automated media bias detection
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[Spinde et al., 2021b].

The Wikipedia NPOV Corpus [Hube and Fetahu, 2019] uses Wikipedia’s POV
tags to collect biased and unbiased sentences, resulting in a collection of 11,945 sen-
tences. If a sentence is flagged with a POV tag, it indicates a violation of Wikipedia’s
neutral point of view (NPOV) policy. Hube and Fetahu [2019] collect a vast amount
of such flagged sentences and filter those where only a single statement is corrected
in the revision. Five thousand statements are sampled and annotated by crowd-
sourcing on whether they entail bias. Only those statements annotated as biased
are added to the NPOV Corpus as biased sentences. Finally, the NPOV Corpus is
enlarged with neutral statements.

The Wiki Neutrality Corpus is similar to the Wikipedia NPOV based on Wikipedia’s
POV labels and is introduced by Pryzant et al. [2019]. It, however, contains biased
statements as well as their neutral corrections. Opposed to the Wikipedia NPOV
Corpus, crowdsourcing annotators did not review the statements. No manual re-
views allow the corpus to be significantly more extensive. However, since Hube and
Fetahu [2019] report that only around a third of flagged statements are found to be
biased by the annotators, it also indicates a lower data quality. For the MBIB task,
the dataset is split up, and every statement is labeled biased or unbiased based on
its POV-flagged statement or correction. The final Neutrality Corpus has 362,991
data entries.

UsVsThem is introduced by Huguet Cabot et al. [2021] and consists of 6,863 Red-
dit comments annotated for populist attitudes. Comments are collected based on
being directed towards one of the following groups: “Immigrants, Refugees, Mus-
lims, Jews, Liberals, and Conservatives” [Huguet Cabot et al., 2021]. Furthermore,
comments needed to be a direct response to a news article. Comments are then
annotated by MTURK crowdworkers on an Us-vs-them scale identifying a recogniz-
able affiliation to or against a group. Such an affiliation is here considered to be a
biased statement. A binary version of the scale is also provided, which is used here.
Additionally, Huguet Cabot et al. [2021] also assess the emotions, associated groups
and provide different labels for each comment.

The RedditBias dataset [Barikeri et al., 2021] is made out of 10,583 annotated
Reddit posts. The dataset consists of four subcategories: Religion, race, gender,
and queerness. It covers diverse topics, such as news, politics, entertainment, and
technology. Out of a collection of more than 1.2 million comments, a representative
subset is chosen and annotated by crowdsourcing. Annotators are given training
examples and required a high accuracy to be included. In the dataset, sentences
and entire phrases are annotated on whether they are biased. Only the sentences
(including the phrase) are taken from the dataset for the linguistic bias task. Be-
cause of the different subcategories, parts of the dataset can also be used in the
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racial and gender bias categories.

In the Media Frames Corpus [Kwak et al., 2020] 1.5 million news articles from
major English-language news outlets, including the New York Times, CNN, and
Fox News, are collected. 37,622 of these articles are annotated regarding “media
frames”. Media frames refer to how a news story or article is framed or presented to
emphasize certain aspects of an issue and downplay or ignore others. Media frames
can be used to shape public opinion and influence policy decisions. The text of each
article is shortened to 225 words by the authors. The annotation process is done
through crowdsourcing. While each article is annotated with multiple frames, these
mainly consist of topic descriptions. The label chosen here as a proxy for bias is
whether the author is “Neutral” or “Pro/Anti”.

BASIL introduced by Fan et al. [2019] contains 1,726 manually annotated biased
spans from 300 articles. The dataset includes articles from various sources, includ-
ing mainstream and alternative media. The articles are collected over several years
and span a wide range of topics, including politics, health, science, and technology.
Spans are annotated by human annotators trained to detect bias and misinforma-
tion in the statements. Annotations are then cross-checked for high inter-annotator
agreement. While the annotations contain more detailed information on the type of
bias and its direction, for this task, only whether a span is annotated as biased is
considered.

The Starbucks dataset [Lim et al., 2020] is made of 842 sentences from 46 news
articles, manually annotated for bias using crowdsourcing. The news articles are all
about four different events. These events cover various topics such as politics, sports,
and economics. The 4-5 given annotations from different annotators per sentence
are averaged to retrieve a single score. Multiple label classes are concatenated to
form a binary label. For instance, the biased and very biased categories are concate-
nated to only biased. Lim et al. [2020] find that the inter-annotator agreement is
relatively low and put forward the hypothesis that this might be based on predefined
opinions of annotators already familiar with the events described in the news articles.

3.2.4.2 Cognitive Bias

The Liar Dataset [Wang, 2017] contains 12,835 statements with six different labels
for the degree of truthfulness of the statements and is specifically designed to evalu-
ate models for detecting fake news. The statements are scraped from politifacts.com
but stem from various sources, from fake news websites to reputable sources such
as The New York Times, and are manually annotated. The dataset is balanced so
that the number of true and false news is similar. For the construction of MBIB,
the labels are collapsed to a binary true or false format.
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The BigNews Corpus created by Liu et al. [2022] contains a crawl of articles classi-
fied by the media outlet’s political leaning as defined by allsites.com. The 3.689.229
articles are classified as neutral or left/right-leaning. The label for left/right is con-
catenated to one bias label to binarize it. The articles are split on the sentence
level to make the length compatible with the rest of the data. The resulting data,
however, is only distantly labeled.

3.2.4.3 Text-Level Context Bias

For the Contextual Abuse dataset [Vidgen et al., 2021], the authors collected com-
ments and posts from 116 subreddits. They manually annotated them for various
types of abusive or hateful language and the target of the abusive language. The col-
lected comments are annotated by crowdsourcing. Annotators are required to reach
a consensus regarding the annotation choice. Annotation conflicts are therefore dis-
cussed among annotators until a consensus is reached. Afterward, annotations are
reviewed by an expert. After missing text entries are dropped, 26,235 are labeled
neutral or abusive.

The Mulitdimensional Dataset introduced by Färber et al. [2020] uses crowd-
sourcing to annotate 2,094 sentences on three bias dimensions. The three bias di-
mensions are hidden assumptions and premises, subjectivity, and framing. For the
cognitive bias task, when a majority of annotators agreed upon either dimension,
the sentence is labeled as biased. The sentences stem from 90 different news articles
about the Ukraine crisis being categorized as either being pro-West, pro-Russian, or
neutral. Annotations are made by crowd-workers who had to answer test questions
aimed at ensuring the quality of the annotations.

3.2.4.4 Hate Speech

The Kaggle Jigsaw dataset [AI, 2019] consists of 1,999,516 tweets annotated for
toxicity. It is published as part of a Google competition to classify toxicity in 2019.
Toxicity is given as a continuous variable between 0 and 1. Following the authors, a
tweet is considered hate speech if it reaches a threshold of 0.5. According to Google
[2022], “toxicity is defined as anything rude, disrespectful, or otherwise likely to
make someone leave a discussion”.

HateXplain introduced by Mathew et al. [2021] entails 20,148 tweets from Twit-
ter and Gab annotated by Amazon Mechanical Turk (a crowdsourcing platform)
for hate speech as well as offensive language. Annotations include the target of
the hate speech and the text identified in the tweets motivating the label choice.
Tweets are either collected randomly from Twitter based on lexicons or reused from
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a dataset introduced by Mathew et al. [2019]. Before starting the annotation pro-
cedure, the annotators underwent a pilot annotation where they are provided with
detailed guidelines and examples. After the pilot, around one-third of the original
annotators are chosen for the primary annotation round. For the hate speech task,
only hate speech and not offensive language is considered.

The Online Harassment Corpus by Golbeck et al. [2017] provides 20,427 tweets
annotated for harassment. For the authors, harassment includes threats, hate
speech, and direct harassment (language meant to violate a certain group or per-
son directly). To collect tweets, the authors searched for tweets based on a set of
terms deemed to be connected to harassment frequently. Every tweet needed to be
annotated by at least two human annotators instructed by an extensive codebook,
including examples. Since the authors set the threshold comparably high and ex-
plicitly excluded offensive language, all tweets labeled harassment are also included
as hate speech for the hate speech task.

The RedditBias Dataset [Barikeri et al., 2021] is also used in the hate speech
task.

3.2.4.5 Gender Bias

Voigt et al. [2018] introduced the RTGender dataset, which is a collection of five
datasets with comments from Facebook, Reddit, TED, and Fitocracy to study the
perception of gender. The five datasets contain unlabeled posts from public figures
and their responses, as well as comment response pairs where the gender of the au-
thor is known. Voigt et al. [2018] then labeled a small subset of those five datasets
using crowd-sourcing. The resulting labeled dataset consists of 15,351 manually
annotated posts and responses. For the data collection, only labeled posts and com-
ments are taken and labeled either neutral or biased (if they are annotated with a
“positive” or “negative” gender perception).

The Workplace Sexism dataset constructed by Grosz and Conde-Cespedes [2020]
consists of 1,136 sentences labeled with regard to sexism. 55% of the corpus is a
subset of a dataset used by Waseem and Hovy [2016] (also used in the racial bias
task), which is labeled for sexism. The rest consists of 25% manually filtered work-
related quotes as well as 20% miscellaneous press quotes. This dataset is different
from other datasets in that it tries to exclude “hostile sexism,” which can be more
often found on social media and less in the workplace where the occurring sexism is
often more subtle. As in news coverage, the present sexism will also likely be more
subtle it is a good fit for a transfer of results toward media bias.

The “Call me sexist, but...” dataset [Samory et al., 2020] contains 13,634 sen-
tences labeled on sexism using crowd-workers. This dataset also partly contains
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the dataset by Waseem and Hovy [2016]. To avoid duplicates, these are excluded
here from the gender bias task collection. The remaining sentences originate from
tweets that are filtered based on their beginning with “call me sexist, but...” [Samory
et al., 2020]. These tweets are then annotated by MTurk crowdworkers. Five anno-
tators labeled any statement on multiple sexism scales, with a majority needed for a
statement to be labeled sexist. The different sexism scales provided are summarized
by labeling a sentence gender biased if one or more of the kinds of sexism are present.

Finally, the part of the RedditBias dataset on gender is also included in this task.

3.2.4.6 Racial Bias

The race part of the RedditBias dataset is included in the racial bias task.

The dataset provided by Waseem and Hovy [2016] is a collection of annotated tweets
for hate speech and racism. The dataset is created by collecting tweets that contain
specific keywords. The authors then annotated the collected tweets. As only the
tweet IDs are published, the actual tweets needed to be accessed via the Twitter
API. From the original 16,914 tweets, however, only 7,700 tweets could be retrieved.
Since many hateful and racist tweets are deleted from Twitter, only a low share of
racist tweets is retrieved. The dataset is, however, still included since the data foun-
dation for the Racial Bias task remains scarce. After concluding the experiments,
the Waseem and Hovy [2016] will be removed from the Racial Bias task because it
seemingly leads to problems for overall classification results. Therefore, an alterna-
tive dataset to extend the racial bias task is of great importance.

The dataset from Ghoshal [2018] is a collection of tweets containing racial bias,
which includes tweets from 2018 that have been labeled as containing “racial bias”
or “not racial bias” by human annotators. The dataset contains 751 tweets along
with their labels and additional information on the user, the location, retweets, and
likes. Though it is the only dataset with racially biased tweets publicly available, it
lacks clear documentation and a description in a published research paper.

3.2.4.7 Fake News

As the Liar Dataset by Wang [2017], which is already described under the cogni-
tive bias task, contains statements labeled on their truthfulness, it is also included
under the fake news task.

The Pheme dataset [Zubiaga et al., 2017] from the Pheme challenge 2018 and
extended by Kochkina et al. [2018] provides a dataset of 5,222 tweets labeled on
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the veracity and rumor detection. The Pheme challenge is organized by the Pheme
project (led by the University of Sheffield) and aims to develop models for analyzing
online misinformation. The challenges usually include manually annotated social
media posts, and the participants aim at automatically classifying them as rumors
or checking their veracity. For the usage in the fake news task, only the veracity
of the statements is considered. The extended Pheme version by Kochkina et al.
[2018] focuses on nine news events. All annotations are done by journalists who
fact-checked all tweets and classified them as false if there is no confirming evidence
found [Zubiaga et al., 2017].

FakeNewsNet by Shu et al. [2020] is a collection of articles classified as fake news.
Additionally to the truth value of the articles, the authors provide “news content,
social context, and spatiotemporal information” [Shu et al., 2020, p.1]. The au-
thors collected articles from multiple fact-checking websites to gather the articles
and truth values. Only the articles and their veracity label are used for the fake
news task. The articles are split up to a sentence level, resulting in 6,337 sentences.

3.2.4.8 Political Bias

For political bias, the BigNews corpus [Liu et al., 2022] and the UsVsThem
dataset [Huguet Cabot et al., 2021] are used as they both measure political leaning.

Additionally, the SemEval dataset introduced by Kiesel et al. [2018] for the Se-
mEval 2019 Task 4, which is focused on detecting partisan news, is added to the
political bias task. Partisan news is news coverage that is slanted toward a political
ideology. Here, a news article is called partisan if it is either left or right leaning.
If an article is annotated as classified, it is considered politically biased for the po-
litical bias task. The International Workshop on Semantic Evaluation (SemEval)
organizes annual tasks to evaluate computational systems doing semantic analyses.
Tasks include, among others, sentiment analysis, semantic role labeling, and, as
seen here, partisan news detection. Of the datasets given in 2019 Task 4, only the
collection of 645 manually annotated articles is included in the political bias task.
Also, available distantly labeled articles from allsides.com are excluded since, with
BigNews, a considerable corpus of the same approach is already included. Splitting
up the articles resulted in 6,337 labeled sentences.

3.2.5 Data Preprocessing and Balancing

As seen in the previous description of the datasets, the selected datasets varied sub-
stantially. Before using them as part of MBIB, a large amount of preprocessing is
necessary. For some datasets, only IDs are given, and the tweets or articles needed
to be scraped (for example, Waseem and Hovy [2016] and FakeNewsNet). Others

26 Martin Wessel



needed to be recombined, sorted, or filtered for relevant articles. All datasets are
brought into a uniform shape to facilitate the usage of the datasets. That shape con-
sists of a unique ID of a statement, an ID indicating to which dataset the statement
belongs, the text, a binary label, and, if given, additional labels (in a unified form,
however, differing in meaning depending on the original label). The biggest prepro-
cessing decision needs to be made when creating binary labels. For some datasets,
binary labels are already given (e.g., Spinde et al. [2021c]). A threshold is deter-
mined for other datasets with continuous labels to binarize the data. If possible,
the author’s recommendation for a threshold is followed. Finally, multi-categorical
labels are collapsed into two categories (most prominently “right” and “left” into
“biased”). Binarizing results into all datasets having the same shape and “biased”
vs. “non-biased” labels. The decision to put all labels into a binary format is based
on two reasons: (1) It allows an easy combination of different datasets without re-
quiring different model heads. (2) It follows in line with the task principles set up
by Wang et al. [2019a] to formulate the task as simply as possible.
The text is preprocessed only rudimentary. Hashtags and tags are eliminated from
social media datasets to prevent them from influencing the classification and since
news articles usually do not contain hashtags. Furthermore, non-text objects like
smilies are filtered out to reduce the overall token size.

The final step in constructing MBIB consisted of balancing the data into a 50:50
relationship of biased vs. non-biased labels. The balancing is done by randomly
drawing an equal amount of data points from both categories. The amount sampled
is determined by the smaller available task (ensuring that the dataset would be as
big as possible). This balancing results in smaller datasets used in the experiments
than the entire available data collection. However, the labels are moderately bal-
anced for all tasks, resulting in only a slight data loss. Research suggests that class
imbalance can have an impact on the classification accuracy [Li et al., 2010, Padu-
rariu and Breaban, 2019].
Finally, datasets are limited to a maximum size of 500,000 data points. The limit is
mainly introduced to reduce the computational effort necessary when training and
testing the models. The reduction only applied to the BigNews Corpus and Kaggle
Jigsaw datasets. While this might go along with some loss of information, this loss
should be limited as these datasets remain the largest.

When selecting the datasets for the tasks, one concern is the differences in dataset
sizes per task. Downsampling to the size of the smallest dataset would mean losing
large shares of available training and testing data. Not only would this severely
reduce the models’ capabilities on the downsampled datasets as much potential in-
formation on the bias would have been lost, but it would have also impacted the
robustness of the results [Soekhoe et al., 2016]. Furthermore, for transformer mod-
els, bigger training corpora usually lead to better model performances [Brown et al.,
2020, Fortuna and Nunes, 2018].
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Alternatively, upsampling techniques are considered to increase the amount of data
by, e.g., oversampling smaller datasets. Upsampling, however, would have required
enormous repetitions of some small datasets, potentially leading to overfitting. Up-
sampling would have also required adjustments to the k-fold-cross validation to
avoid data leakages, making the experimental setup less comprehensible and harder
to reconstruct. That is why neither down- nor upsampling techniques are used.
However, whether the dataset size plays a role in the performance will be discussed
in section 6.4. After constructing media bias tasks, selecting suitable datasets for
each task, and preprocessing them into a unified shape, MBIB’s construction is con-
cluded by a framework defining how to evaluate models on MBIB. The framework
will be discussed in section 5.1. The following sections will concentrate on choosing
feasible models (chapter 4) and setting model baselines on MBIB (chapter 5).

Model Selection
CHAPTER 4

Setting a model baseline on the MBIB tasks shows the current state-of-the-art in
media bias detection. Furthermore, it can generate insights into MBIB by seeing
how well datasets fit together, whether unexpected results occur and what the best
performance measurement would be.
As mentioned above the model baselines here focus only on transformer models.
A complete model baseline would include training and testing all available trans-
former models on the MBIB tasks. However, due to the abundant availability of
different models and computational restrictions, five models are selected, fine-tuned,
and tested on each task. When choosing models, the standard procedure is often
to rely on other researchers’ model choices or to argue for a certain model theoret-
ically. Such arguments are also possible here. For instance, auto-encoding models
are usually preferred over autoregressive models for classification tasks. Theoretical
reasoning would, however, remain speculative. That is why a proxy task is imple-
mented to make an informed model choice based on empirical support.
In the first step, an overview of existing models is created. The transformer taxon-
omy provided by Kalyan et al. [2021] laid the foundation for the model overview and
categorizing transformer models. Additionally, recently published models are added
to the overview. Generally, pretrained models are considered as only fine-tuning
would be feasible in the experiments. Some of the models are excluded based on
specific criteria: (1) The models need to have an implementation available on Hug-
gingface. An available implementation simplifies access to the pretrained models.
Also, it ensures that the models are, to a certain degree, widely used and that the
results are relevant for future research that wants to base its model choice on them.
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(2) Models that are domain-specific in a non-related domain (such as programming
or biomedical) are excluded. (3) Also excluded are multi-lingual models for trans-
lation tasks and non-English models. (4) The models are always considered in their
“base” form. This implies that enlarged and compact models (distilled or pruned
models) are excluded. Only base models are chosen to ensure comparability between
models and prevent the parameter size from being the decisive performance driver.
After applying these criteria, 30 transformer models remained. All of these 30 mod-
els are tested in the proxy task.

4.1 Transformer Models

Before discussing the proxy task and its results a theoretical foundation of the struc-
ture and architecture of transformer models is necessary. This will enable interpret-
ing the selected models and their performances.
The transformer model by Vaswani et al. [2017] introduces the idea of only using
attention mechanisms as the main method to capture linguistic features for lan-
guage understanding and generation. Unlike in previous models (such as LSTMs
or RNNs), where the text is inputted only sequentially, transformers allow for a si-
multaneous input. An illustration of the original transformer model architecture by
Vaswani et al. (2017) can be found in Figure 2. The model consists of an encoder
(depicted on the left side of Figure 2) and a decoder part (depicted on the right
side of Figure 2). The input sentence is fed simultaneously into the encoder, which
passes a vector representation into the decoder. The decoder outputs a prediction
(for example, in translation, the first word of a translated sentence). The prediction
is fed into the decoder to derive the next prediction (e.g., the second word of the
translation). This process is repeated until an end-of-sequence token is generated.
This architecture allows for generative learning tasks such as translation or abstract
summarization.
The text input into the encoder is first transformed into embeddings. A positional

encoding is added to the embeddings, allowing the model to reconstruct better where
individual words are placed in the input. The embeddings are then passed into a
multi-head attention mechanism. The attention mechanism is supposed to capture
linguistic features by weighing the relationships between the inputted embedding
and how important an embedding is for that feature. The attention mechanism
outputs one attention vector for every inputted embedding. The embeddings are
fed into a neural network that outputs a value, key, and query vector for every input
embedding. Figure 3 depicts how one attention vector is calculated from the three
vectors. This process is done simultaneously for all inputted embeddings. To cap-
ture more linguistic features, multi-head attention is used, which repeats the same
process multiple times in parallel, each time with independent neural networks to
produce other query, key, and value vectors. After several attention vectors are cal-
culated, they are concatenated and linearly transformed before being passed into a
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Figure 2. Transformer architecture by Vaswani et al. [2017]

feed-forward neural network. The network’s output constitutes the final embeddings
produced by the encoder, fed into the decoder.

The transformer’s decoder works similarly to the encoder. However, the multi-

Figure 3. Attention mechanism by Vaswani et al. [2017]

head attention mechanism must be masked when input is passed sequentially. All
the embeddings of future tokens (not yet predicted) are replaced with a mask token.
The output is combined with the output of the encoder, fed into another multi-head
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attention mechanism, and then into another feed-forward neural network. To pro-
duce an output, the final embeddings are linearly transformed to the length of the
entire vocabulary and passed into a softmax function. The vocabulary item with
the highest probability constitutes the model’s prediction.
Transformer models are usually trained in two steps. First, the model is pretrained
in an unsupervised manner on a large corpus of text using a simple language task
objective. Then, the model is fine-tuned using task-specific labeled training data.
For fine-tuning, the last layer of the model is adapted for the specific task. The
adapted pre-trained model is further trained with the labeled data. This two-step
process allows users to adapt models for individual tasks without going through a
pervasive pre-training task.

4.1.1 BERT

In the following section, BERT [Devlin et al., 2019], based on the encoder part of
the transformer model, is discussed in more detail. Though BERT is not used in
the experiments, almost all available transformer models are derivations of BERT or
relate to the model in some way. Understanding BERT’s architecture and usage are
helpful when considering other transformer models. How the models of this survey
differ from BERT will be discussed in detail in section 4.4.
Before words are transformed into vector embeddings, they are split up into Word-
Pieces (e.g. “computer” would be split up into “comp” and “##uter”). Splitting up
the words allows the model to better understand grammatical changes in words or
word compositions, eliminating the need for preprocessing steps such as stemming or
lemmatization. After the WordPiece input is translated to embeddings, a positional
embedding is added to each token. The final input to BERT is a list of vectors.
For BERT the input length is limited to 512 tokens. To ensure that all inputs have
the same length, the input is filled with padding tokens ([PAD]) until a predefined
maximum length is reached. The input is truncated if the input is longer than the
maximum length.
BERT uses the same architecture as the original transformer model’s encoder. How-
ever, 12 encoders are stacked (each encoder except the first taking as input the
output of the previous encoder). The outputs of the last encoder are BERT’s final
encodings.

As mentioned above, the pre-training of transformer models is self-supervised on
unlabeled text data. The corpora used for training vary. BERT is trained on a
collection of books and Wikipedia [Devlin et al., 2019]. The attention mechanisms
are deterministic, meaning only the weights in the feed-forward networks and those
producing queries, keys and values are changed during backpropagation. BERT’s
pre-training objective consists of masked token prediction and next-sentence pre-
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diction. In masked token prediction, some of the tokens in the input sequence are
replaced by a mask token. The model’s objective is then to predict the masked
tokens. The final embeddings are linearly transformed and inputted into a softmax
function to get a prediction from BERT. The token with the highest probability is
BERT’s prediction. The prediction can be compared to the actual masked token,
and the error is back-propagated through the model. For the next sentence predic-
tion task, BERT is inputted with two sentences separated by a separator ([SEP])
token. The model should then predict whether the second sentence follows the
first or not. A classification token ([CLS]) is added for classification tasks such as
next-sentence prediction. The input for BERT then looks like this:

[ECLS][EThis][Eis][Emask][Esen][E##tence][ESEP ][EThis][Emask][Efollows][ESEP ]

The [CLS] token can, for instance, also be used for fine-tuning a model on media
bias classification tasks. In fine-tuning, a classifier layer is put on top of the CLS
token, and the pretrained weights are used. Training is then continued on the labeled
training data.

4.2 Proxy Task

The proxy task, aimed at filtering model candidates to be evaluated on MBIB, con-
sists of fine-tuning the 30 identified transformer models on the BABE dataset by
Spinde et al. [2021b] and comparing their classification performance. As described
in subsubsection 3.2.4.1 the BABE dataset has previously been used to measure the
performances of transformer models. While less extensive and multi-faceted than
MBIB, the dataset is relatively small, requiring little resource and enabling fast
training. Also, it is one of the best media bias datasets available regarding annota-
tion quality and annotator expertise. The proxy task resembles the experiment in
Spinde et al. [2021b]. All fine-tuning is performed on an NVIDIA A100-SXM4-40GB
GPU using 5-fold-cross-validation. In k-fold-cross-validation, the data is divided into
k splits of equal size. The model is then trained k-times, each time with a different
split as the test dataset, while the other four splits serve as training data. This
method ensures, especially for small datasets, that outliers in the data do not in-
fluence the performance results. For the proxy task, 30 models are fine-tuned five
times resulting in 150 model training and testing. The model training parameters
can be found in Table 2. These are also chosen to resemble the training param-
eters of Spinde et al. [2021b]. The number of epochs is determined by using an
early stopping criterion. When the validation loss after an epoch rose compared to
the validation loss of the previous epoch, training is stopped to prevent overfitting.
A more detailed discussion of the early stopping criterion will be given in subsec-
tion 5.1.3. The batch size is usually set to eight. However, it had to be lowered for
some large models due to memory constraints.
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Table 2. Hyperparameters of the proxy task

Optimizer AdamW
Learning Rate 3e-5

Epochs Early Stopping
Dropout 10%

Max Length 512

4.3 Proxy Task Results

The training usually only takes two to three epochs until the early stopping criterion
is triggered. The F1-Scores of individual folds are averaged to retain one performance
score. The results of the top five performing models can be found in Table 3. In the
appendix Table 10 the results of all 30 tested models can be found. The models’

Table 3. Top-5 performing models on the proxy task

Rank Model Average F1-Score

1 BART 0.81146
2 RoBERTa-Twitter 0.80851
3 ELECTRA 0.80646
4 GPT-2 0.80371
5 ConvBERT 0.80321

performances are close to the performances found by Spinde et al. [2021b]. The top
5 results of the proxy task are used to choose the models which would be fine-tuned
and compared on all eight tasks of MBIB. The types of models chosen by the proxy
task are diverse. With BART, an encoder-decoder-transformer performs best. With
ELECTRA and ConvBERT, there are autoencoding models included. With GPT-2,
there is an autoregressive model in the top five. RoBERTa-Twitter, as a social me-
dia domain-specific model, also performs well. As some of the datasets of MBIB are
based on Twitter data, it will be interesting to see how a model specifically designed
for this domain will perform on them compared to the other models.

4.4 Models

The following section describes the five transformer models chosen by the proxy task.
The main focus lies on how their architecture and pretraining objectives differ. An
overview of the size and pretraining corpora used for each model can be found in
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Table 4.

Table 4. Parameter overview of the top-5 models

Model Parameters Vocabulary Size Pretraining Corpus

BART 140M 50,265 Books (2015), Wikipedia

RoBERTa-Twitter 125M 30,522 Books (2015), CC-Stories (2019), CC-News(09.2016-
02.2019), Open Web Text (2018), Wikipedia, Twitter

ELECTRA 110M 30,522 Books (2015), CCa, ClueWeb 2012-Bb, Wikipedia,
Gigaword 5 (2012)

GPT-2 1.5B 50,257 OpenWebText (2018)

ConvBERT 96M 30,522 OpenWebText (2019)

4.4.1 BART

BART is introduced by Lewis et al. [2020] and is a sequence-to-sequence transformer
model. This means that BART combines a bidirectional encoder and autoregressive
decoder, like the original transformer model introduced by Vaswani et al. [2017].
BART stacks six encoder and decoder layers in its base model. BART is pretrained
using corrupted documents and back-propagating the cross-entropy between the re-
constructed document (the decoder’s output) and the original document. Lewis
et al. [2020] propose multiple corruption methods such as masked tokens, token
deletions, or sentence permutations. In comparing the pretraining techniques, the
authors find that a permutation of the input sentences and text in-filling where
spans of text are masked are the most effective corruption methods.
BART can be fine-tuned for numerous downstream tasks ranging from text transla-
tion to sequence generation and classification. For sequence classification, “the same
input is fed into the encoder and decoder, and the final hidden state of the final
decoder token is fed into [a] new multi-class linear classifier.” [Lewis et al., 2020].
For classification, like in BERT, a classification token is added at the end of the
sequence so that the entire input can be considered in the decoder.

4.4.2 RoBERTa-Twitter

The RoBERTa-Twitter model introduced by Barbieri et al. [2020] is based on the
RoBERTa transformer model introduced by Liu et al. [2019], which is trained on
60 million tweets. RoBERTa is an advancement of the BERT model which mainly
introduces four changes to BERT’s pre-training: “(1) training the model longer, with
bigger batches, over more data; (2) removing the next sentence prediction objective;
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(3) training on longer sequences; and (4) dynamically changing the masking pattern
applied to the training data” [Liu et al., 2019].
The first and third change is based on the finding that increasing data input and
training epochs improves the model’s performance. A result that has often dom-
inated model enhancement over the last years (compare Goetze and Abramson
[2021]). The second change gets rid of the next sentence prediction during fine-
tuning. Liu et al. [2019] show that the BERT model is equivalently good when
only focusing on masked token prediction. The last change is the introduction of
dynamic masking. In BERT, a static mask is assigned during preprocessing. To
avoid duplicate masking while training, the mask is randomly reassigned for every
input in dynamic masking.
To train, RoBERTa-Twitter Barbieri et al. [2020] take the pretrained RoBERTa base
model and retrain it on tweets. They compare this approach to the RoBERTa base-
line and a RoBERTa model solely trained on tweets. The final RoBERTa-Twitter
model outperforms these approaches on several tasks, such as hate detection, sen-
timent analysis, and emotion classification. Since these tasks are similar to those
of media bias and a lot of the collected data stems from Twitter, the proxy task
confirms the potential of this model for media bias detection.

4.4.3 ELECTRA

ELECTRA, developed by Clark et al. [2020], is a transformer model based on con-
trastive learning. Like BERT, ELECTRA is based only on the encoder part of the
original transformer model [Vaswani et al., 2017]. First, a generator model is used
for pretraining that replaces tokens of an input sequence. Then a contrastive model
is trained, tasked to detect which tokens are replaced by the generative model. Us-
ing the generator model ensures that the replaced tokens are closely related to the
original input. Clark et al. [2020] claim that this approach allows the model to learn
from all the tokens of the input sequence, while previous models based on masked
language detection only learned from the few masked tokens.
The generator model is still inputted with a masked sentence and predicts the
masked tokens. This prediction is used to train the generator and as input for
the discriminator. The discriminator then predicts whether the input tokens are
original inputs or are generated by the discriminator. After pretraining, only the
discriminator is fine-tuned for downstream tasks. Training two models also means
twice the computational cost. The generative model is kept smaller than the con-
trastive model to reduce the pretraining capacities needed. Both models share the
same token embeddings as a weight-sharing strategy, with both models having dif-
ferent sizes.
The authors find that the pretraining outperforms other approaches, especially if
the goal is to train a small model.
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4.4.4 GPT-2

Of the five models, the GPT-2 model is the only purely autoregressive model that
is based on Vaswani et al. [2017] ’s transformer model’s decoder. It is introduced
by Radford et al. [2019] and a further development of the GPT model by Radford
et al. [2018]. Based on the transformer’s decoder GPT, the input is fed into GPT
sequentially into masked self-attention blocks. The pretraining objective of GPT is
causal language modeling (which, in this case, means predicting the next token of
the input). The masking of the self-attention blocks prevents the model from ‘see-
ing’ information on future tokens that are not fed as input yet. After pretraining,
the GPT model can be fine-tuned for a downstream task like the other transformer
models. A linear layer is added to the model’s output embeddings for classification.
The main difference between GPT-2 compared to GPT is a substantial increase in
model size, which makes GPT-2 the largest model concerning parameters of the five
models. Furthermore, Radford et al. [2019] created a new training corpus, Open-
WebText, to diversify the training data better.1

4.4.5 ConvBERT

ConvBERT [Jiang et al., 2020] is an autoencoder model based on BERT by Devlin
et al. [2019]. Its main difference from BERT lies in partly replacing self-attention
heads with convolution-based heads. The approach is grounded on the finding that
a large share of attention heads in BERT learn redundancies when extracting lo-
cal features [Jiang et al., 2020]. This is partly due to the self-attention mechanism
calculating dependencies between all input tokens, even though only negligible rela-
tionships exist for a large share of tokens. In the convolution approach, the softmax
result and the value vector of the attention mechanism are not multiplied but passed
into a convolution function, reducing its dimensionality and overall parameter size.
However, a simple convolution approach would mean that “kernel parameters would
be fixed for any input token, not favorable for capturing the diversity of the input
tokens” [Jiang et al., 2020]. The authors, therefore, introduce a dynamic convolution
method that generates a new convolution kernel for every input token.

1GPT-2 is likely the most surprising finding of the proxy task, where usually autoencoding models
are the ‘go-to’ model choice. One explanation might be found in the substantially different
model size between GPT-2 and the other models. Like Goetze and Abramson [2021] show,
bigger models usually lead to better results. It, however, also shows that only dismissing
models on theoretical grounds may fall short. The results of the experiments on MBIB later
show that GPT-2 underperforms when tested on MBIB. While this might call into question
the generalizability of the proxy task, the general similarity of the results suggests that the
proxy task might be less important than originally assumed. If the model choice does not
significantly influence the performance, then it also matters less which models are used to set
the performance baseline.
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To keep the ability to capture global dependencies in the final model design, the
authors use a combination of traditional self-attention heads and the new convo-
lution mechanism, passing the input into both mechanisms and concatenating the
output. They find that ConvBERT performs comparable or better than ELEC-
TRA and BERT on various standard language tasks while having fewer parameters.
ConvBERT with its similar architecture to BERT is a close choice while expecting
advantages in lower memory requirements and faster training times for classification
tasks such as media bias classification.

Experimental Design
CHAPTER 5

The experiment aims to set a model baseline on MBIB, the media bias benchmark
created. It does so by evaluating the five candidate models on all eight media
bias tasks of MBIB. The experiment brings together the MBIB tasks created in
chapter 3 and the models selected in the proxy task described in chapter 4. The
best-performing model on each task will set the model performance baseline. The
experiments should also bring insights into the composition and properties of MBIB
and the models. For this, the experiment should answer four questions: (1) Is there
an overall best model for media bias detection? (2) How do models compare on
other metrics besides performance? (3) How much do individual datasets influence
the overall score of a task? (4) How important is the size of a dataset for the models’
performance on it?
Questions (1) and (2) aim at giving researchers who need to choose a model for a
media bias task a foundation to make an informed model choice. Questions (3) and
(4) aim to investigate how the combination of different datasets affects the bench-
mark as this combination is a key difference of MBIB to comparable benchmarks
such as GLUE [Wang et al., 2019b].
An evaluation framework is needed to compare models on MBIB that defines how
the model should be fine-tuned and which metrics should be used and reported.
The framework introduced here uses stratified k-fold-cross-validation on the pre-
processed and balanced MBIB data. Overall F1-Scores, training time and memory
usage details, and dataset-specific predictions that allow a breakdown of the overall
results are reported. The evaluation framework is introduced in section 5.1. In
the remainder of the section, the hyperparameters used in the model training are
presented (subsection 5.1.3 and section 5.2). Finally, measures to reduce memory
requirements and accelerate training as well as the overall training environment are
described (section 5.3 and section 5.4).
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5.1 The Evaluation Framework

5.1.1 Stratified k-fold-cross-validation

The models are trained and tested using stratified 5-fold cross-validation. Cross-
validation is solely used for evaluating models [Refaeilzadeh et al., 2016]. In cross-
validation, the existing data is split into a training and a validation set. The train-
ing set is used here to fine-tune the model. A generalizable performance estimate
is obtained by comparing the predictions of the model to the actual labels of the
validation set. Cross-validation ensures that the measured performance stays gen-
eralizable.1 A generalizable estimate is essential for comparing the performance of
multiple models [Refaeilzadeh et al., 2016].

One common variant of cross-validation is k-fold-cross-validation [Anguita et al.,
2012, Refaeilzadeh et al., 2016]. The data is split into k folds of equal size, and each
fold is used once as the validation set while the other folds are used as the training
data. This process is repeated until every fold has served as a validation set once.
Each repetition is independent, meaning the model is trained from scratch each
time, so it never trains on the same data it validates.2 A final performance score is
obtained by averaging the scores of each fold. K-fold-cross validation is more robust
than standard cross-validation approaches as it ensures that outliers and uneven dis-
tributions are included in the validation data at least once. Kohavi [1995] show that
a stratified 10-fold-cross validation delivers the least biased model estimates com-
pared to the standard cross-validation approach and classical k-fold-cross validation.

According to [Refaeilzadeh et al., 2016, p.3], “stratification is the process of re-
arranging the data as to ensure each fold is a good representative of the whole.”
Here, stratified k-fold-cross-validation is used to ensure that all datasets are repre-
sented in every fold. In regular k-fold-cross-validation, the data assigned to each
fold is randomly drawn. In stratified k-fold, the data is also drawn randomly, but
the class distribution is maintained [Diamantidis et al., 2000]. Stratified k-fold-cross
validation is explicitly recommended by Kohavi [1995] when k is smaller than 10.
Usually, the data is stratified by the classes (or the labels). Since the labels are
binary and balanced, this is not necessary. Stratification is applied to maintain
the dataset distribution instead. If one dataset constitutes 10% of the entire data,
then each fold will consist of 10% of that dataset. Stratification ensures that small
datasets are sufficiently distributed between training and validation datasets. This
is important since the different datasets of each task cover different facets of bias. If
a validation set did not contain any data points of a small dataset, it would reduce

1Measuring only the performance of data used in training would likely yield better results than
the model would achieve on unseen data.

2Each model is, therefore, fine-tuned k times from scratch.
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the generalizability of the results. A k of size five is chosen as a trade-off between a
k as big as possible while remaining computationally feasible. A k of size 5 is also
common in the literature [Fushiki, 2011].

5.1.2 Metric

Finally, a performance metric needed to be defined for MBIB. The authors of Super-
GLUE define for the evaluation that “Tasks must have an automatic performance
metric that corresponds well to human judgments of output quality” [Wang et al.,
2019a, p.4]. Several well-established metrics exist for the tasks’ binary classifica-
tion objective. One possible metric would be accuracy, which indicates the share of
classified statements. However, when classes are unbalanced, the accuracy does not
adapt and can lead to misleading scores.3

Therefore, F1-Scores are used as the metric. The F1-Score takes the harmonic mean
of the prediction and recall [Chinchor, 1992]. The precision is the share of data
points correctly classified as biased from all classified as biased. Recall measures
the share of correctly classified biased data points from all biased data points. The
F1-Score ensures that high amounts of false negatives and false positives play a more
visible role in the score. The F1-Scores is also a well-used metric in SuperGLUE
[Wang et al., 2019a].

5.1.3 Early Stopping

Determining the appropriate number of training epochs can be difficult before train-
ing. Setting the epochs too low risks that the model does not learn sufficiently and
misses out on possible further improvements. Setting the number of epochs too
high increases the possibility of the model overfitting and thus not generalizing well
[Prechelt, 1998]. An indicator for overfitting is the validation loss. The validation
loss is the accumulated error of a model’s predictions and must be calculated on data
independent of the training data. If a model begins to exhibit a rising validation
loss, it is indicative of overfitting [Prechelt, 1998]. The models used here are trained
in epochs, each consisting of one iteration over the training data. The validation
loss is calculated after each epoch on the independent validation set.
Stopping the training after the epochs will prevent overfitting. One way to find this
amount is to set a high number of epochs and then determine after how many epochs
the loss saturates. One could then retrain the model or restore the weights of that
epoch. However, when each epoch takes up a substantial amount of resources and

3When for example, a dataset consists of 80% class A, and 20% class B and the model predicts
only class A, an accuracy value of 0.8 would mislead to think the model is working correctly.
Even though the data is balanced before training, media bias is generally a field where heav-
ily undistributed classes are found. Furthermore, when only looking at the performance on
individual datasets, the classes will no longer be balanced.
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time, like here, this requires much time and computational expenses. To minimize
training time, an automated way to prevent overfitting is used. The validation loss
is measured periodically, and the model training is stopped after a validation loss
starts to rise. This method is called early stopping [Prechelt, 1998].
The early stopping is complemented with a patience variable: if the validation loss
rises in two consecutive epochs, the training is stopped. The patience of two epochs
ensures that the training is not stopped when a small stagnation occurs, after which
the validation loss drops again [Zhou et al., 2020]. Early stopping does not guarantee
that a global minimum of the validation loss is reached, so setting a patience variable
increases the confidence in the minimum found. Though early stopping eliminates
the need for setting the number of epochs, introducing patience replaces it with
another hyperparameter for which there is no clear best value. Setting the patience
to two represents a trade-off between models being trained to the best amount of
epochs while holding the training within limits.

In classical k-fold-cross-validation, the data is split into folds used as a train and
a validation set. However, when using early stopping and calculating the validation
loss on the validation set, one uses the validation data for hyperparameter tuning.
This might endanger the independence of the validation set. According to [Bishop,
1995, p. 372] when optimizing a model using the validation set, “this procedure can
itself lead to some overfitting to the validation set, the performance of the selected
network should be confirmed by measuring its performance on a third independent
set of data called a test set.” Berrar [2019] describes how this split can be transferred
to cross-validation by sampling a validation set from either the training data or the
left out fold (called validation set previously) and using the remainder of the left
out fold as the test set. Since the folds are quite big in this case, the left-out
fold is split up into a validation and a test set (at a 1:3 ratio). The validation
loss for early stopping is only calculated on the validation set. The final score is
only calculated on the fully independent test set. Figure 4 depicts the 5-fold-cross
validation architecture used.

5.2 Hyperparameter Choices

The batch size depends on the maximum input length to the model (since longer
inputs would require more memory). That is why a text length analysis is conducted
for every task. The cut for the maximum input length is set at the 99th percentile of
the text length. The input length ranged from 34 tokens (Racial Bias) to 294 tokens
(Linguistic Bias). On average, the 99th percentile cut-off is after 144 tokens. The
text sources can largely explain the difference. For example, tweets (most common
in the Racial Bias task) are usually shorter than article sentences (most prominent
in the linguistic bias task). All tasks, however, remained well below 512 tokens, the
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Figure 4. Depiction of the evaluation framework

maximum input length for many models.

The upper limit for choosing a suitable batch size is the memory capacity of the
GPU used. The memory needed is correlated to the input length (as also shorter
sentences are padded to this length) and the parameter size of the model. The lower
limit is set by time constraints, as smaller batch sizes extend training time exten-
sively. In section 5.3 measures to raise the upper limit are described by reducing
the overall memory requirement. However, a batch size that is too high can lead to
a model not learning properly, often displayed by a loss that does not converge. To
find the best trade-off, on the BABE dataset, linearly batch sizes from 512 down-
wards are tested, and the learning behavior is analyzed using the Weights&Biases
interface. A batch size of 64 is found to have the best trade-off between fast training
and stable learning behavior for all models.

Similar to the batch size, there is not a singular best rate for the learning rate.
When fine-tuning BERT Devlin et al. [2019], use a learning rate of 5e-5. This rate
is also used by Spinde et al. [2021b]. Individual models could be optimized on the
learning rate with, e.g., a grid search. However, doing this for all models is com-
putationally expensive and could distort comparisons between models. That is why
the learning rate is set to 5e-5 for all models.
A learning rate scheduler is used to reduce the importance of a fixed learning rate.
A learning rate scheduler gradually reduces the learning rate over time. Seong et al.
[2018] show that using such a scheduler leads to faster convergence of the loss.
Furthermore, it reduces the need for extensive hyperparameter tuning while still re-
sulting in optimal training results [Yedida and Saha, 2019]. Since, due to the early
stopping criterion, the exact length of the model training remains unknown, a linear
learning rate scheduler from start to finish could not be implemented. The learning
rate scheduler is initialized with a cosine function instead. The cosine function lets
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the learning rate drop quicker at the beginning and then converge but never reach
zero.

A table of the parameters used in model training can be found in Table 5.

Table 5. Hyperparameters evaluation on MBIB

Optimizer AdamW
Learning Rate 5e-5

Epochs Early Stopping
Dropout 10%

Max Length Input dependent (⩽ 512 Tokens)
Batch Size 64

5.3 Training acceleration

Since training all models is a significant limiting factor, multiple measures are imple-
mented to reduce memory usage and speed up training. Memory usage is correlated
to the training time as, for example, lower memory usage allows for larger batch
sizes.
One measure to reduce memory usage is to use gradient checkpointing. In gradient
checkpointing, only some activations in the forward pass of the model are saved.
Those not saved are then recalculated on the backward pass. Gradient checkpoint-
ing reduces memory usage, however, increases the overall calculation effort. The
advantage here is that it still improves speed because it allows for larger batch
sizes. Furthermore, larger batch sizes can lead to a more stable training. The same
trade-off applies to gradient accumulation, where the batch is split up into multiple
forward and backward passes while the gradients are accumulated. Only when all
gradients are accumulated the optimizer takes another step. Gradient accumulation
allows for much bigger batch sizes while slowing down the computation.
Finally, to further reduce memory usage and increase the training speed, Hugging-
face’s Accelerator class is used. It not only allows for the handling of gradient
accumulation and checkpointing in PyTorch but also offers mixed precision training
(introduced by Micikevicius et al. [2018]) by reducing the memory complexity of
activations down to fp-16 (instead of fp-32). The memory optimization increased
the batch size by a factor of eight.
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5.4 Training Infrastructure

The models are trained and tested on NVIDIA A100-SXM4-40GB GPUs. Every
model is trained on a single GPU, though multiple models are trained in parallel on
different GPUs. Training time and GPU utilization are measured during training.
The pretrained models, as well as their respective tokenizers, are all loaded from
Huggingface’s API. The models are used in their base variant (as in the proxy task).
A list of the exact models used can be found in Table 9.

Results
CHAPTER 6

6.1 Overall Performance

The average F-1 Scores, the variance between folds, and the average training time
per fold can be found for all models and tasks in Table 6. The total training time
for all models and tasks added up to 114h.

In each task, the classification results lie close to each other. The biggest dif-
ference between the best and worst performing models is in the fake news and the
political bias tasks, with an F1-Score difference of ∼ 0.08. However, the difference
remains within a 0.025 margin for all other tasks. Also, no one model dominates all
other models in performance for all tasks. Interesting is the overall performance of
all models on the fake news task. Here, the worst performance is observed (average
F1-Score over all models of 0.66). This result correlates with the initially mentioned
intuition that more than linguistic features are needed for successful fake news detec-
tion. Adding real-world knowledge will likely improve the performance on this task.
However, it shows that, to a limited extent, linguistic features contain information
about fake news. The models can extract this information and perform better than
if they had guessed whether a statement is true.

The second-worst performance is reached by the tasks of political bias (average
F1-Score of 0.69) and cognitive bias (0.70). Both tasks should be interpreted simi-
larly, as they share most of their data. The performance on the political bias task is
surprisingly low (especially seeing that the task only consisted of predicting if there
is a bias, not whether it is “left” or “right”). However, the results might be explained
by the relatively noisy data, especially from the distantly labeled BigNewsCorpus,
which comprised a large share of the data. An analysis of each dataset’s predictions
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separately will be conducted in section 6.3. The linguistic bias task also did not
yield high classification results. An intuition on the causes, however, requires fur-
ther analysis.

The models performed well on the racial bias (average F1-Score 0.87) and hate
speech (0.88) detection. Both tasks exclusively consist of datasets based on scrapes
from social media. These datasets collected for hate speech and racial bias contain
many racial slurs, swear words, and offensive language. Such bigotry might make it
relatively easy for models to identify potentially racist or hateful posts. However,
this does pose a problem with the generalizability of media bias. The racism and
hate projected in media are likely more subtle and much harder to identify than in
social media. While showing that detecting racism and hate works well, this also
calls for creating datasets in the media bias domain, specifically tackling these topics.
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Table 6. Average F1-Scores
Linguistic Bias Cognitive Bias

Model F1-Score
(Variance)

Avg. Training Time
per Fold

Model F1-Score
(Variance)

Avg. Training Time
per Fold

1 . ConvBert 0.7126
( 1.15E-06 )

1h23m 1 . ConvBert 0.7044
( 1.13E-05 )

0h58m

2 . ELECTRA 0.7122
( 1.37E-05 )

1h6m 2 . Bart 0.7042
( 1.87E-05 )

1h11m

3 . Bart 0.7106
( 2.09E-06 )

1h46m 3 . Roberta-Twitter 0.7006
( 4.44E-06 )

0h48m

4 . Roberta-Twitter 0.7102
( 2.49E-05 )

1h12m 4 . GPT2 0.6976
( 6.97E-06 )

1h16m

5 . GPT2 0.7011
( 1.99E-06 )

2h7m 5 . ELECTRA 0.6777
( 9.14E-06 )

0h14m

Text Level Context Bias Hate Speech

Model F1-Score
(Variance)

Avg. Training Time
per Fold

Model F1-Score
(Variance)

Avg. Training Time
per Fold

1 . ConvBert 0.7697
( 1.28E-03 )

0h7m 1 . Roberta-Twitter 0.8897
( 8.72E-07 )

0h37m

2 . Roberta-Twitter 0.7689
( 1.03E-03 )

0h5m 2 . GPT2 0.8824
( 3.72E-07 )

1h12m

3 . Bart 0.7622
( 6.85E-05 )

0h7m 3 . ELECTRA 0.8821
( 1.05E-06 )

0h40m

4 . ELECTRA 0.7532
( 1.33E-03 )

0h5m 4 . ConvBert 0.8805
( 4.45E-06 )

0h58m

5 . GPT2 0.7447
( 1.44E-03 )

0h10m 5 . Bart 0.8797
( 3.61E-06 )

1h16m

Gender Bias Racial Bias

Model F1-Score
(Variance)

Avg. Training Time
per Fold

Model F1-Score
(Variance)

Avg. Training Time
per Fold

1 . Roberta-Twitter 0.8334
( 3.73E-05 )

0h3m 1 . ConvBert 0.8772
( 3.12E-05 )

0h1m

2 . Bart 0.8333
( 1.14E-05 )

0h4m 2 . ELECTRA 0.8768
( 5.41E-05 )

0h1m

3 . ELECTRA 0.8305
( 3.00E-05 )

0h3m 3 . Roberta-Twitter 0.8728
( 7.48E-05 )

0h1m

4 . ConvBert 0.8257
( 1.17E-05 )

0h4m 4 . Bart 0.8693
( 1.08E-05 )

0h2m

5 . GPT2 0.8134
( 2.04E-05 )

0h4m 5 . GPT2 0.8508
( 1.37E-04 )

0h2m

Fake News Political Bias

Model F1-Score
(Variance)

Avg. Training Time
per Fold

Model F1-Score
(Variance)

Avg. Training Time
per Fold

1 . Bart 0.6811
( 1.77E-04 )

0h2m 1 . ConvBert 0.7041
( 2.32E-06 )

1h15m

2 . ConvBert 0.6787
( 1.27E-04 )

0h1m 2 . Roberta-Twitter 0.7021
( 4.87E-06 )

0h52m

3 . Roberta-Twitter 0.6721
( 1.84E-04 )

0h1m 3 . Bart 0.6997
( 5.30E-06 )

0h55m

4 . ELECTRA 0.6574
( 6.18E-04 )

0h2m 4 . GPT2 0.696
( 4.55E-06 )

1h21m

5 . GPT2 0.6094
( 2.27E-04 )

0h2m 5 . ELECTRA 0.6255
( 2.12E-02 )

1h2m
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Finally, on the gender bias (average F1-Score 0.83) and text-level context bias
(0.76) tasks, models show a mediocre performance. Both tasks consist of a mix of
news and social media datasets. While seemingly not as easily identifiable as racial
bias and hate speech, models perform better on them than on the lowest four tasks.
The variance remains low for all models and tasks. An indicator that there is only
a minimal difference in performance between folds. The size of the training data
mainly determines the training time. Still, there are apparent differences between
models. The difference shows that the autoregressive models (GPT-2 and BART)
require longer training.
Apart from the size of the data the training time is determined by how quickly
the validation loss saturates and the early stopping criterion is invoked. Table 7
shows the average number of epochs for each model and task, after which the early
stopping is invoked, and the training stopped. Mostly, it took only 2-4 epochs for the
loss to saturate. GPT-2 needed the most epochs for all tasks, followed by BART.
Therefore, their longer training times can be explained by needing more training
epochs.

Table 7. Average number of training epochs
Linguistic Cognitive Text-Level Context Hate Speech Gender Racial Fake News Political

Bart 2.6 2.2 3.2 3.4 3.6 3.6 4.2 3.2
Roberta-Twitter 2.4 3 2.8 2.2 2.6 3.2 3 3
ELECTRA 2.2 2.8 3 2.4 3 3 2.8 3.2
GPT2 3.2 3.6 4.6 3.4 2.8 5.4 4.2 3.6
ConvBert 2 2.4 3 2.6 2.8 3.2 2.8 2.4

6.2 The Best Model

When looking at the performance results, no model outperforms all others in all
tasks. But is there a model more suitable for media bias detection than the others?

What seems immediately clear is that GPT-2 performs worst on five out of eight
tasks except on hate speech and not well on the other tasks. This observation
confirms the prevailing opinion of the literature that autoregressive models are not
competitive on classification tasks. Though there is a clear difference, this is small.

The best-performing model on all tasks is not as easily identifiable. ConvBERT
performs best in five out of eight tasks, comparatively low, however, on hate speech
and gender bias. Roberta-Twitter performs best on those two tasks but only lies in
the midfield for the rest. Figure 5 visualizes the results from Table 6. It confirms
that GPT-2 seems to underperform the other models. Furthermore, ELECTRA
seems to have a clear performance drop on political and cognitive bias (two tasks
that share data). All in all, which model one chooses seems to only slightly impact
performance.
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Figure 5. Average F1-Score per model

6.3 Per Dataset Analysis

No big differences between models are detected within tasks. Since each task con-
sists of multiple datasets, it might give a fruitful analysis of how well the models
did on each dataset separately. Such an analysis gives insights into whether the
performance is similar on the datasets of a task or whether one dataset heavily
influences the final result. Furthermore, it can show whether the different size of
datasets poses a problem for the benchmark. If there is a link between performance
and size of the dataset, then one would expect better performance on bigger datasets.

For this analysis, in each fold, all predictions and actual test values are saved
together with their dataset ID. This data allows for calculating F1-Scores for every
dataset and task. Since for the F1-Scores, the predictions of all folds are combined,
they are calculated on predictions over the entire dataset. These predictions are
made with models trained on the entire data of one task, so they do not represent
a single model being only trained and tested on the respective dataset alone. There
might even be a negative transfer: A model trained on all datasets might perform
worse on the test set of a particular dataset than a model only trained on that
dataset. BABE, where there are reference results from the proxy task, shows this is
the case to a small degree.

Figure 6 shows boxplots of the calculated dataset F1-Scores for each model (so
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if datasets appeared in multiple tasks, they are combined for this visualization).
Interestingly, this somewhat revises the impression of overall performance gained
by only looking at the overall scores. BART, GPT-2, and RoBERTa-Twitter have
the highest medians, while ELECTRA has the lowest. ConvBERT and RoBERTa-
Twitter seem to have the lowest variance in performance between datasets.

Figure 6. Boxplot F1-Scores per dataset

Figure 7 shows the five models’ performance on every dataset split up into in-
dividual tasks. As opposed to Figure 6, the F1-Scores are calculated for datasets
appearing in multiple tasks separately. Noticeable is that singular datasets show low
performance compared to the other datasets of the task. For linguistic bias, this is
Wikipedia NPOV. While the Wikipedia NPOV dataset uses the same data source
as the Wikipedia Neutrality Corpus (WNC), the models seem to detect substan-
tially less information on bias. The Liar Dataset shows substantially lower results
in the cognitive bias task than the BigNews Corpus. Interestingly, the Liar Dataset
shows a much higher performance in the fake news task. This performance might
be caused by positive transfer during model training. For cognitive bias, the final
score is dominated by the bigger BigNews Corpus. This discrepancy reiterates the
need for better training data customized toward cognitive bias. The same applies to
text-level context bias. Though the difference is smaller, the final score is dominated
by the bigger Contextual Abuse dataset.

For hate speech, the Online Harassment Corpus shows a comparatively deficient
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Figure 7. F1-Scores per dataset and model

performance. A more detailed analysis of the performance on the Online Harass-
ment Corpus revealed a relatively high accuracy (on average 0.744), however, a low
precision (0.519), and recall (0.346). The low recall is due to a high percentage
of false negatives. Around two-thirds of actually biased sentences are classified as
non-biased (on average, only 11.5% of non-biased sentences are labeled as biased).
This high rate of false positives can indicate that the threshold set by the model
for what constitutes hate speech is too high for this dataset. The threshold refers
to the point at which enough indications of bias are present to label a statement
as biased. Annotators and creators of different datasets are likely to set different
thresholds determining if they call a statement biased. The CMSB dataset in the
gender bias task shows the opposite effect: A high rate of false positives leads to
a low precision (on average 0.620), while recall (0.794) and accuracy (0.905) are
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relatively high. This result might indicate that the models’ threshold for classifying
gender bias is too low for the dataset. Both differences, for the Online Harassment
and CMSB dataset, suggest that the definition applied by the creators as to what
constitutes hate speech and gender bias differed from those of the creators of the
other datasets.
These findings indicate that the combination of datasets introduces noise into the
data through differing bias definitions and standards. One discriminator on top of
multiple datasets is then likely going to perform worse than on individual datasets.
One response to this could be to discard all but one dataset. As discussed above
for neither task a single extensive dataset exists. There is not even a consensus
definition of the biases nor thresholds for what should constitute a biased threshold.
This is also the reason why datasets differ in the first place. Since unclear boundary
cases are going to continue to exist a combination of different definitions and inter-
pretations might average a more balanced understanding than arbitrarily choosing
one definition. If a single bias label is required then this approach might bring the
classifier closest to the truth.

In the racial bias task, the Wasseem Dataset produced a surprising result: F1-
Scores of 0.0 for all models. Investigations into this revealed fundamental problems
with the dataset. Similar to other Twitter datasets, only a tweet ID is given, and
all tweets had to be scraped from Twitter by that ID. The scraping returned fewer
tweets than originally in the dataset. As the dataset labeled racial bias, it is likely
that Twitter internally deleted tweets identifiable as racist. The remaining racist
tweets are likely those not violating Twitter’s guidelines, resulting in no true posi-
tives. The entire dataset should therefore be discarded when using the benchmark.
That some positives are left either indicates poor annotation quality or missed re-
movals by Twitter.

Interestingly, in the political bias task, the performance on SemEval, which con-
tains manually annotated news articles, is higher than BigNews, consisting of dis-
tantly labeled articles. This demonstrates that the labeling technique makes a data
quality difference visible in the classification results.

6.4 Dataset Size and Performance

Since during the combination of datasets for the individual tasks, a concern is the
differing size of datasets, an analysis of dataset size and the models’ performance on
the dataset can give insights into whether the model size is a driving factor for the
performance. If there is such a relationship, it will pose a problem for the mean-
ingfulness of the benchmark. Scores of smaller tasks with fewer data could not be
compared with those with more data. The score would not be determined by how
well a model can learn but by how much training data it gets.
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Figure 8. F1-Scores per dataset and size of testset

Figure 8 displays the size of the individual datasets’ test sets and the performance
(excluding the Wasseem Dataset). The test set size and performance are averaged
over the five folds. If a dataset appeared in multiple tasks, the values are also aver-
aged. Even though only the test set size is displayed, the size of the test set directly
correlates with the size of the training set. A positive linear relationship between
dataset size and performance is not visible. On the contrary, the small datasets seem
to have high performance. This performance might confirm the exploratory impres-
sion that a lot of the smaller datasets, which are manually annotated, are often of
better quality and contain, therefore, less noise than some of the larger datasets.
If such a trade-off exists, that smaller datasets contain less noise than bigger ones,
the concerns raised about the differing dataset size play only a subordinate role.
However, it is noteworthy that this does not mean such an effect does not exist in
the benchmark.

6.5 A weighted score

The overall scores displayed in Table 6 are calculated as direct F1-Scores on all
predictions on the test set. This approach is similar to a micro-average score, where
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a global score is calculated out of the sum of true/false positives/negatives of all
classes. However, it is not the typical micro-average, as the actual classes consist
of whether a statement is biased or unbiased. Nevertheless, since the impact of the
associated datasets is of interest, this score will be called the micro-average score.
Alternatively to the micro-average score, a macro-average score is often calculated
[Manning et al., 2008]. Instead of summing up results from all classes, an individual
score is calculated for each class. The final overall score is then an average of
these individual scores. Transferred to the situation at hand, this would imply first
calculating an F1-Score for every dataset individually and then averaging them.1

Since it neglects the size of datasets, the macro-average score is potentially more
balanced. Table 8 displays the macro-average F1-Scores with regard to the datasets.

Table 8. Macro-average F1-Scores by datasets
Linguistic Bias Cognitive Bias Text Level Context Bias Hate Speech

Model F1-Score Model F1-Score Model F1-Score Model F1-Score

1. Bart 0.7664 1. ConvBERT 0.4995 1. ConvBERT 0.7532 1. Bart 0.7310
2. RoBERTa-Twitter 0.7479 2. RoBERTa-Twitter 0.4986 2. Bart 0.7477 2. ConvBERT 0.7248
3. GPT-2 0.7459 3. GPT-2 0.4968 3. RoBERTa-Twitter 0.7382 3. RoBERTa-Twitter 0.7229
4. ConvBERT 0.7283 4. ELECTRA 0.4949 4. ELECTRA 0.7347 4. GPT-2 0.7198
5. ELECTRA 0.7136 5. Bart 0.4881 5. GPT-2 0.7075 5. ELECTRA 0.7184

Gender Bias Racial Bias Fake News Political Bias

Model F1-Score Model F1-Score Model F1-Score Model F1-Score

1. ELECTRA 0.8211 1. ELECTRA 0.6170 1. RoBERTa-Twitter 0.7533 1. ConvBERT 0.7110
2. Bart 0.8168 2. ConvBERT 0.6153 2. ConvBERT 0.7382 2. RoBERTa-Twitter 0.7036
3. ConvBERT 0.8119 3. Bart 0.6103 3. Bart 0.7236 3. ELECTRA 0.6989
4. RoBERTa-Twitter 0.8116 4. RoBERTa-Twitter 0.6070 4. ELECTRA 0.7049 4. GPT-2 0.6909
5. GPT-2 0.7852 5. GPT-2 0.5961 5. GPT-2 0.6596 5. Bart 0.6804

The biggest difference between micro and macro-average is at the cognitive and
racial bias tasks. For both tasks, the micro (on average cognitive: 0.70 racial: 0.87)
is much higher than the macro-average score (on average cognitive: 0.49 racial:
0.61). After looking at Figure 7 and Figure 8 this is no surprise. The BigNews
Corpus showed a much higher performance for cognitive bias than the Liar Dataset.
The BigNews Corpus being substantially bigger most likely skewed the overall score
in favor of the BigNews Corpus’s performance. Racial bias is mainly explained by
the problems with Waseem and Hovy [2016]’s dataset. Excluding it results in the
score remaining almost unchanged. For Hate Speech detection, the macro-average
score also lies well below the micro score (macro on average: 0.88, micro: 0.72). One
reason for this difference is the big Jigsaw dataset losing influence, which received
a high score. So, also here, one big dataset had a decisive influence on the overall
score. For linguistic, text-level context, gender, and political bias, the scores remain
relatively stable. A higher score can be seen only for the remaining task, fake news

1Another alternative would be a weighted score. For this score, individual F1-Scores are calculated
for each class (as for the macro-average). Instead of a simple average, these scores are multiplied
by the class share of the whole dataset and then summed up. So if a dataset consists of 60% of
one class, this class’s score makes up 60% of the final score. The weighted score is not useful
for identifying whether individual datasets greatly influence the overall score.
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detection (on average micro: 0.66, macro: 0.71). Here the biggest and worst per-
forming Liar Dataset explains the difference.

In summary, for half of the scores, the method of calculating the score makes a
substantial difference. The micro score has the advantage that it is easier to im-
plement and understand. Mainly because the datasets are different from the actual
classes and the transfer to the datasets is unconventional. Furthermore, it better
reflects the actual performance of the dataset. However, assuming each dataset cov-
ers an equally important aspect of the bias task it belongs to, the macro score offers
a much more balanced result. Seeing that the scores are mainly decreased, it also
seems to be the more conservative score. Both scores can be useful. So, stating both
will increase the informative value of MBIB’s results.

Limitations and Outlook
CHAPTER 7

7.1 Theoretical Restrictions

In order to have a comprehensive benchmark covering all of media bias, the tasks of
MBIB must cover as many aspects of media bias as possible. Aside from those tasks
created, other bias tasks could be considered in the benchmark. Such tasks include,
for example, religious bias, describing the discrimination or misrepresentation based
on an individual’s religion [Manzini et al., 2019]. Basing the task selection on societal
relevance and high research interest demands a continuous consideration of which
tasks to include. Taking the framework of Spinde et al. [2022a] as the basis for the
media bias-inducing tasks offers the advantage of having tasks that conceptualize
media bias in an all-encompassing way. It does, however, require the tasks to be
more intuitive to understand. It often remains unclear where an occurring bias fits
in as, e.g., certain lexical features are usually concomitants of phrasing bias (a bias
belonging to Text-Level Context Bias).

7.2 Data Limitations

A lack of high-quality data still limits the media bias benchmark. This shortage
is especially problematic in the media bias-inducing tasks. There are insufficient
datasets for reporting-level bias to be included as a task. However, also for cogni-
tive bias and text-level context bias, the data foundation is with only two datasets
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less diverse than in the other tasks. Combined worse performance of the datasets
used in cognitive bias shows that they might not fit well together. Only the creation
of task-specific datasets can overcome this limitation. Also, critically reevaluating
what alternative datasets might be used in these tasks might improve them.

Another critical consideration is needed on the heavy dependency on social media
data. Since some tasks need more corpora based on news articles, using them could
not be avoided. However, it becomes a problem for MBIB if it wants to claim that
a model that, e.g., performs well on the racial bias task is a well-suited model to
detect racial bias as part of media coverage. This limitation is important as it can
be expected that the bias present in social media differs from those found in the
media. In the media, the bias is often more subtle. Racial bias on social media is,
for example, often accompanied by slurs and defamation. Something unlikely to be
found so explicitly in news articles.

The largest dataset is based on distant labeling. For BigNews [Liu et al., 2022],
labels for articles are defined by the corresponding allsides.com outlet classification.
Such distant labeling techniques are likely to include much noise. Ganguly et al.
[2020] find that the political leaning of the news outlet does not necessarily translate
into the leaning of an individual article of that outlet. However, the models’ perfor-
mance on the distantly labeled datasets is not considerably lower than on manually
labeled datasets. This performance might be influenced by the distantly labeled
datasets being substantially bigger.

Many more limitations concerning individual dataset qualities can be named. Es-
pecially because there are big differences in factors like how many annotators are
used or how well the annotators are trained. Further differences exist in how high
the inter-annotator agreement is and how missing values and non-agreements are
handled. Different creators of datasets having different definitions of what consti-
tutes, e.g., hate speech, makes combining the datasets even more challenging.

The dataset overview and benchmark can also serve as a survey on the current
status of data availability in media bias research. It shows that dataset creation
focuses on a few aspects of media bias. There is an abundance of datasets on the
political leaning of articles or bias through linguistic features, but none on, e.g.,
racial bias in news articles.

7.3 Experimental considerations

When setting model baselines for each of MBIB’s tasks, there are limitations on
how many models could be trained and tested. The proxy task represented an
attempt to place the selection on an empirical foundation. The surprisingly high
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performance of GPT-2 on the proxy task but relatively low performance in the ex-
periments indicates that the generalizability of the proxy task might be limited.
The models used do, however, cover a wide range of models. They included au-
toencoding (RoBERTa-Twitter, ConvBERT, ELECTRA), autoregressive (GPT-2),
and sequence-to-sequence (BART) models, and a specialized pretraining paradigm
(RoBERTa-Twitter). Due to the high amount of social media training data, this
model might have an overrepresented advantage. Even though the proxy task might
generalize insufficiently, the general finding that the model choice seems to have little
influence on the performance makes it doubtful whether training and testing more
transformer models with the same experimental setup would change the findings.

There is, however, room for improving the models’ performance within the model
training. So far, only the number of epochs is optimized, while other hyperparam-
eters like the learning rate, batch size, and dropout rate are set to best practice
values from the literature. Hyperparameter tuning does offer the potential for im-
provement here. Another important critical aspect of the experimental, but also
MBIB’s, design is the combination of multiple datasets into one task. Even though
the experiment showed that larger datasets do not perform better than smaller ones,
the sizes of datasets remain highly imbalanced. It remains to be seen what effect
this imbalance has on the performance scores.

7.4 Future work

In order to make the media bias dataset collection, and the MBIB resources avail-
able to other researchers, a platform is needed where access can be granted as easily
as possible. Such a platform (for example, Huggingface Spaces) would also allow
associating visualizations aimed at understanding the structure and properties of
the datasets and not included in this thesis. Ideally, on such a platform, the data
for each task is available in the unified format with a non-public testing set as im-
plemented by Wang et al. [2019b] for GLUE. Standing in the way of publishing
the data is the problem that the data is not generally public for two datasets, but
non-disclosure agreements had to be signed to get them from their creators. For
Twitter datasets, the actual tweets may not be published but only tweet IDs. An
agreement with the creators to publish them is needed, or instructions for access
to the data and preprocessing scripts could be provided. Giving only instructions
would, however, complicate MBIB’s usage.

The datasets of each task leave much information not used in the model base-
lines. For instance, multi-categorical or numerical data is collapsed into a binary
format. Additionally, e.g., BABE [Spinde et al., 2021b] does not only offer infor-
mation on whether a sentence is biased but also which words are inducing the bias.
It could be tested whether using such additional information would increase the
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models’ detection ability. Additional analyses on the similarity of datasets and the
effects of training models on multiple datasets might yield further insights into the
properties of MBIB. Even though duplicates are removed, finding and applying a
similarity metric could reveal whether there are highly related datasets or structural
differences within or between datasets. For the latter, a model could be trained on
all task datasets separately and on the combined data. The performance difference
can then indicate positive or negative transfers that the combination of datasets has.

Testing transformer models on particular tasks only sets the baseline for model
performances in media bias. Other models and training objectives could lead to find-
ings on improving the detection. Even though, as shown in previous sections, the
research currently focuses on transformer models, other models like CNNs or LSTMs
are usable for media bias detection. Combining data from multiple tasks in multi-
task approaches will likely improve the performance on individual tasks [Aribandi
et al., 2022]. MBIB would further enable research on the capabilities of few-shot
learning in media bias detection. It could help to see whether models trained for
a specific bias can detect other kinds of bias after being fine-tuned on only a few
examples of this bias [Wang et al., 2020]. Especially since high-quality datasets are
rare for some tasks, few-shot learning has big potential in media bias research.

Due to this limitation of datasets and as shown in section 7.2, future research
should also concentrate on the creation of more high-quality datasets. The creation
should focus on tasks with limited current availability. These tasks are primarily
those derived from the framework by Spinde et al. [2022a] which tries to compre-
hensively cover media bias. A departure away from singular independent research
fields towards wider tasks would enable also wider detection. When focussing on a
singular field the models might only be able to answer, e.g., “Is there Gender Bias
in this article?” while wider tasks would allow models to answer “Is there bias in
this article?” (and ideally be able to identify why and where there is a bias).
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Conclusion
CHAPTER 8

At the beginning of this thesis stands the question of what model would be the
best to use when detecting media bias. However, a benchmark and a comparison
framework are needed to answer this question. Something that did not yet exist in
media bias research. The thesis, therefore, sets out to create such a benchmark and
framework.
To create the benchmark, MBIB, media bias tasks are chosen and justified, and
datasets for the task are found. The dataset collection constructed for this purpose
can help other researchers to help find suitable datasets. However, it also points out
gaps in the research and calls for dataset creation, especially for tasks like reporting-
level bias and racial bias.
Having created the benchmark tasks and collected pertinent data, an evaluation
framework enables the comparison of models on the benchmark. After selecting
five transformer models via a proxy task, their performances on the eight MBIB
tasks are compared. The results show that there are big differences in performance
between tasks. While there are also differences between models within one task, no
clear best model emerged. GPT-2 and ELECTRA seem to be the least suitable,
and RoBERTa-Twitter and ConvBERT are best suitable regardless of the micro
or macro-average F1-Score. Generally, the transformer model choice matters less
than initially assumed. Special attention is paid to how the combination of different
datasets influences the result. While dataset size does not impact the score, with
the micro and macro scores, two different metrics are introduced to account for this.
The results of the two scores are similar.
The results can be taken as a basis for an informed model choice when choosing a
model for media bias detection and therefore fills the gap identified at the begin-
ning. However, the search for the best suitable model for media bias detection is
still ongoing. There are many other paradigms like multi-task, meta, or few-shot
learning that could be tested on MBIB. Therefore, future research is encouraged to
test their models on MBIB and raise the benchmark.

Having a well-performing model that reliably can detect media bias can have a
significant impact on media consumption and creation. On the consumption side,
it could help readers identify instances of misinformation or other biased coverage
they read. It could help educate readers and lead to a better-informed audience.
On the creation side, it could help authors to improve the accuracy and objectivity
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of their writing. It is, however, important to also keep in mind possible negative
consequences. Models that control media production or what readers consume have
the potential to interfere with fundamental rights of freedom of the press and free-
dom of speech. Furthermore, constant dialogue will be necessary to determine what
counts as biased. Definitions differ not only over time but also geographically and
between cultures. Taking such differences into account could be a potential next
improvement in media bias research.

The rise of improved transformer-based sequence-to-sequence models such as Chat-
GPT [Radford et al., 2019] offers further potential for media bias detection. Models
like this could detect bias and reason why a statement is biased and reformulate it.
Giving reasonings behind a decision will make it much more likely that audiences
will accept the classification of a model (as opposed to, e.g., only seeing the label
“biased” next to an article). However, also these models will need to be checked on
whether their classifications are correct. To do this, they can easily be tested on the
MBIB framework.

While there are many future possibilities for improving media bias detection, they
all require a systematic benchmark which this thesis hopes to offer. To improve
MBIB, further research and resource creation on previously neglected fields are
necessary. All combined with a critical discourse on how to evaluate technology’s
ever quicker emerging possibilities.
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Appendix
CHAPTER A

A.1 Huggingface Models

Table 9. Huggingface models used

Bart “facebook/bart-base”
Roberta-Twitter “cardiffnlp/twitter-roberta-base”
Electra “google/electra-base-discriminator”
GPT-2 “gpt2”
ConvBERT “YituTech/conv-bert-base”
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A.2 Proxy Task Results

Table 10. Proxy task average F1-Scores

Rank Model F1-Score

1 BART 0.81146
2 RoBERTa-Twitter 0.80851
3 ELECTRA 0.80646
4 GPT-2 0.80371
5 ConvBERT 0.80321
6 RoBERTa 0.80278
7 XLM-ProphetNet 0.80275
8 ERNIE 2.0 0.80138
9 XLNet 0.80056
10 T5 0.79113
11 PEGASUS 0.78841
12 BERT 0.78465
13 SimCSE 0.78345
14 Bloom 0.77225
15 XLM-Roberta 0.77163
16 Mirror-BERT 0.76812
17 ALBERT 0.76396
18 DialoGPT 0.76251
19 Transformer-XL 0.75957
20 infoXLM 0.71616
21 CANINE 0.70034
22 DeBERTa 0.69493
23 Funnel Transformer 0.66016
24 ProphetNet 0.59225
25 CharBERT 0.58124
26 BigBird 0.55395
27 LayoutLM 0.5289
28 Longformer 0.40186
29 XLM-RoBERTa-Twitter 0.38973
30 CharacterBERT 0.26628
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