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Abstract. Mathematical expressions can be represented as a tree con-
sisting of terminal symbols, such as identifiers or numbers (leaf nodes), and
functions or operators (non-leaf nodes). Expression trees are an important
mechanism for storing and processing mathematical expressions as well as
the most frequently used visualization of the structure of mathematical
expressions. Typically, researchers and practitioners manually visualize
expression trees using general-purpose tools. This approach is laborious,
redundant, and error-prone. Manual visualizations represents a user’s no-
tion of what the markup of an expression should be, but not necessarily
what the actual markup is. This paper presents VMEXT – a free and open
source tool to directly visualize expression trees from parallel MathML.
VMEXT simultaneously visualizes the presentation elements and the se-
mantic structure of mathematical expressions to enable users to quickly
spot deficiencies in the Content MathML markup that does not affect the
presentation of the expression. Identifying such discrepancies previously
required reading the verbose and complex MathML markup. VMEXT
also allows one to visualize similar and identical elements of two expres-
sions. Visualizing expression similarity can support support developers in
designing retrieval approaches and enable improved interaction concepts
for users of mathematical information retrieval systems. We demonstrate
VMEXT’s visualizations in two web-based applications. The first appli-
cation presents the visualizations alone. The second application shows
a possible integration of the visualizations in systems for mathematical
knowledge management and mathematical information retrieval. The ap-
plication converts LATEX input to parallel MathML, computes basic sim-
ilarity measures for mathematical expressions, and visualizes the results
using VMEXT.
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1 Introduction

Mathematical notation strives to have a well-defined vocabulary, syntax, and se-
mantics. Similar to sentences in natural language or constructs in a programming
language, mathematical expressions consist of constituents that have a coherent
meaning, such as terms or functions. We consider a mathematical expression to
be any sequence of mathematical symbols that can be evaluated, e.g., typically
formulae. The syntactic rules of mathematical notation, such as operator prece-
dence and function scope, determine a hierarchical structure for mathematical
expressions, which can be understood, represented, and processed as a tree. Math-
ematical expression trees consist of functions or operators and their arguments.
Experiments by Jansen, Marriott, and Yelland suggest that mathematicians use
some notion of mathematical expression trees as a mental representation to per-
form mathematical tasks [JMY00].

Describing and processing mathematical content using expression trees is es-
tablished practice in mathematics and computer science as our review of related
work in Section 2 shows. However, no standard for the content of nodes, or the
structure and visual representation of such trees has yet emerged. Additionally,
we did not find tools that support generating expression tree visualizations from
mathematical markup. All of the visualizations that we were able to glean from
the literature were manually created using general purpose tools.

With this paper, we seek to contribute to the establishment of an openly avail-
able, widely accepted, visualization of mathematical expression trees, encoded
using the MathML standard. For this purpose, we propose a tree visualization
that operates on parallel MathML markup and provides the visualization as a
free and open source tool. We structure the presentation of our contributions as
follows. Section 2.1 presents details of the MathML standard that serves as the
data structure for our visualization approach. Section 2.2 reviews the strength and
weaknesses of existing approaches for visualizing mathematical expression trees to
derive our visualization concept. Section 3 present our visualization tool VMEXT.
Section 3.3 describes a demo application that shows how the visualization can be
integrated into other applications. Section 3.4 explains how end users and devel-
opers can apply and obtain VMEXT. Section 4 concludes the paper by discussing
our plans for further extending and improving VMEXT.

2 Related Work

As briefly motivated in the previous section, we seek to reduce the effort for re-
searchers and practitioners to generate expression tree visualizations for mathe-
matical content. Additionally, we hope to contribute to establishing a standard-
ized representation of mathematical expression trees. In Section 2.1, we present
the MathML standard and explain why we see it as a promising data format
to achieve this goal. In Section 2.2, we review existing approaches for visualiz-
ing mathematical expression trees to explain how we derived the major building
blocks of our visualization approach.
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2.1 MathML

Mathematical Markup Language (MathML) is a W3C3 and ISO standard (ISO/IEC
DIS 40314) for representing mathematical content using XML syntax. MathML
is part of HTML5 and enables one to serve, receive, and process mathematical
content on the World Wide Web. MathML allows users to describe the notation
and/or the meaning of mathematical content using two vocabularies: Presentation
MathML (PMML) and Content MathML (CMML). The vocabularies can be
used independently of each other or in conjunction.

PresentationMathML focuses on describing the visual layout of mathematical
content. The PMML vocabulary contains elements for basic mathematical sym-
bols and structures. Each element specifies the role of the presentation element,
e.g., the element <mi> represents identifiers and the element <mo> represents
operators. The structure of PMML markup reflects the two-dimensional layout
of the mathematical expression. Elements that form semantic units are encapsu-
lated in <mrow> elements, which are comparable to <div> elements in HTML.
Listing 1.1 exemplifies PMML markup for the expression f(a+b).

Content MathML focuses on explicitly encoding the semantic structure and
the meaning of mathematical content using expression trees. In other words, the
CMML vocabulary seeks to specify the frequently ambiguous mapping from the
presentation of mathematical content to its meaning. For example, the presenta-
tion of the expression f(a+b) represents two possible syntactic structures: e.g., f
could represent either an identifier or a function. CMML uses <apply> elements
to make explicit which elements represent functions. Subordinate elements repre-
sent the arguments of the functions. Listing 1.2 illustrates CMML markup for the
expression f(a+b).

1 <math xmlns=” http ://www. w3 . org /1998/Math/MathML”>
2 <semant ics>
3 <mrow id=” r1 ”>
4 <mi id=” i 1 ”>f</mi>
5 <mo id=”o1”>(</mo>
6 <mrow id=” r2 ”>
7 <mi id=” i 2 ”>a</mi>
8 <mo id=”o2”>+</mo>
9 <mi id=” i 3 ”>b</mi>

10 </mrow>
11 <mo id=”o3”>)</mi>
12 </mrow>

Listing 1.1. Presentation MathML encoding of the expression f(a+b) [Sch17]

Content MathML offers two subsets of elements to specify function types: Prag-
matic ContentMathML and Strict ContentMathML. Pragmatic ContentMathML
uses a large set of predefined functions encoded as empty elements, e.g.,<plus/>,
as used in Line 17 in Listing 1.2, or <log/> for the logarithm. Strict Content

3 www.w3.org/Math/
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13 <annotation−xml encoding=”MathML−Content”>
14 <apply x r e f=” r1 ”>
15 <c i x r e f=”b”>f</ c i>
16 <apply x r e f=” r2 ”>
17 <plus x r e f=”o2”/><!−− <csymbol cd

=”a r i t h 1”>plus</csymbol> in s t r i c t encoding −−>
18 <c i x r e f=” i 2 ”>a</ c i>
19 <c i x r e f=” i 3 ”>b</ c i>
20 </ apply>
21 </ apply>
22 </ annotat ion−xml>

Listing 1.2. Content MathML encoding of the expression f(a+b) [Sch17]

MathML uses a minimal set of elements, which are further specified by referenc-
ing extensible content dictionaries. For example, the plus operator (+) is defined
in the content dictionary arith1. Using Strict CMML, the operator is encoded
using the element for symbols<csymbol>, and declaring that the specification of
the symbol is available under the term plus in the content dictionary arith1. Line
17 in Listing 1.2 shows this option of specifying the plus operator as a comment
(green font color).

As described above, the PMML and CMML vocabularies can be used indi-
vidually and independent of each other. For example, PMML is frequently used
without content markup to display mathematical content on websites. CMML
without presentation markup can, for instance, be used to exchange data between
computer algebra systems. However, PMML and CMML markup can also be used
in conjunction to simultaneously describe the presentation, structure, and seman-
tics of mathematical expressions. The combined use of PMML and CMML is
commonly referred to as parallel MathML.

In parallel MathML markup, presentation and content elements are mutually
interlinked by including xref arguments that point to the corresponding element
in the other vocabulary. The PMML and CMML markup in Listing 1.1 and List-
ing 1.2 respectively contain xref-links to create parallel MathML.

2.2 Expression Tree Visualizations

Researchers, especially in math information retrieval (MIR), have employed sev-
eral use-case-specific tree visualizations for mathematical expressions. All visual-
izations appear to have been created manually to illustrate research in publica-
tions. The content and structure of the visualizations vary significantly. Figure 1
and Figure 2 give an overview of the visualizations, which we describe hereafter.

Youssef and Shatnawi use simple ASCII graphics to visualize expression trees.
Their visualization resembles binary expression trees. Leaf nodes represent iden-
tifiers or numbers; inner nodes represent operators, functions, or brackets [YS06].
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In later work, Shatnawi and Youssef replace the ASCII graphics with an equiva-
lent chart. Altamimi and Youssef further improve their visualization by marking
subexpression groups with dashed lines (see Figure 1, b) [AY08].

Miner and Munavalli use a different tree to illustrate their research on math
search. They render the full expression in the root of the tree and create sub-nodes
for each sub-expression (see Figure 1, c) [MM07]. Sojka and Ĺı̌ska use a similar vi-
sualization to illustrate the tokenization and indexing process of their math search
system.

Hashimoto, Hijikata, and Nishida use a tree layout that represents the DOM
structure of Presentation MathML markup to illustrate the author’s research
on MathML indexing [HHN08]. In this layout, inner nodes represent MathML
elements depicted as circles and leaf nodes represent the content of elements de-
picted as squares (see Figure 1, d). We assume the authors manually created the
visualization, since the focus of their paper is on math search and does not mention
an automated visualization approach.

Kamali and Tompa [KT09] and Kamali and Tompa [KT10] use a similar tree
representation of the Presentation MathML structure in their works on math
similarity and retrieval. Their visualization does not distinguish between inner
nodes and leaf nodes, but depicts all nodes as circles (see Figure 1, a). Two things
are notable about this visualization. First, the layout corresponds to the data
structure of the mathematical expressions. Second, Kamali and Tompa introduce
the notion of defining and visualizing the similarity of mathematical expressions in
terms of the structural similarity of sub-trees. The authors visually indicate sim-
ilar sub-trees by enclosing the respective sub-tree in a dashed line (see Figure 1,
a). In subsequent work, Kamali and Tompa [KT13] use a horizontal layout to vi-
sualize the same tree. The tree uses boxes instead of circles and directed instead
of undirected edges. Kamali and Tompa exclusively consider PMML and do not
present an automated approach to create their visualization of the structure and
similarity of PMML expressions.

Yokoi and Aizawa consider Content MathML markup for their research on
math similarity search and devise a visualization of the CMML tree [YA09]. Their
work introduces apply-free content markup, i.e., omitting the first <apply> el-
ement in the CMML markup, since it provides little information on the applied
function. Instead, their markup uses the first child of an <apply> element. Their
manually created visualization also omits<apply> elements (see Figure 2, a). We
consider this approach valuable, since it reduces the number of nodes to visualize
and facilitates the recognition of function types.

Hagino and Saito also consider apply-free Content MathML markup for their
research on partial match retrieval in math search [HS13]. To illustrate their re-
search, they use a tree that depicts the CMML element names in the case of inner
nodes and the CMML element names in combination with the elements’ content
in the case of leaf nodes (see Figure 2, b).

In their review of approaches for math recognition and retrieval, Zanibbi and
Blostein point out that building a symbol layout tree is important for math recog-
nition tasks [ZB12]. Symbol layout trees represent horizontally adjacent symbols
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Fig. 1. Overview of expression tree visualizations part 1

that share a writing line and indicate subscript, superscript, above, below, and
containment relationships. The authors present a horizontal illustration of the
symbol layout tree and a simplified expression tree using a vertical layout (see
Figure 2, d). Pattaniyil and Zanibbi uses a similar horizontal illustration of the
symbol layout tree (see Figure 2, e) [PZ14].

Zhang and Youssef use Strict Content MathML for their research [ZY14]. In
their visualizations of the CMML tree, they omit the element names for <ci>
and <cn> elements, but include <apply> elements. They replace the names of
CMML elements with shorter symbols. For instance, they replace <apply> with
@ and <power> with ∧.

2.3 Summary of RelatedWork and Research Gap

From our review of the literature, we draw the following conclusions. First, repre-
senting mathematical expressions as trees is essential for performing many tasks
in mathematical knowledge management (MKM) and mathematical information
retrieval (MIR). Expression trees, in which leaf nodes represent terminal symbols
and inner nodes represent operators, functions, or brackets are widely used as a
data representation. The MathML standard is a well-established data format for
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Fig. 2. Overview of expression tree visualizations part 2

representing the presentation, structure, and semantics of mathematical content
using the expression tree concept. Many researcher rely on MathML encoded
content for MIR and MKM tasks.

Second, researchers frequently employ expression tree visualizations to illus-
trate their math-related research. While some visualizations reflect the informa-
tion extracted from mathematical markup, such as MathML, other visualiza-
tions illustrate abstract mathematical expressions. The elements included in the
visualizations, their spatial arrangement, and visual appearance varies greatly.
Depending on the use case, visualizations may include presentation elements, con-
tent elements, or combinations thereof. Especially in the MIR domain, researchers
frequently need to visualize similarity of operator (sub-)trees.

Third, although the expression tree concept is at the heart of MathML and
visualizations of MathML markup are widely used for analysis and presenta-
tion purposes, we found no tool that generates such visualizations from MathML
markup. Researchers typically create expression tree visualizations manually us-
ing general-purpose tools. This approach results in much manual and redundant
effort, diverse visual representations of identical markup, and the danger of creat-
ing a visualization that does not reflect the underlying data. To reduce the effort
for creating expression tree visualizations and to contribute towards establishing a
more canonical design of expression trees, we present the VMEXT system, which
we describe in the following section.
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3 VMEXT System

VMEXT is an acronym for Visualizing Mathematical Expression Trees. This tool
seeks to visually support researchers and practitioners in two well-defined use
cases:

1. curating semantically enriched mathematical content, e.g., for use in digital
repositories or systems for mathematical knowledge management;

2. examining similarities of two mathematical expressions, e.g., for developing
mathematical information retrieval approaches or for examining and interact-
ing with the results of MIR systems.

VMEXT addresses the use cases with two visualizations available as widgets
that can easily be integrated into any web application. We present the widgets
in Section 3.1 and Section 3.2. Both widgets are available as a demo system at:
http://vmext.formulasearchengine.com/. Section 3.3 presents a demo appli-
cation that exemplifies the possible use of the widgets as part of MKM and MIR
systems. Section 3.4 describes how interested parties may use VMEXT’s visu-
alizations; integrate the visualizations as widgets or via an API into their own
applications; and how to adapt and extend the code.

3.1 Curating Semantically-enrichedMathematical Content

Making mathematical knowledge accessible through recognition, retrieval, and
management systems is a task that has attracted many contributions by re-
searchers and practitioners. (Guidi and Sacerdoti Coen [GS16] and Zanibbi and
Blostein [ZB12] present comprehensive reviews on the topic). The MathML stan-
dard (see Section 2.1) has been widely adopted to expose both the presentation
and semantics of mathematical content for such systems.

However, the MathML syntax is verbose, complex and therefore not easy
to grasp for humans. Furthermore, creating parallel MathML markup is compli-
cated and error-prone. This is true, especially for the creation of parallelMathML
by converting other formats, such as LATEX, and often results in ambiguous or er-
roneous markup. Typically, Presentation MathML elements are less frequently
affected by errors than their respective Content MathML elements. This leads to
a situation, in which the visual representation of an expression is correct, yet its
semantics are wrong.

VMEXT supports users in quickly checking and improving parallel MathML
by providing an interactive expression tree visualization that simultaneously il-
lustrates the semantic structure (as well as the presentation elements) encoded in
the markup.

VMEXT visualizes the structure of the tree as encoded in the ContentMathML
markup. However, the labels for each node render the Presentation MathML el-
ements linked to the respective content elements. VMEXT uses the apply-free
CMML notation introduced in [YA09]. In other words, our parser renders the first
child of each <apply> element, not the <apply> itself, as an operator or func-
tion. All following children are considered as arguments of the function. For a clear

8

http://vmext.formulasearchengine.com/


layout, VMEXT renders the complete PMML element for the first child, even if
the first child is itself an <apply> element. To reduce the size of the individual
edges, we replace some CMML elements with shorthand symbols, e.g., we replace
<power> with ∧ as can be seen in Figure 3 (cf. [ZY14], see also Section 2).

To facilitate human inspection, VMEXT follows the information seeking mantra
proposed by Shneiderman [Shn96]: overview first, zoom and filter, then details-
on-demand. The nodes in VMEXT can be interactively filtered by expanding or
collapsing nodes either one at a time or all at once using the expand button. The
view-port is adjustable using pan and zoom interactions to enable focusing on spe-
cific parts of the tree. The resize button resets the zoom level. User navigation is
supported through an overview infix expression rendered at the top of the screen.
Hovering over parts of the infix expression or nodes in the tree, highlights the
corresponding parts in the tree and the infix expression. subsection 3.2 shows how
hovering over the divide operator highlights the respective sub-tree in light blue.
The user can export the chosen (sub-)tree rendering, including all manipulations
performed through filtering and zooming, as a high-resolution png image, e.g., for
use in publications.

To demonstrate how VMEXT’s expression tree visualization can aid in curat-
ing semantically enriched MathML markup, we use the integral representation
of the Euler gamma function [Olv+, (5.2.1)] as an example

Γ (z)=

∫ ∞
0

e−ttz−1dt. (1)

Figures 3 a-c show VMEXT’s rendering for three markup variants of the Euler
gamma function. All variants have identical PMML markup, i.e., produce identical
visual output as shown in Equation 1. However, the CMML differs, because we
generated theMathML using LATExml [Mil15] using different LATEX input (shown
in the captions of the figures). Note, that these different LATEX versions encode
more or less semantics.

The trees in Figures 3 a and b show that VMEXT allows an arbitrary num-
ber of child nodes, as opposed to the binary expression tree concept we briefly
described in Section 1. The conversion of generic LATEX input (a), misinterpreted
some invisible operators, such as the invisible operator between Γ and (z) that
was interpreted as times rather than a function application. Additionally, LATExml
marked some CMML elements as ambiguous, i.e., could not establish a one-to-one
relation to a PMML element. For ambiguous nodes, VMEXT renders all PMML
elements enclosed by the ambiguous CMML element in a node with dashed bor-
ders to emphasize the defective markup for the user. For example, the node for
e−t in Figure 3 was marked as ambiguous.

The LATEX representation using DLMF macros (b) resolves the problem of
invisible operators by using the @ symbol to make such operators explicit. How-
ever, this representation still results in ambiguous nodes. Representing the Euler
gamma function using DLMF and DRMF macros [Coh+14; Coh+15] results in
correct CMML markup. In (c), we specify the integral using the semantic macro
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a) generic LaTeX:
\Gamma\!\left(z\right)=
\int_{0}^{\infty}
e^{-t}t^{z-1}\mathrm{d}t

b) DLMF LaTeX macros:
EulerGamma@{z}=
\int_0^\infty
\expe^{-t}t^{z-1}\diff{t}

c) DLMF, DRMF LaTeX macros:
EulerGamma@{z}=
\Int{0}{\infty}@{t}
{\expe^{-t} t^{z-1}}

Fig. 3. Expression trees rendered for MathML input obtained from converting different
LATEX input. The Presentation MathML is identical for all three cases, yet the Content
MathML differs.

\Int rather than the generic \int command. We have required that all occur-
rences of the ∧-operator must denote the power operator. Note that, in order to
make this workable, one must create beneficial custom semantic macros for all
other uses of the ∧-operator. These include matrix operations (A†), labeling (x∗),
function spaces (Ck), norms (Lp), sums (

∑∞
n=0), products (

∏∞
n=0), derivatives

(f (2)(x)), etc.
By rendering the expression tree as encoded by the CMML markup, VMEXT

enables users to quickly spot markup deficiencies and illuminates the effects of
using different conversions or manually changing markup.

3.2 Examining Similarities of Mathematical Expressions

Our review of MIR literature (see Section 2.2) shows that researchers often seek
to visualize the similarity of two mathematical expressions, e.g., the similarity be-
tween a query expression and a retrieval candidate. To facilitate this task, VMEXT
includes a specialized visualization shown in subsection 3.2. The presented exam-
ple compares two notations of the measure Mean Reciprocal Rank.

The widget accepts CMML input for the expressions to compare. Similar ele-
ments can be specified by stating the IDs of the similar CMML elements in both
trees using JSON. Currently, VMEXT allows one to specify that elements are
either similar or identical. The two types of similarity are rendered differently.
Since VMEXT is designed to be a visualization tool, it includes no functionality
to compute similarities. We demonstrate the integration of the widgets with a
basic application that computes similarities in Section 3.3.
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The center view renders the trees (including the infix overview) for both ex-
pressions and visually distinguishes the trees using different background colors.
The visualizations offer the same interaction features as the expression tree widget
(see Section 3.1). In the lower part of the center view, VMEXT renders a combined
expression tree. The combined tree includes all nodes from both trees color-coded
with the background color of the tree from which they originate. Unique, i.e.,
dissimilar, sub-trees of both trees are collapsed to direct the user’s attention to
the similar parts of the trees. For elements marked as similar, VMEXT renders
the nodes from both trees and highlights them as exemplified by the nodes MRR
and MMR. Nodes that are marked as identical are rendered only once and are

highlighted as exemplified by the node
∑|Q|

i=1
1
r .

The integrated visualization of the two expression trees and the combined tree,
allows users to quickly inspect the full structure of both expressions and similar
sub-trees. The highlight on hover feature helps users to look up the corresponding
subtrees for nodes marked as similar in the combined tree.

A specific application that benefits from visualizing the similarity of mathemat-
ical expressions is our prototype of a hybrid plagiarism detection system CitePlag4

[MGB12; Gip+13]. Forms of academic plagiarism vary greatly in their degree of
obfuscation ranging from blatant copying to strongly disguised idea plagiarism
[MG13]. Our research indicates that not a single, but combined PD approaches
are most promising to reliably detect the wide range of plagiarism forms [GMB14;
Gip+14; Gip14]. Combined approaches accumulate evidence on potentially sus-
picious similarity using heterogeneous features, such as literally matching text,
similarities in the citations used, and similarity of mathematical content [MG14].
CitePlag is the first system to implement such an integrated analysis and uses the
VMEXT framework to visualize the similarity of mathematical content.

3.3 Demo Application

To showcase a possible integration of VMEXT’s widgets into MIR and MKM
applications, we developed a Java application for input conversion and similar-
ity computation. The demo provides a basic web frontend available at: http:
//vmext-demo.formulasearchengine.com and offers two main features.

First, it converts LATEX input to parallel MathML. The backend of the demo
application offers two alternative converters. The first converter employs LATExml,
whose configuration can be customized via input fields included in the web fron-
tend. The second converter passes the LATEX input to the Mathoid system5 [SW14],
which employs the speech rule engine6 [CKS15] to generate PresentationMathML
with CDATA annotations. These annotations give hints on the possible semantic
meaning of expressions. Using a simple XSLT stylesheet, the demo application
converts this non-standard-conforming markup to standard parallel MathML
markup. The application enables users to quickly run different LATEX to MathML

4 http://www.citeplag.org
5 https://www.mediawiki.org/wiki/Mathoid
6 https://github.com/zorkow/speech-rule-engine
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Fig. 4. VMEXT Expression Tree Similarity Widget

conversions and immediately examines the effects on the conversion quality using
the VMEXT visualizations described in Section 3.1 and Section 3.2.

Second, the demo application computes basic similarity measures for two ex-
pressions. The most basic measure identifies identical nodes. A second measure
uses the idea of taxonomic distance of expressions proposed in [ZY14]. Our imple-
mentation uses content dictionaries to model the taxonomic distance and builds
upon the content dictionary abstraction as introduced in [Sch+14]. The system
converts the CMML markup of the expression to Strict CMML to guarantee that
the XML encodings of all symbols explicitly state from which content dictionary
the symbols originate. All symbols originating from the same content dictionary,
like plus and minus, or sine and cosine, are considered similar. Symbols from differ-
ent content dictionaries, e.g., plus and cosine, are considered dissimilar. The objec-
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tive of the similarity computation is to provide users with test data to explore the
visualization approaches, and not to be meaningful from an analytical perspective.

3.4 Obtaining VMEXT

VMEXT is a free and open source JavaScript application. We host a ready-to-use
instance of the tool at: http://vmext.formulasearchengine.com. We also pro-
vide a REST API that exposes the image export functionality and the internal
representation of our visualization.

The demo application for converting and rendering LATEX markup (see Section
3.3) is available at: http://vmext-demo.formulasearchengine.com.

For development purposes,VMEXT is available as a Node.js package from:
https://www.npmjs.com/package/vmext. We actively maintain and enhance the
tool; the latest code is available from https://github.com/ag-gipp/vmext. Pull
requests and bug reports are highly welcome.

4 Conclusion and Future Work

In this paper, we present two tree-based visualization approaches for mathemat-
ical expressions. The first approach simultaneously illustrates the presentation,
structure, and semantics of individual expressions. The second approach visual-
izes the structural and semantic similarity of two expressions. Both approaches
operate on parallel MathML markup and incorporate key elements of expression
tree visualizations proposed in the MIR literature.

We implemented the two approaches as part of VMEXT, a system we provide
free and open source for end users and developers (see Section 3.4). Additionally,
we provide two web-based demo applications. The first application7 presents the
visualization widgets alone. The second application8 demonstrates a possible in-
tegration of the widgets in systems for mathematical knowledge management and
mathematical information retrieval.

In our future work, we plan to extend VMEXT’s functionality beyond exclu-
sively visualizing MathML markup towards visually assisting markup creation
and editing by humans.MathML shows great promise for enabling unprecedented
access to mathematical knowledge. However, converting existing mathematical
knowledge to semantic markup formats will require some human interaction. The
complexity and verbosity of MathML makes direct interaction with MathML
markup laborious and time-consuming. We see visual editors as a possible solution
to this problem. Enabling users to create and manipulate mathematical notation
and MathML markup via visual support tools would be valuable for increasing
the digital accessibility of mathematical knowledge [CS17; Sch+16]. Another pos-
sible extension is the consideration of proof structures and the visualization of the
directed acyclic graphs, which might occur, if the MathML <share /> element
is used.

7 http://vmext.formulasearchengine.com
8 http://vmext-demo.formulasearchengine.com
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