
Design and Evaluation of IPFS:
A Storage Layer for the Decentralized Web

Dennis Trautwein

Protocol Labs &

University of Göttingen

dennis.trautwein@protocol.ai

Aravindh Raman

Telefonica Research

aravindh.raman@telefonica.com

Gareth Tyson

Hong Kong University of Science &

Technology (GZ)

gtyson@ust.hk

Ignacio Castro

Queen Mary University of London

i.castro@qmul.ac.uk

Will Scott

Protocol Labs

will@protocol.ai

Moritz Schubotz

FIZ Karlsruhe – Leibniz Institute for

Information Infrastructure

moritz.schubotz@fiz-karlsruhe.de

Bela Gipp

University of Göttingen

gipp@uni-goettingen.de

Yiannis Psaras

Protocol Labs

yiannis@protocol.ai

ABSTRACT
Recent years have witnessed growing consolidation of web oper-

ations. For example, the majority of web traffic now originates

from a few organizations, and even micro-websites often choose

to host on large pre-existing cloud infrastructures. In response to

this, the “Decentralized Web” attempts to distribute ownership and

operation of web services more evenly. This paper describes the

design and implementation of the largest and most widely used

DecentralizedWeb platform — the InterPlanetary File System (IPFS)

— an open-source, content-addressable peer-to-peer network that

provides distributed data storage and delivery. IPFS has millions

of daily content retrievals and already underpins dozens of third-

party applications. This paper evaluates the performance of IPFS by

introducing a set of measurement methodologies that allow us to

uncover the characteristics of peers in the IPFS network. We reveal

presence in more than 2700 Autonomous Systems and 152 countries,

the majority of which operate outside large central cloud providers

like Amazon or Azure.We further evaluate IPFS performance, show-

ing that both publication and retrieval delays are acceptable for a

wide range of use cases. Finally, we share our datasets, experiences

and lessons learned.

CCS CONCEPTS
•Networks→Network protocol design; Network measurement;
Naming and addressing;Network performance analysis; •Computer
systems organization → Peer-to-peer architectures; • Gen-
eral and reference → Measurement; Design; Evaluation;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544232

KEYWORDS
Interplanetary file system, content addressing, decentralized web,

libp2p, content addressable storage

ACM Reference Format:
Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will

Scott, Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and

Evaluation of IPFS: A Storage Layer for the Decentralized Web. In ACM
SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3544216.3544232

1 INTRODUCTION
Economies of scale and technical innovations, such as cloud com-

puting, have led to a growing centralization of web systems [2].

For example, recent trends in name resolution, content hosting,

routing [3, 5], protocol development [24, 31, 42] and certificate

authorities all point towards the consolidation of ownership and

operation [47]. An administrator establishing a new website will

likely co-locate their server on a cloud platform such as Amazon

EC2; utilize a third-party DNS provider such as GoDaddy; serve

their content via a Content Delivery Network like Akamai; and

rely on certificates issued by Let’s Encrypt. Although each of these

services is well-engineered and highly performant, they neverthe-

less represent single points of organizational failure. In the most

extreme cases, such players have gained near-monopoly status and

triggered widespread chaos during outages (e.g., OVHcloud, Cloud-
flare, AWS) [11, 40, 52]. The monetary costs incurred during outages

are enormous, with Amazon’s eCommerce platform reportedly los-

ing over $66,000 per minute during an outage in 2013 [8].

In response to this, there has been a growing movement, collo-

quially referred to as the “Decentralized Web”. This encompasses

an array of technologies that strive to provide greater control for

users. These technologies tend to rely on open-source, community-

led software implementations that decentralize traditional web

functionality (e.g., name lookup, hosting, certification), such that

no individual administrative entity could hamper overall opera-

tions or design decisions. A number of successful projects have

https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232

SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands Trautwein et al.

already deployed decentralized systems that o�er commonly used
services,e.g.,Mastodon for micro-blogging or PeerTube for video
sharing. However, at the core of any web platform is storing and
serving media objects at scale. We argue that by decentralizing
these core functions, many other applications could readily be built
atop without needing to handle the complexity of decentralization
themselves.

TheInterPlanetary File System (IPFS)project aims to achieve this:
it is an entirely decentralized content-addressable media object
storage and retrieval platform. IPFS is a community-driven, open
source e�ort, which is vital for ensuring community buy-in and
creating an open platform for design innovation. IPFS covers 176
git repositories, across which there have been 60.4 k commits by
1185 code contributors, covering 400+ organizations including uni-
versities, start-ups and large corporations. This paper reports on
our experiences inProtocol Labs, driving forward the IPFS e�ort.
Protocol Labs is the largest supporter of the IPFS project, employing
or funding most of the full-time contributors. Protocol Labs is also
the largest contributor to the open-source codebase, covering62 %
of git commits and75”4 %lines of code. It is worth noting, however,
that large codebase decisions and roadmap setting is led through
a public voting process. Thus, we emphasize that the design and
implementation work reported in this paper stems from countless
community contributions.

IPFS is seeing widespread uptake with more than 3 M web client
accesses and beyond 300 k unique nodes serving content in the peer-
to-peer (P2P) network every week. IPFS currently underpins various
other Decentralized Web applications, including social networking
and discussion platforms (Discussify, Matters News), data stor-
age solutions (Space, Peergos, Temporal), content search (Almonit,
Deece), messaging (Berty), content streaming (Audius, Watchit),
and e-commerce (Ethlance, dClimate) [25]. Support for accessing
IPFS has further been integrated into mainstream browsers such as
Opera and Brave, allowing widespread and easy uptake.

In this paper, we present the design and implementation of IPFS.
At its core, IPFS relies on four main concepts: (i) Content-based
addressing: unlike HTTP, IPFS detaches object names from host
location � enabling objects to be served from any peer; (ii) Decen-
tralized object indexing: IPFS relies on a decentralized P2P overlay
for indexing all available locations from which objects can be re-
trieved reducing the impact of technical or organizational failure;
(iii) Immutability and self-certi�cation:IPFS relies on cryptographic
hashing to self-certify objects, removing the need for certi�cate-
based authentication, hence, providing veri�ability; and (iv) Open
participation:anybody can deploy an IPFS node and participate in
the network without requiring special permissions or privileges.

The contributions of this paper are as follows:

(1) We present the design and implementation of IPFS (Section
2), detailing how it publishes (Section 3.1) and retrieves (Sec-
tion 3.2) content at scale.

(2) We propose three complementary measurement methodolo-
gies that provide vantage into the deployment, usage and
performance of the IPFS network (Section 4). This is vital
due to the decentralized nature of IPFS. As no individual
entity operates the entirety of IPFS, we use these techniques

to quantify IPFS across a number of dimensions. We make
our datasets and tooling publicly available.

(3) We utilize the above methodologies to evaluate the deploy-
ment success of IPFS (Section 5). We �nd that IPFS infrastruc-
ture has been deployed in over2700Autonomous Systems,
across 464 k IP addresses. This covers 152 countries, with
the majority hosted in the US and China. We further ob-
serve widespread usage by clients with 7.1 million content
retrievals seen from a single vantage point on one day alone.

(4) We �nally present a performance evaluation of IPFS (Section
6). We show that, although content retrievals in IPFS are
slower than direct HTTP access, delays are still reasonable
for a number of use cases. For example,3•4 of retrievals
from Europe are under 2 seconds. This includes looking
up the content host and fetching a 0.5 MB �le. To improve
performance, we show how the introduction of gateway
caching can substantially reduce retrieval latency with76 %
of requests being served in under250 ms.

2 IPFS FUNDAMENTALS
We start by providing an overview of the core building blocks of
IPFS. Namely, how IPFS (i) addresses content; (ii) addresses peers;
and (iii) indexes content, to enable distributed lookups that map
content identi�ers to peers hosting the object.

2.1 Content Addressing
At the core of IPFS is a content-based addressing scheme using
unique hash-basedContent Identi�ers (CIDs) , similar to BitTor-
rent [10] or Content-Centric Networking [71] (see related work in
Section 7). CIDs are the base primitive that decouple a name for
content from the storage location. In contrast, location-based sys-
tems, such as HTTP, bind content addresses (URLs) to their primary
host. This fundamental design decision enables the decentralization
of content storage, content delivery, and address management. In
addition, by decoupling the content address from its storage loca-
tion, CIDs prevent vendor lock-in and remove the need for central
authorities to handle address allocation.

Figure 1 shows an example of a CID and its structure. It relies
on a set of self-describing data representation protocols [43] and is
composed of the following four �elds:

Multibase pre�x: Indicates one of the 24 currently supported
base-encodings with which the binary CID has been encoded
(�b" for base32 in Figure 1).

CID-Version identi�er: Indicates the CID version (v1). Cur-
rently, two versions exist (v0 and v1).

Multicodec identi�er: Speci�es how the addressed data has
been encoded (protobuf, json, cbor, etc.).

Multihash: A self-describing hash-digest of the addressed
data. The Multihash includes metadata indicating the hash
function used (default sha2-256) and the length (default 32
bytes) of the actual content hash. The termMulti hash stems
from the fact that it can support any hashing algorithm.

When content is added to IPFS, it is split into chunks (default 256 kB)
each of which is assigned its own CID. The CID of each chunk
results from hashing its content and adding the above metadata.
Once all chunks have a CID, IPFS constructs aMerkle Directed

Design and Evaluation of IPFS SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands

Example of a CIDv1:

bafybeigdyrzt5sfp7udm7hu76uh7y26nf3efuylqabf3oclgtqy55fbzdi

+
<multibase>(cid-version k multicodec k multihash

| {z }
)

v1
00000001
| {z }

CID-Version

dag-pb
01110000
| {z }
Multicodec

sha2-256
00010010
| {z }
Multicodec

32 bytes
00100000
| {z }

Length

SHA256 hash
110010010” ” ”
| {z }

Actual Hash
| {z }

Multihash

Figure 1: Structure of a CID.

Acyclic Graph (DAG) of the �le [35]. This Merkle DAG is the
form in which the �le is provided by the original content publisher.
A Merkle-DAG is a data structure similar to a Merkle-tree but
without balance requirements. The root node combines all CIDs of
its descendant nodes and forms the �nal content CID (commonly
calledroot CID). In Merkle-DAGs, a node is allowed to have multiple
parents, an important property that allows for chunk de-duplication.
In turn, content de-duplication means that the same content does
not need to be stored or transmitted twice, saving both storage and
bandwidth resources. Further, Merkle DAGs are agnostic to where
the content is stored. Thus, they do not need to be updated when a
�le is replicated on or deleted from nodes in the network.

Thanks to their hash-based structure, CIDs are immutable and
self-certifying,i.e.,content cannot be altered without modifying
its CID. This enables self-veri�cation by comparing the CID with
the hash of the content itself. Clearly, this property becomes a chal-
lenge for dynamically changing digital objects, which we address
in Section 3.3.

2.2 Peer Addressing
Upon joining the IPFS network by connecting to a set of canonical
bootstrap peers, peers generate a public-private key pair. Every peer
in the IPFS network is identi�ed by its uniquePeerID, which is
the hash of its public key (represented as aMultihash). The PeerID
remains the same, unless the node operator chooses to change
it manually. When establishing a secure communication channel,
the PeerID is used to verify that the public key used to secure the
channel is the same as the one used to identify the peer.

In order to represent the locations of remote peers, IPFS relies
on Multiaddresses. A Multiaddress is a self-describing, human-
readable, hierarchically-separated sequence of protocol choices.
The termMulti address stems from the fact that the format allows
multiple protocols and address types to be included. Each Multiad-
dress describes an endpoint enabling a peer to be interacted with.
IPFS encompasses multiple protocols, from the network layer up to
the application layer.

Figure 2 presents the structure of a Multiaddress, showing the
network and transport protocols for the communication (IPv4 and
TCP) their corresponding location-based address information (IP ad-
dress1.2.3.4 and TCP port number3333) followed by the protocol
to address one particular peer (p2p) and its PeerID (QmZyWQ14...).
As a result, Multiaddresses point to remote processes by encoding
multiple layers of addressing information into a path representa-
tion. A Multiaddress uses this construct for two reasons. First, not
all IPFS nodes share the same subset of protocols. Multiaddresses
allow nodes to know if they will be able to connect to a remote peer

Network Layer
z }| {
/ip4/1.2.3.4

| {z }
Protocol & Address

k

Transport Layer
z }| {
/tcp/3333

| {z }
Protocol & Port

k

P2P Overlay
z }| {
/p2p/QmZyWQ14...
| {z }

PeerID

Figure 2: Structure of a Multiaddress.

before attempting the connection. Second, the extensible syntax of
Multiaddresses allows for intermediate relaying of communication
through pre�xing peer addresses. This is used to proxy messages
to in-browser nodes that cannot be directly contacted.

2.3 Content Indexing
To publish or retrieve an object, it is necessary to create a mapping
between a CID and a PeerID that can provide the object (including
its Multiaddress). In order to operate in a decentralized fashion and
support content and peer discovery, these mappings are indexed on
a Distributed Hash Table (DHT), which exposes simplePUTandGET
primitives. IPFS's DHT is based on Kademlia [41], similar to that
used by the BitTorrent Mainline DHT [10, 19]. CIDs and PeerIDs
reside in a common 256-bit key space by using the SHA256 hashes
of their binary representations (see Figure 1) as indexing keys.

Based on our practical experiences with the live network, we
have made a number of tweaks compared to the original Kademlia
speci�cation. Nodes in the DHT use 256-bit SHA256 keys instead
of the 160-bit SHA1 keys. This is to anticipate advances in delib-
erate hash collisions [67]. We also maintain8 = 256buckets of
: � nodes each (where: = 20) to split the hash space. Finally, we
employ reliable transport protocols such as TCP and QUIC (in-
stead of UDP) [41], as this makes connection management in the
implementation more straightforward.

New peers join the DHT as eitherDHT Servers, if they have public
IP connectivity, or asDHT Clients, if they are not publicly reachable,
e.g.,because they are behind a Network Address Translation (NAT)
device. IPFS di�erentiates between DHT clients and servers through
a simple technique calledAutonat [33]. Autonat works as follows:
new peers join by default as clients and immediately ask other
peers in the network to initiate connections back to them. If more
than three peers can connect to the newly joining peer, then the
new peer upgrades its participation to act as a server node. If more
than three peers cannot connect, the peer continues as a client.
DHT Servers perform all network operations,i.e.,storing content,
storing mapping records, and providing these to requesting peers.
In contrast, DHT Clients only request records or content from
the network but do not store or provide any of them. The DHT
client/server distinction prevents unreachable peers from becoming
part of other peers' routing tables, thus speeding up the publication
and retrieval processes.

3 IPFS IN ACTION
In this section we explain how content is published (Section 3.1),
and how other peers are able to �nd and retrieve it (Section 3.2).
Both processes are depicted in Figure 3 and marked throughout
this section. Then in Section 3.3, we describe how IPFS deals with
mutable content.

SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands Trautwein et al.

Figure 3: IPFS publication and retrieval. Publication in-
volves: 1 Import content to Providers local IPFS process and
allocate CID 2 DHT Walk to �nd closest peers to CID 3
Store provider record with closest peers. Retrieval involves:
4 Opportunistic Bitswap requests to already connected

peers for CID 5 DHT Walk to �nd a provider record stor-
ing peer 6 Requestorconnects to Provider and fetches the
content. The diagram omits Requestorssecond DHT Walk to
resolve Providers PeerID to their network address.

3.1 Content Publication
To make content available in the IPFS network, the content is �rst
imported to IPFS and allocated a CID1 (see Section 2.1).

After content has been imported into the local IPFS instance, it is
neither replicated nor uploaded to any external server. To publish
it, the host generates aprovider recordand pushes it into the DHT.
This record maps the CID to its own PeerID. The provider record
is stored on the: = 20 closest peers in terms of their PeerIDs'
XOR distance [41] from the SHA256 hash of the CID. The record is
replicated on: peers to ensure that records remain available even if
some of those: peers leave the network. 20 is selected based on our
practical experiences (as well as a recommendation in the original
Kademlia speci�cation [41]), serving as a compromise between
excessive replication overhead and risking record deletion because
of peer churn. We explain how the 20 closest peers are discovered
in Section 3.2.

Once IPFS has found the closest peers2 , it attempts to store
the provider record with them. It does so by establishing a network
connection and then initiating an RPC3 . The process does not
wait for a response from each peer but will instead perform the
RPCs in a ��re and forget� fashion which will become relevant in
the performance evaluation (Section 6). Note, any peer that later
retrieves the data becomes a temporary (or permanent, if they
so choose) content provider themselves by publishing a provider
record pointing to their own node to the DHT. Peers retrieving the
content do not need to trust the new providing peer but only verify
that the data they were served matches the requested CID.

A peer must also publish itspeer record, which maps its own
PeerID to any Multiaddresses associated with it. This is used by

requesting peers to discover the underlying network address of the
peer. Publication of the peer record follows the same CID-to-PeerID
procedure as described above and happens independently of any
content publication.

Apart from the replication factor (: = 20), provider records are
associated with two other parameters: (i) the republish interval, by
default set to12 h, to make sure that even if the original 20 peers
previously responsible for keeping the provider record go o�ine,
the provider will assign new ones within12 h; and (ii) theexpiry
interval, by default set to24 h, to make sure that the publisher has
not gone o�ine and is still willing to serve the content. These
settings aim to prevent the system from storing and providing
stale records. It is worth noting that peers behind NATs cannot
host content themselves. Thus, third party hosts, commonly called
pinning servicesare used to publish content on behalf of NAT'ed end-
users (usually for a fee). Although a NAT hole-punching solution
is currently being developed [34], it is still under-test.

3.2 Content Retrieval
Once the provider and peer records have been published, users
can retrieve the content. To retrieve the content, the requesting
peer performs four steps: (i) Content discovery:identify PeerID(s)
that host the content/CID; (ii) Peer discovery:map the PeerID to a
Multiaddress,e.g.,an IP address; (iii) Peer routing: connect to the
peer; and (iv) Content exchange:fetch the content.

Content Discovery. Content discovery in IPFS is done primarily
using the DHT (see Section 2). However, before entering the DHT
lookup, the requesting peer asks all peers it is already connected
to for the desired CID4 . This is done (using the Bitswap proto-
col, discussed later in this section) in an opportunistic fashion. It
allows a node to resolve content faster in case a peer's immediate
neighbours store the desired content. If that initial attempt is not
successful, content discovery falls back to the DHT with a timeout
of 1 second.

The DHT implementsmulti-round iterative lookupsin order to
resolve a CID to a peer's Multiaddresses, a process we refer to as a
DHT walk 5 . When peer A issues a request for CIDG, the request
is forwarded toU = 3 nodes whose PeerIDs are closest toGin peer
A's routing table (as per the original Kademlia speci�cation [41]).
The peers receiving those requests reply with the requested content
if they have it. If they do not have the requested content, they reply
with either the provider record that points to the PeerID that holds
the requested item together with the peer's Multiaddress (if they
have it), or with the peers it knows of whose PeerID is closer toG.
The process continues until the node is returned with the PeerID
that has previously declared to hold a copy of the requested CID
through a published provider record.

Peer Discovery.After the content discovery phase, a client knows
the PeerID(s) hosting the desired content. As mentioned earlier,
PeerIDs need to be mapped to a physical network address by looking
up the peer record. This procedure is calledPeer Discoveryand is
carried out by querying the DHT for a second time.

To further streamline the process, each IPFS node maintains an
address book of up to 900 recently seen peers. Nodes check whether
they already have an address for the PeerID they have discovered
before performing any further lookups.

Design and Evaluation of IPFS SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands

Peer Routing. Once the PeerID is resolved to a peer record, the
requesting node will possess the Multiaddress(es) of the peer that
appears to have the content. It therefore uses the list of addresses
to connect to the desired peer.

Content Exchange. As provider peers are identi�ed, content fetch-
ing is done usingBitswap, a simple chunk exchange protocol6 .
Bitswap issues requests for the content items inwantlists. Requests
are sent using anIWANT-HAVEmessage. Recipient peers that have
the block reply with a correspondingIHAVEmessage. The request-
ing peer �nally responds with anIWANT-BLOCKmessage. Receipt
of the requested block terminates the exchange. Recall, the Bitswap
protocol is also used todiscovercontent available on nearby neigh-
bours opportunistically. The full details of the Bitswap protocol
design as well as a number of proposed optimizations can be found
in [14, 50].

3.3 Content Mutability
Given their hash-based structure, CIDs are permanent, immutable,
and self-certifying. This makes them ideal for decentralizing names-
pace management, as it avoids the need for a central coordinator.
Furthermore, their immutability and self-certi�cation make univer-
sal caching (i.e., from any peer) possible. However, this becomes
problematic for handling dynamic content,e.g.,evolving text doc-
uments. In order to cope with mutable content, IPFS provides the
option of publishing content based on the hash of the publisher's
public key (i.e.,PeerID) instead of the hash of the content (i.e.,CID)
itself. Those, so calledInterPlanetary Name System (IPNS) records,
map the CID of the publisher's public key to another CID signed by
the corresponding private key. This way, content can be updated
and obtain a di�erent CID, but an immutable reference (i.e., the
CID of the publisher's public key) is created and used. As this mech-
anism makes use of additional constructs, we leave further details
out and point the reader to [15, 55] for more details.

3.4 IPFS Gateways
To broaden access to IPFS-hosted content for users who have not
installed IPFS software, the IPFS system is complemented with
a gatewaymodel. Gateways o�er (HTTP) entry points into IPFS,
enabling users who do not run any IPFS software to access content.
Our gateway implementation acts as a bridge: on one side is a DHT
Server node, and on the other side is an nginx HTTP web server,
which can receiveGETrequests containing the CID as the URL path,
i.e.,https://ipfs-gateway.io/ipfs/{CID} .

By embedding caching within the gateways, we further stream-
line performance by aggregating user demand. Each gateway server
runs two forms of content storage: (i) the default nginx web cache,
with a Least Recently Used replacement strategy; and (ii) The IPFS
node store, which holds content manually uploaded by the Web3
and NFT Storage Initiatives.1 These allow third parties to pin con-
tent in the IPFS store of the gateway to make it persistently available.
We emphasize that the gateways are entirely optional for the op-
eration of the overall storage and retrieval network and are only
used for content retrievals through the browser.

1https://web3.storage/, https://nft.storage

Protocol Labs operates two major gateways, and in total, there
are 107 known gateways.2 Note, operating a gateway does not
require authorization or permission by any entity, but in order for
it to be useful for the network, it needs to be set up with a public
IP address.

4 EVALUATION DATA
We next present the data we use to evaluate IPFS as a system.
Due to its decentralized nature, it is challenging to record activities
across all IPFS nodes. Particularly, since independent node operators
dominate IPFS, no complete record exists. To address this challenge,
we compile three datasets comprising a mix of active and passive
measurements. Figure 4a presents a time series of our measurement
periods, which we describe in more detail below.

4.1 Peer Data
Our �rst dataset covers information about peers acting as DHT
Servers. As there is no central repository of such information, we
employ active measurements to gather this data. We implement
a crawler [63] to gather a comprehensive list of all peers that are
engaged in the DHT. We run the crawler from a server in Germany
every 30 minutes. The crawler recursively asks peers in the network
for all entries in their: -buckets starting from the six well-known
default IPFS bootstrap peers until it �nds no new entries. The pro-
cedure that yields the list of all: -bucket peers resembles previous
work [23].

We started our measurements on 2021-07-09 and upgraded it
on 2021-09-24 to collect the association of single peers with their
Multiaddresses, agent version, supported protocols, and connection,
handshake and crawl duration. We then map all IP addresses to
their country and Autonomous System (AS) using GeoLite2, and
tag it with its CAIDA AS Rank [48]. In total, we have performed
over9500network crawls. Figure 4a plots the number of peers we
observed each day.

To quantify peer uptime, we periodically revisit all previously
discovered and online peers and measure their session lengths
(de�ned as their distinct, continuous time periods online). Due to
the scale, we adapt the probe frequency based on how often we
observe a peer to be accessible. Speci�cally, we select an interval of
0.5x the observed uptime, starting at a minimum of 30 seconds and
ending at a maximum of 15 minutes. This is because it is more likely
for peers to stay online if we observe them to have been online
for an extended time period. We make our crawl data available for
further research on IPFS with the CID:

bafybeigkawbwjxa325rhul5vodzxb5uof73neszqe6477nilzziw5k5oj4

4.2 IPFS Gateway Usage Data
Our second dataset covers all theGETrequests taken from a public
IPFS Gateway run by Protocol Labs (ipfs.io), shedding light on
large-scale usage patterns of IPFS. This data represents a geographic
subset of total gateway tra�c, as the sampled tra�c comes from
one of several gateway instances which load balance inbound tra�c
using anycast. This particular gateaway is located in the US.

The dataset covers one day of access in January 2022 with 7.1 M
user requests. Each entry maps to a single user request and response

2https://ipfs.github.io/public-gateway-checker/

SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands Trautwein et al.

Figure 4: a) Total number of crawled peers over time and their fraction of dialable and undialable peers (one-day periodicity).
The graph also depicts several events and measurement time periods which help to assess our measurement results in later
sections. b) Request count of a single gateway on 2022-01-02.

Table 1: Number of publication and retrieval operations
from each AWS region.

AWS Region Publications Retrievals
af_south_1 547 2•047
ap_southeast_2 547 2•630
eu_central_1 547 2•708
me_south_1 547 2•112
sa_east_1 546 2•363
us_west_1 547 2•704
Total 3•281 14•564

information to the gateway comprising of request timestamp, user
agent, HTTP referrer, (Maxmind-located) city, response sizes, and
cache hit/miss information. We aggregate users by unique combi-
nations of IP and user agent. Overall, we �nd 101 k users accessing
274 k unique CIDs during the day of data collection. For context,
Figure 4b shows the number of requests received (5 minutes bins)
at the gateway, based on the timezone of the gateway (Paci�c Stan-
dard Time) as well as the geolocated user timezone. We make the
access logs available on IPFS with the CID:

bafybeiftyvcar3vh7zua3xakxkb2h5ppo4giu5f3rkpsqgcfh7n7axxnsa

4.3 Performance Data
Our third dataset focuses on benchmarking content publication
and retrieval performance. We use six virtual machines in six
di�erent regions on AWS. Namely, thet2.small machines run
in me_south_1(Bahrain),ap_southeast_2 (Sydney),af_south_1
(Cape Town),us_west_1(N. California),eu_central_1 (Frankfurt)
andsa_east_1 (São Paulo). On each machine we run ago-ipfs
v0.10.0 instance acting as a DHT server node. We use these con-
trolled instances to interact with the public IPFS network and per-
form tailored performance experiments. The measurements were
conducted during the shaded time period in Figure 4a labeled �DHT
Perf�.

Upon each iteration, a single node announces a new0”5MB ob-
ject (i.e.,CID) to the network. Following this, all other nodes retrieve
the object. This involves looking up the provider and peer records,
connecting to the providing peer and then downloading the object.
As soon as all remaining nodes have completed this process, they
disconnect to prevent the next retrieval operation being resolved
through Bitswap and instead resort to the DHT for lookup and
discovery. It is worth noting that this is the closest one can get to a
controlled experiment in the public IPFS network. This is because it

is very di�cult to replicate peers' behaviour (e.g.,churn, CPU and
tra�c load) in a simulation environment. Table 1 lists the number
of publications and retrievals we have performed from each region.
The varying numbers of publications and retrievals stem from ter-
minating the experiment before the instance insa_east_1�nished
its latest publication and missed instructions on our control plane
respectively. This does not a�ect the correctness of our measure-
ment but only in�uences the statistical signi�cance of the results
below. The data alongside analysis code is published on IPFS with
the CID:

bafybeid7ilj4k4rq27lg45nceq4akdpetav6bcujgiym6vch5ml24tk2t4

4.4 Ethical Considerations
ThePeerandPerformancedatasets raise limited ethical concerns.
They involve collecting IP addresses, yet we do not attempt to
map these back to personal identities, as such analysis was not
within the scope of this study. Furthermore, after performing the
geolocation analysis, we have anonymized the datasets that we have
made available. TheIPFS Gateway Usage Datacontains personal
information, as it covers requests from web clients. This information
is collected as part of our routine operations, and in line with
IPFS' policies.3 Further, we do not trigger extra data collection. We
anonymize IP addresses, and do not perform lookups on the CIDs
to infer the nature of the content exchanged.

5 DEPLOYMENT SCALE
We now measure the scale of the IPFS network by looking at peers,
physical machines, and gateway users. Unless noted otherwise,
we limit our analysis to the shaded time period labeled �Detailed
Analysis� in Figure 4a.

5.1 Geographical Distribution

Geographical Distribution of Peers. Using the Peer dataset, we
discover a total of198•964IPFS peers (as identi�ed by their PeerID)
with 1•998•825Multiaddresses in the DHT, covering464•303unique
IP addresses from 152 countries. Of these IP addresses, we were
able to establish a connection to253•198(54”5 %) at least once while
211•105(45”5 %) were always unreachable.

3https://docs.ipfs.io/concepts/privacy-and-encryption/

Design and Evaluation of IPFS SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands

Figure 5: Geographical distribution of peers. �Multihoming�
peers were counted repeatedly.

Figure 5 shows the geographical distribution of PeerIDs. Al-
though we see widespread uptake of IPFS, we observe a high con-
centration in certain regions. The US (28”5 %) and China (24”2 %)
dominate the share of peers, followed by France (8”3 %), Taiwan
(7”2 %), and South Korea (6”7 %). In addition, �Multihoming� is com-
monplace: around8”8 %of all peers advertise Multiaddresses that
include multiple IP addresses mapped to multiple countries.

To better understand the deployment in these di�erent regions,
Figure 7a presents the distribution of peers with¡ 90 %uptime (�re-
liable�), whilst Figure 7b presents the distribution of peers that were
unreachable during our entire measurement period. We found1”4 %
(2747) of observed peers to be �reliable�, whereas around 1/3 of
peers are never accessible. The relatively even spread of countries
gives us con�dence that no individual region could disrupt IPFS
single-handedly, without signi�cant strategic e�ort. For example, if
a single country hosted the majority of IPFS nodes, it could become
possible for the state to unduly in�uence the wider network, which
does not seem to be the case. The distribution of reliable peers is par-
ticularly egalitarian, with the largest player (US) hosting just0”3 %
of peers. We see similar trends for unreachable peers. Although
China does contain a large share (12”5 %), these unreachable peers
naturally have less impact on the overall system.

Note that a single IP address can host multiple PeerIDs. Figure 7c
plots a CDF of the number of peers per host. Although the majority
(92”3 %) of IP addresses host a single PeerID, we �nd that the top
10 IP addresses host almost66 kdistinct PeerIDs. This raises con-
cerns about potentially misbehaving peers that rotate their PeerIDs.
Such peers would be able to hamper routing performance,e.g.,by
persistently dropping requests.

Geographical Distribution of Gateway Users. Using the gate-
way usage dataset, we also inspect the geographical distribution
of incoming requests to get an idea of the scale of gateway usage.
In total, we observe requests from 59 countries. Figure 6 shows
their geographical distribution. Since the sampled node was located
in the US, we �nd more than three-quarters of user requests to
the gateway come from the US (50”4 %). This is followed by China
(31”9 %), Hong Kong (6”6 %), Canada (4”6 %), and Japan (1”7 %).

5.2 Autonomous System Distribution
Next, we investigate the Autonomous System (AS) coverage of the
IPFS deployment and assess potential centralization in ASes or
associated cloud providers.

Figure 6: Geographical distribution of users requesting con-
tent via the Gateway.

Autonomous System Coverage.In total, we observe peers in 2715
unique ASes. Figure 7d presents the number of IP addresses in
each AS. We rank ASes (on the x-axis) by their CAIDA AS Rank.
Unsurprisingly, we see a small set of highly ranked ASes containing
many IPFS hosts. The top 10 ASes contain64”9 %of IP addresses,
whereas the top 100 contain90”6 %. This is rather di�erent from
our prior observations related to geography, which show more
egalitarian trends. Although there is a wide geographic spread, we
�nd that each region is dominated by a small number of ASes. To
explore this, Table 2 presents the number of IP addresses observed
in the top ASes. Although we observe that IPFS is deployed in a
large number of ASes,¡ 50 %of IPs found are in just 5. ASes in
China stand out in this regard, with two Chinese ASes containing
¡ 30 %of all observed IP addresses. This, again, raises concerns over
the concentration of peers in speci�c networks. However, we argue
that the widespread deployment across 2715 ASes, together with
the decentralized structure of the P2P system (i.e.,with regard to
indexing and resolution), would ensure resilience even in cases of
severe network fragmentation, or targeted disruption attempts.

Cloud Coverage. Another potential cause of the above trends is
the presence of prominent cloud infrastructure, used by IPFS node
operators. To this end, we use the Udger data set [64] to get a
curated list of 1525 cloud providers and their IP ranges. Table 3 lists
the number of nodes that are deployed in each one. Contrary to
expectations, we see that just a minority (Ÿ2”3 %) of IPFS nodes are
hosted in cloud infrastructure. This �gure is in stark contrast to
other decentralized web platforms such as Mastodon, where6 %
of the infrastructure is hosted on Amazon alone [47]. This is an
important �nding for a decentralized storage and delivery network,
and suggests that the majority of users host their own deployments.

5.3 Churn
Churn refers to the action of peers arriving and departing from the
network. The churn rate within a system like IPFS is important as
it in�uences decisions such as for how long should peers retain
information about other (online) peers. To calculate churn from
our Peer dataset, we follow the method used in [51, 56, 60] for long
session handling to minimize bias towards shorter sessions and
account for peers that stay online beyond our selected measure-
ment time window. Figure 8 plots CDFs of DHT peer uptimes for
countries that stood out in the deployment analysis of Section 5,
based on467•134session observations that started in the �rst half
of our �Detailed Analysis� time window (see Figure 4a).

We observe that uptime tends to be short, with87”6 %of sessions
under 8 hours and only2”5 %of sessions exceeding 24 hours. This

SIGCOMM '22, August 22�26, 2022, Amsterdam, Netherlands Trautwein et al.

Figure 7: a) Geographical distribution of peers that were reachable for ¡ 90 %of the measurement period. Note the ‡ unit on
the y-axis. b) Geographical distribution of peers that were always o�line and not reachable at all during the measurement
period. c) CDF of the number PeerIDs per IP address d) Distribution of IPs across ASes according to their size (measured by
their AS rank).

Table 2: Autonomous systems covering ¡ 50 %of all found IP
addresses.

Share ASN Rank AS Name
18”9 % 4134 76 CHINANET-BACKBONE No.31,Jin-rong Street, CN

12”8 % 4837 160 CHINA169-BACKBONE CHINA UNICOM China169 Back., CN

9”6 % 4760 2976 HKTIMS-AP HKT Limited, HK

6”9 % 26599 6797 TELEFONICA BRASIL S.A, BR

5”3 % 3462 340 HINET Data Communication Business Group, TW

Table 3: Percentage of nodes hosted on cloud providers. The
table shows the top ten and selected cloud providers.

Rank Provider IP Addresses IP Address Share
1 Contabo GmbH 2038 0”44 %
2 Amazon AWS 1792 0”39 %
3 Microsoft Azure/Coporation 1536 0”33 %
4 Digital Ocean 836 0”18 %
5 Hetzner Online 592 0”13 %
6 GZ Systems 346 Ÿ0”10 %
7 OVH 341 Ÿ0”10 %
8 Google Cloud 286 Ÿ0”10 %
9 Tencent Cloud 258 Ÿ0”10 %
10 Choopa, LLC. Cloud 244 Ÿ0”10 %
12 Alibaba Cloud 180 Ÿ0”10 %
13 CloudFlare Inc 140 Ÿ0”10 %
27 Oracle Cloud 27 Ÿ0”10 %
54 IBM Cloud 9 Ÿ0”10 %

235 Other Cloud Providers 2017 0”43 %
Non-Cloud 453•661 97”71 %

helps explain our design decision to replicate records on a relatively
large number of peers (: = 20, see Section 2.3). Brie�y, we also note
that stability varies greatly based on region. For example, whereas
the median uptime for Hong Kong is just24”2 min, it is more than
double that �gure for Germany.

5.4 Discussion & Takeaways
IPFS is designed to be highly decentralized. Although we observe
geographical agglomeration in certain regions, we also see IPFS
being widely adopted around the globe. Especially important is
the �nding that fewer than2”3 %of IPFS nodes run in major cloud
platforms. This suggests that individuals are running IPFS nodes on
personal or on-premises commodity hardware. As a downside, this
contributes to the high churn rate observed (only2”5 %of peers stay
online for more than24 h). Further, although we �nd peers in 2715
ASes, the top 10 contain 64.9% of peers alone. This suggests that we

Figure 8: Churn rate by region for 467•134session observa-
tions. Each line shows the cumulative distribution function
of the DHT peer uptimes in a given region. The step shape
correlates with the sampling interval of our crawler.

should push harder to broaden deployment and avoid consolidation
in a minority of ASes.

6 IPFS PERFORMANCE EVALUATION
In this section, we evaluate the performance of IPFS' two core
functions: content publication and content retrieval. We also turn
to our Gateway dataset to better understand IPFS's usage through
browsers.

6.1 Content Publication Performance
As explained in Section 3.1, the content publication process consists
of two steps. First, the content is imported into the local IPFS node
and second, provider records are stored with suitable peers. The
�rst (i.e.,importing content) step was covered in [1]. Here, we focus
on the publication of provider records to the network.

Overall Delay. Figure 9a shows CDFs for the duration of the over-
all content publication process. We present separate results for each
AWS region from which the measurements are launched. The over-
all publication process across all regions takes33”8 s, 112”3 s, and
138”1 sin the 50th, 90th, and 95th percentiles, respectively. Note
that the publication delay is independent of the content size as only
the provider record is being published. Table 4 breaks down the
publication duration percentiles for each AWS region individually.

	Abstract
	1 Introduction
	2 IPFS Fundamentals
	2.1 Content Addressing
	2.2 Peer Addressing
	2.3 Content Indexing

	3 IPFS in action
	3.1 Content Publication
	3.2 Content Retrieval
	3.3 Content Mutability
	3.4 IPFS Gateways

	4 Evaluation Data
	4.1 Peer Data
	4.2 IPFS Gateway Usage Data
	4.3 Performance Data
	4.4 Ethical Considerations

	5 Deployment Scale
	5.1 Geographical Distribution
	5.2 Autonomous System Distribution
	5.3 Churn
	5.4 Discussion & Takeaways

	6 IPFS Performance Evaluation
	6.1 Content Publication Performance
	6.2 Content Retrieval Performance
	6.3 Gateway Evaluation
	6.4 Discussion & Takeaways

	7 Related Work
	8 Conclusions

