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Abstract— Decentralized storage is still rarely used in an 
academic and educational environment, although it offers 
better availability than conventional systems. It still happens 
that data is not available at a certain time due to heavy load or 
maintenance on university servers. A decentralized solution 
can help keep the data available and distribute the load among 
several peers. In our experiment, we created a cluster of 
containers in Docker to evaluate a private IPFS cluster for an 
academic data store focusing on availability, GET/PUT 
performance, and storage needs. As sample data, we used PDF 
files to analyze the data transport in our peer-to-peer network 
with Wireshark. We found that a bandwidth of at least 100 
kbit/s is required for IPFS to function but recommend at least 
1000 kbit/s for smooth operation. Also, the hard disk and 
memory size should be adapted to the data. Other limiting 
factors such as CPU power and delay in the internet 
connection did not affect the operation of the IPFS cluster. 
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I.  INTRODUCTION  
In this project, we identify the benefits and shortcomings 

of recent decentralized content-addressable storage solutions 
on the example of IPFS and its suitability to store, retrieve, 
and manage academic documents. For this purpose, we 
evaluate the read/write performance and chunk distribution 
inside a private cluster. Instead of downloading the data from 
a specific server to another client, a peer asks other nearby 
peers for the information. Similarly, data is provided by 
others in the network; hence the information should still be 
retrievable when a single peer is offline or lost its data. This 
works because the pinned data is replicated at each cluster 
peer and addressed by its content. 

II. SYSTEM 
In our approach, we simulate a cluster of nodes on a 

single host. This way, we can control network parameters 
and monitor resource demands in an isolated and controlled 
setup. Each node runs the IPFS cluster software, with one 
node set up as a bootstrap node, so peers initially can join 
the cluster. We used the virtualization software Docker to set 
up multiple containers to connect them and control variables 
on the host. As the host operating system, we chose Ubuntu 
20.04.1 [1] because it offers a balance between ease of use, 
availability of tools, performance, and relatively lightweight 
in terms of resource requirements.  

For the containers, we created a Dockerfile, which is 
based on alpine and supports a packet manager to extend the 
instance with software for IPFS [2], IPFS-Cluster, 

monitoring tools, compilers, network restriction and 
analyzing tools. To configure the restrictions, we used 
Traffic Control (tc is part of iproute2). Here we specified the 
bandwidth and an artificial delay. The CPU and memory 
configuration is specifiable in Docker. The IPFS daemon is 
started last on each container. We captured the connections 
and package of the whole cluster in Wireshark on the host.  

III. INTERPLANETARY FILE SYSTEM  

A. Function 
In HTTP clients UeTXeVW WKe daWa¶V location to initiate data 

retrieval. This location information comes in the form of an 
IP address and the file¶V path but usually uses a DNS domain 
to provide a human-readable identifier. Since the data is 
specified by its location, it is not guaranteed to be the exact 
requested data we expect.  

IPFS, on the other hand, addresses the data according to 
the content itself (content-addressing) [3]. For this reason, a 
fingerprint (content hash) must be created for each file. This 
allows the data to be uniquely described and verified.  

To check whether the data is still available, a provider 
call is executed by the cluster software at regular intervals. 
Furthermore, duplicates can be avoided by cleverly dividing 
the files into chunks and using data structures like the 
Merkle DAG [4]. Each node stores only the data a user has 
pinned or cached, and the IDs of neighboring participating 
peers [3]. Additionally, a bootstrap node or mDNS is 
required to allow IPFS nodes to initially find other peers to 
form the private cluster swarm. Public IPFS bootstrap nodes 
would compromise privacy, hence, we use our private 
bootstrap-node to onboard new participating peers. 

B. Cluster 
The cluster consists of multiple IPFS nodes in a swarm 
configuration as shown in Figure 1. 

 
 

Figure 1: IPFS swarm and cluster 



 

Running a cluster like this has the following advantages: 
1. A cluster is horizontally scalable by simply adding 

more peers to distribute the load in the system. 
2. Nodes can use a different network connection, location, 

and power sources to improve the system's robustness. 
3. A larger number of replicating cluster peers and the 

monitoring of the replication improves availability.  

C. Private Cluster 
As default IPFS runs in public mode, so every peer can 

request blocks with a want-list, and other nodes serve the 
block if available. Everyone can make data available from 
their node. Sensitive data however should be shared within a 
certain group of nodes. In our scenario we want data to be 
distributed only to selected peers. Also, the environment 
needs to be consistent so we can change one parameter and 
measure the impact. However, a private cluster cannot be 
used by peers other than the ones we initialize. This means 
that privacy is guaranteed at the price of having the storage 
space limited to the capacity of the private peers. 

IV. EVALUATION 

A. Methodology 
We measured several system parameters to analyze the 

IPFS-peers' resource demands. IPFS applies chunking to 
distribute each file as 256 kB-sized fractions, making the 
datatype irrelevant. The test file (6.93 MB) was provided by 
a peer and then pinned by the cluster. We monitored the 
pinning status until all cluster peers replicated it. Then we 
deleted the file on a different peer and confirmed it. Finally, 
we executed a GET from the peer where the file was 
deleted. For all operations, the duration, quantity of packets, 
network load, as well as CPU and memory demands were 
monitored and documented. This way slow networks can be 
simulated by reducing the bandwidth and increasing the 
response times artificially. Further, slow peers can be 
simulated by allocating fewer resources to a particular peer. 
In Docker changes are easy to make and Wireshark only 
needs to run on the hosting machine for data investigation. 
But a simulation has limitations since it cannot mimic the 
complexity of real peers at different locations. 

B. Results 
By analyzing the traffic in Wireshark (Figure 2), we 

proved the data distribution to all peers. The traffic data also 
demonstrated that data was replicated correctly, and the file 
was divided and transmitted in the form of multiple chunks. 

1) Bandwidth Limitation: IPFS worked starting from a 
bandwidth of about 100 kbit/s, below that the peer was not 
recognized by others in the network. The more bandwidth 

was available to a peer, the more likely that peer was to 
provide chunks in priority to others. This resulted in a larger 
number of bigger packets. For bandwidths beyond 1 Mbit/s, 
this effect was no longer noticeable, since the number of 
transmitted packets from fast (10 Mbit/s) and slow (1 
Mbit/s) peers was about the same. During 10 tests with very 
low bandwidth (approx. 100 kbit/s), we detected that 
affected peers slow down the entire cluster. Deactivating 
this peer recovered the download speed. It is advantageous 
to connect all peers with at least 1 Mbit/s for good response. 

2) Transmission Time Manipulation: About 20 tests 
showed that using varying delays (10 to 2000 ms) in the 
connection to simulate a slow response time did not affect 
the choice of the peers for data-provisioning. Thus, the peer 
with a high simulated ping was chosen to provide data just 
as a peer with a low response time.  

3) System Limitation: Limiting the CPU did not lead to 
any measurable difference. However, limiting the available 
memory had an impact on the system. For example, a 
running container with a PDF file requires about 200 MB of 
memory. Since Docker stores most of the running container 
data in the host machine's memory, bottlenecks can quickly 
occur with large files. These types of files were therefore 
not tested, due to the limitations of our test setup. The entire 
results are available in our GitHub repository [5]. 

C. Conclusion 
A cluster can offer benefits over conventional server-

client systems like redundancy, easier scalability, and 
enhanced availability because of its cooperating peers. We 
created a controlled environment with minimal uncertainties 
to obtain consistent data. We provide Dockerfiles on GitHub 
[5] to ensure reproducibility and easy setup in future 
research. Further, we developed scripts to automate the 
evaluation and provisioning of peers and tools with a single 
command. As expected, the bandwidth limitation slowed 
down download speeds, and the CPU limitation had 
minimal to no impact. In contrast, we see that the simulated 
long response time of up to 2 s had no negative effect on the 
choice of providing peers. Further experiments with real 
distributed machines are needed to explore whether an IPFS 
cluster is suitable as a decentralized academic repository.  
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Figure 2: Peer Load Distribution 


