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Abstract

Prompt engineering has emerged as

a critical component in optimizing large

language models (LLMs) for domain-

specific tasks. However, the role of

prompt specificity, especially in domains

like STEM (physics, chemistry, biol-

ogy, computer science and mathemat-

ics), medicine, and law, remains un-

derexplored. This thesis addresses the

problem of whether increasing the speci-

ficity of vocabulary in prompts im-

proves LLM performance in domain-

specific question-answering and reason-

ing tasks. We developed a synonymiza-

tion framework to systematically substi-

tute nouns, verbs, and adjectives with

varying specificity levels, measuring the

impact on four LLMs: Llama-3.1-70B-

Instruct, Granite-13B-Instruct-V2, Flan-

T5-XL, and Mistral-Large 2, across

datasets in STEM, law, and medicine.

Our results reveal that while generally

increasing the specificity of prompts does

not have a significant impact, there ap-

pears to be a specificity range, across all

considered models, where the LLM per-

forms the best. Identifying this optimal

specificity range o!ers a key insight for

prompt design, suggesting that manipu-

lating prompts within this range could

maximize LLM performance and lead to

more e”cient applications in specialized

domains.

1 Introduction

The rapid advancements in large language mod-
els have significantly expanded their applicabil-
ity across various natural language processing
(NLP) tasks. From zero-shot reasoning to few-
shot learning, these models have demonstrated
remarkable capabilities without requiring fine-
tuning on specific datasets, as demonstrated by
models such as GPT-3, T5, and Llama [1, 2,
3]. This versatility has enabled the deployment
of LLMs in specialized fields such as STEM,
medicine, and law, where accurate domain-
specific responses are crucial. However, the grow-
ing reliance on LLMs has also underscored the
importance of prompt engineering, the practice
of crafting input prompts to elicit optimal per-
formance from pretrained models. Unlike tradi-
tional fine-tuning approaches, which adjust model
parameters based on specific datasets [4], prompt
engineering focuses on the design of the prompt
itself to enhance model outputs without modi-

fying model parameters [5, 6]. This approach is
computationally e!cient and scalable, particu-
larly for large-scale applications.
A core challenge in prompt engineering is en-
suring that the vocabulary and structure of the
prompts align well with the model’s understand-
ing of the task [7, 8]. One important but under-
explored aspect of this is prompt specificity.
Specificity is a fundamental aspect of e”ective
communication, especially within scientific and
technical domains where precision is paramount
[9]. The use of specific language reduces am-
biguity, enhances clarity, and ensures that com-
plex concepts are accurately conveyed and under-
stood. In disciplines such as medicine, engineer-
ing, and law, selecting between words of varying
specificity can impact interpretations and out-
comes, making specificity a topic of particular
interest. For example, in medicine, using the
general term infection versus the more specific
synonym sepsis could have critical implications.
While infection refers to the invasion and mul-
tiplication of microorganisms in the body, sepsis
is a specific, life-threatening response to infection
that can lead to tissue damage and organ fail-
ure. Mislabeling sepsis as a general infection may
delay necessary aggressive treatments, posing se-
rious health risks to patients.
In engineering, referring to a metal versus spec-
ifying titanium could a”ect material selection
and performance. Metal is a broad category,
whereas titanium is a specific metal known for
its high strength-to-weight ratio and corrosion
resistance. Using the general term may result in
inappropriate material choices, leading to design
failures or safety hazards. Similarly, in law, the
term crime is general, whereas embezzlement is a
specific type of financial crime involving the un-
lawful taking of funds by someone in a position
of trust. Confusing these terms could a”ect le-
gal interpretations and sentencing; misclassifying
embezzlement as a general crime may overlook
the specific legal elements required for prosecu-
tion. Given these examples that underscore the
importance of specificity in specialized fields, it
leads us to the question whether this significance
of specificity translates into the realm of LLMs,
particularly in prompt engineering. Based on the
previously mentioned benefits of using more spe-
cific vocabulary, we ask:

Does increasing the specificity of vocabulary in
prompts enhance the performance of LLMs in
generating responses in domain-specific question-
answering and reasoning tasks?
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As LLMs are increasingly deployed in areas
such as STEM, medicine and law, where pre-
cise communication is important, understanding
the impact of prompt specificity on model out-
puts seems increasingly reasonable. This inquiry
forms the basis of our study, motivating us to ex-
plore how varying the specificity of words within
prompts a”ects the ability of LLMs to compre-
hend and accurately process domain-specific in-
formation. By investigating this relationship, we
aim to determine whether the benefits of speci-
ficity in human communication extend to interac-
tions with LLMs, contributing to more e”ective
and reliable applications of these models in spe-
cialized domains.
In this thesis, we examine the impact of prompt
specificity on LLM performance in domain-
specific question-answering and reasoning tasks.
Specifically, we focus on three major parts of
speech (nouns, verbs, and adjectives), and ana-
lyze how varying the specificity of these words
in prompts influences the models’ ability to ac-
curately answer questions. We calculate speci-
ficity scores for nouns and verbs, utilizing the
lexical database WordNet [10], and introduce a
novel equation to quantify the specificity of ad-
jectives. Our study evaluates four LLMs, Llama-
3.1-70B-Instruct, Granite-13B-Instruct-V2, Flan-
T5-XL, and Mistral-Large 2, across three datasets
(MMLU, GPQA, and GSM8K), focusing on
STEM, medicine, and law domains.
To summarize our contributions:

• We introduce a method to systemati-
cally substitute nouns, verbs and adjectives
through synonyms with di”erent specifici-
ties.

• We find prompt specificity ranges for di”er-
ent models, where the LLM yields the best
results in question-answering and reasoning
tasks across STEM, law and medicine do-
mains.

• We demonstrate that generally increasing
prompt specificity, exceeding the optimal
ranges of prompt specificity in the STEM,
medicine, and law domains, has minimal
impact on LLM performance for nouns
in question-answering and reasoning tasks,
but results in a significantly negative e”ect
for verbs in reasoning NLP tasks.

• We introduce a method for calculating the
specificity of adjectives, marking the first
step towards ranking and quantifying adjec-
tives, though further validation is necessary
to confirm its significance.

2 Related Work

With the recent advancements in LLMs, their
applicability to a wide range of NLP tasks has
simultaneously expanded [1]. These models ex-
hibit complex capabilities, including zero-shot
problem-solving [11], few-shot learning [12], in-
struction following [2], and incorporation of do-
main knowledge [7, 13]. To harness these abili-
ties, various prompt engineering techniques have
emerged, aiming to interact with LLMs and
significantly enhance performance across diverse
NLP tasks [4, 14]. Unlike fine-tuning methods
that adjust model parameters by retraining with
domain-specific labeled data, prompt engineering
focuses on optimizing the input prompts to elicit
the best possible outputs from a pretrained LLM
without altering its parameters. Fine-tuning can
be computationally resource-intensive, especially
at scale, whereas prompt engineering typically
requires only a few contextual examples for in-
context learning and minimal computational re-
sources [15, 16].
Prompts, the core components of prompt engi-
neering, can be categorized into continuous and
discrete prompts. Continuous methods involve
automated optimization of prompts, usually with
a masked language model, by dynamically adjust-
ing the prompt to ongoing interactions or con-
texts by rephrasing the baseline prompt or mod-
ifying factual details [17, 18, 19]. In contrast,
discrete prompts are manually crafted, o”ering
greater flexibility as they can be specifically tai-
lored for distinct domains and use cases where the
context remains relatively stable [14, 20]. In this
work, we will focus on discrete prompts due to
their di”erentiable properties and interpretabil-
ity.
Several collections of discrete prompt tem-
plates exist, such as PromptSource [21], Sup-
NatInst [22], and BIG-BENCH [23], which
are community-contributed resources designated
for various NLP tasks. These collections facil-
itate performance quantification across multiple
benchmarks and o”er users convenient access to
state-of-the-art prompts for specific NLP tasks.
While prompt engineering provides flexible means
of interacting with LLMs by refining input
prompts, the opaque nature of transformer-based
learning can lead to unintended consequences,
such as hallucinations [24]. Consequently, care-
fully crafting prompts is critical to ensuring ac-
curate and reliable outputs [25]. Recent work by
Wahle et al. (2024) [26] has shown that para-
phrasing prompts significantly enhances LLM
performance across various tasks, including sen-
timent analysis, question answering, and summa-
rization. Their systematic evaluation of linguistic
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features revealed that certain elements, such as
morphology, exert a stronger influence on model
performance than others, like syntax, depending
on the task. Additionally, Wang et al. (2024)
[27] highlighted the inconsistency of results gener-
ated by di”erent prompts for the same task across
multiple models in the medical domain, under-
scoring the need to align prompts with domain-
specific knowledge. Sorensen et al. (2022) [28]
demonstrated that optimizing mutual informa-
tion between the prompt and model output using
unsupervised techniques yields high accuracy in
various NLP tasks. Similarly, Lu et al. (2023)
[29] identified a strong negative correlation be-
tween prompt sensitivity and LLM performance,
proposing sensitivity-aware decoding to improve
outcomes for prompts lacking su!cient contex-
tual information. Focusing on linguistic dimen-
sions such as modality, tense, and synonyms, Lei-
dinger et al. (2023) [8] further demonstrated that
LLM performance is highly sensitive to both se-
mantic and syntactic structures, and that trans-
ferring prompts across datasets and models often
results in suboptimal performance.
The sensitivity of consistency and reliability con-
cerning semantic structure has been thoroughly
examined in current research. However, the influ-
ence of prompt specificity on model performance
remains underexplored. Zheng et al. (2023) [7]
demonstrated that incorporating domain-specific
vocabulary into prompts can substantially im-
prove the performance of pretrained LLMs in
both open and biomedical domains by iteratively
modifying prompts in the word sense predic-
tion (WSP) dataset through phrase additions or
rephrasing. However, their study did not perform
a stepwise analysis of individual word specificity
or overall prompt specificity. Such a systematic
examination could o”er valuable insights into how
specific word choices and prompt construction im-
pact LLM behavior.
Our research builds upon the findings of Zheng
et al. (2023) [7] and Leidinger et al. (2023)
[8] by conducting a more detailed analysis of
prompt specificity and its impact on LLM per-
formance on question answering and reasoning
tasks. While Zheng et al. (2023) [7] demonstrated
that incorporating domain-specific vocabulary
into prompts could improve LLM performance in
both open and biomedical domains, their study
did not undertake a stepwise analysis of individ-
ual word specificity or overall prompt specificity.
In contrast, our work systematically analyzes how
individual word choices and prompt constructions
influence LLM behavior across question answer-
ing and reasoning tasks, with a more diverse set
of domains (STEM, law and medicine). Similarly,
Leidinger et al.(2023) [8] observed that replacing

words with non-standard synonyms can improve
performance but did not provide a comprehensive
breakdown of how specificity levels a”ect this out-
come. Our study extends their findings by cate-
gorizing synonyms into distinct specificity levels
(low, intermediate, high) and examining whether
their observation holds true across di”erent de-
grees of specificity. In this study, we address the
limitations of previous studies by incorporating
the dimension of specificity into prompt design
and conducting a more nuanced investigation of
synonym substitution with varying specificities
and its e”ects on LLM performance. Further, this
thesis aims to o”er a deeper understanding of the
interplay between prompt specificity and model
behavior, extending across a diverse set of tasks
and domains.

3 Methodology

In this thesis, we focus on the impact of prompt
specificity on the performance of LLMs. There-
fore, we create multiple variations of instruc-
tions from the datasets MMLU, GSM8K and
GPQA (Section 3.4), with our specificity-based
synonymization framework (Section 3.1). This
framework determines all parts of speech with
the respective semantic sense in the provided
context, retrieves the synonyms for each sense,
calculates the specificity scores (Section 3.3)
by utilizing lexical database structures (Sec-
tion 3.2), categorizes the synonyms based on
the specificity and finally synonymizes the in-
struction with three replacement ratios (33%,
67% and 100%) with respect to the replaceable
word count. For each prompt variation, we use
the models Granite-13B-Instruct-V2, Flan-T5-
XL, Llama-3.1-70B-Instruct and Mistral-Large 2
(Section 3.5) to generate the output for question-
answering and reasoning tasks.

3.1 Synonymization Framework

The specificity-based synonymization framework,
shown in Fig. 1, consists out of five distinct steps,
starting from the retrieval of the considered parts
of speech (I), crawling of synonyms (II), calcu-
lating of specificity scores (III), categorizing the
synonyms according to the specificity scores (IV)
and the synonymization of the instructions (V).
In the following, we will explain each step and ad-
ditionally explain our approach of calculating the
overall prompt specificity, focusing on one part
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MMLU
GSM8K
GPQA

Retrieval of 
Parts of 
Speech

Synonym 
Crawling

Calculation 
of 

Specificity

Categorizing 
Synonyms

Synonymize 
Instructions

I

II

III

IV

V

Original Prompt:

Flan-T5-XL  D
Granite-13B  D
LLaMA 3.1 70B A
Mistral Large 2 A

33% Low Specificity:

Flan-T5-XL  D
Granite-13B  D
LLaMA 3.1 70B A
Mistral Large 2 A

100% High Specificity:

Flan-T5-XL  C
Granite-13B  A
LLaMA 3.1 70B A
Mistral Large 2 A

You want to study the role of 
the GADD45G protein …

Nouns:           role, protein, …

…

Task Synonymization Framework Example(GPQA; nouns)

Input:

Synonyms:

WSD: function.n.03, …

part,  hat, ..., second_fiddle, 
…

WSD: part.n.02, hat.n.02, …, 
second_fiddle.n.01, …

Specificity 
Scores: 13.33, 18.00, …, 22.16, …

Low Intermediate High

part hat second_fiddle

… … ..

100% Low:

100% Inter-
mediate:

100% High:

You want to study the part of …

You want to study the hat of …

You want to study the 
second_fiddle of …

Datasets

Flan-T5-XL

Granite-13B

LLaMA-3.1-70B

Mistral Large 2

LLMs

67% Low:  …

33% Low:  …

…
…

Figure 1: Specificity-based Synonymization Framework. Representation of the specificity-based syn-

onymization framework used to synonymize the prompt instructions with varying specificities of all datasets.

The preprocessing includes five key steps starting with the retrieval of parts (I) of speech from the original

instruction, crawling synonyms (II) and calculate the specificity scores (III) for all parts of speech (the green

colored boxes include WSD in the algorithm), categorizing the synonyms (IV) into low, intermediate, high

specificity and finally synonymize the original instructions (V) with three di!erent replacement ratios (33%,

67%, 100%). Additionally, there is a step-by-step example sampled from the GPQA dataset, synonymizing

nouns with varying specificity synonyms.
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Original Processed Samples
Dataset Samples Nouns Verbs Adjectives
GPQA 250 181 154 23
GSM8k 250 174 159 4
MMMLU 1790 1376 985 145

Table 1: Overview of data. This table shows

the number of samples before and after the prepro-

cessing steps, indicating that nouns and verbs are

suitable and significantly enough represented in the

data, while adjectives seem underrepresented.

of speech at a time. Note, that we only use a
fraction of the complete datasets, since the num-
ber of synonyms increases exponentially with the
number of instructions and therefore increases
the computational time significantly, although
all e”ort was made to optimize the computa-
tional e!ciency of the framework. For each
dataset (MMLU with 14 subdatasets, GPQA and
GSM8k) we sampled up to 250 instructions. The
overview of the samples remained after the pro-
cessing is displayed in Tab. 1.
I Part of Speech Retrieval. From the origi-
nal instruction prompt, we parse the sentence by
word-tokenizing the instruction, tagging the lex-
ical database position and filter for nouns, verbs
and adjectives from each individual prompt1.
This algorithm yields us lists of all considered
parts of speech that we pass to the next step.
II Crawling synonyms. For each tagged word,
we apply Word Sense Disambiguation (WSD)
[31] to identify the most contextually appropriate
sense. We then retrieve all associated hypernyms,
lemmas, and hyponyms for the selected sense.
This approach helps to consider semantically suit-
able synonyms, reducing the likelihood of confus-
ing the LLM by selecting synonyms with incor-
rect senses. For instance, the noun cell, which
appears in a biological context and refers to the
basic structural and functional unit of all organ-
isms, has six other senses in the lexical database:
cell as ...

• ... any small compartment

• ... a device that delivers an electric current
as the result of a chemical relation

• ... a small unit serving as part of or as the
nucleus of a larger political movement

• ... a hand-held mobile radiotelephone for
use in an area divided into small sections,
each with its own short-range transmit-
ter/receiver

• ... small room in which a monk or nun lives

• ... a room where a prisoner is kept

Each of these senses would be connected to syn-
onyms (e.g. cubicle or jail cell) which would not
be fitting in our biological context, potentially
changing the meaning of the sentence and there-
fore confuse the LLM.
III Calculating specificity scores. The gath-
ered synonyms are then passed to the specificity
calculation algorithm, which quantifies the speci-
ficity for each synonym with a continuous number
by utilizing the taxonomy structures of the lexi-
cal database for each part of speech (Section 3.3)
IV Categorizing Synonyms. Using the calcu-
lated specificity scores, we will select three syn-
onyms from the set of all possible synonyms for
each part of speech, categorizing them into low,
intermediate, and high specificity based on the
minimum, mean, and maximum values, respec-
tively. This requires that each word must have
at least three unique specificity scores, as other-
wise, it would be impossible to fill all three cat-
egories. The intermediate specificity is selected
by calculating the minimum absolute di”erence
min |s → s̄| between the mean specificity score s̄
of the set and the synonym’s specificity score s,
choosing the value closest to the mean of the set.
V Synonymize instructions. To generate syn-
onymized instructions, we fractionally replace the
parts of speech in the prompt instructions with
their categorized synonyms at rates of 33%, 67%,
and 100% focusing on one type at a time. This
introduces a second constraint: Each instruction
must contain at least three di!erent replaceable
parts of speech. The algorithm yields nine dif-
ferent synonymized instructions for each part of
speech, in addition to the original prompt from
the dataset. An example of 100% replacement of
nouns with synonyms of low, intermediate, and
high specificity can be found in Appendix C, Tab.
12.

3.2 Lexical Database

The lexical database that we use for this study
is WordNet (WN), introduced by the Princeton
University as an open source project in 1985. The
database includes English nouns, verbs, adjec-
tives and adverbs, which are structured through
cognitive synonyms called synsets (distinct se-
mantic concepts) that are interconnected through
static relations [32].
Noun synsets are structured hierarchically
through super-subordinate relations (hypernymy
and hyponymy). Each noun hierarchy starts with
the ENTITY root synset and unfolds into an in-
verse tree. Synsets at the top of the tree are more
general and become more specific moving down
the tree. Non-leave nodes are considered types

1We used word tokenize and parts of speech tagging functions in the NLTK python package with the universal tagset
[30]: https://www.nltk.org/
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Part of Speech Hypernyms Hyponyms Average #synsets (Hypernym) Average #synsets (Hyponym) Stat p-value

Nouns 7890 28021 3.55 2.41 135e9 1.46e-222
Verbs 12646 27454 7.90 5.32 216e9 0.0

Table 2: Average Number of synsets evaluation. Results of the assessment of average number of synsets

for hyper- and hyponyms. A Mann-Whitney U test was performed to quantify whether the mean of synsets

of hypernyms is significantly greater than the mean of synsets of hyponyms.

and represent common nouns, whereas leafs of
the tree are instances that include personas, coun-
tries and geographic entities. Selecting one par-
ticular noun synset in the taxonomy, hypernyms
represent all nodes that are between the root node
and the chosen synset, while hyponyms represent
all more specific synsets under the chosen synset
[10].
Verb synsets are organized similarly to noun
synsets, forming hierarchies connected by various
semantic relations, including not only hypernyms
and hyponyms but also entailment, antonymy,
and troponymy. Entailment describes a logical
relationship between verbs where one implies the
other, such as snore implying sleep. Antonymy
refers to verbs representing opposite actions, for
example, start is the antonym of stop. Tro-
ponymy, on the other hand, refers to the man-
ner in which an action is performed, indicating a
more specific way of carrying out the verb. For
instance, jog is a troponym of run [10].
In contrast, adjectives form a cluster-like struc-
ture composed of synonyms, antonyms and se-
mantically similar relationships. Synonyms re-
fer to adjectives that share the same conceptual
meaning, such as happy and joyful, while seman-
tically similar adjectives, e.g. large and big are
linked through associative connections [10].

3.3 Specificity Measures

The specificity quantification for nouns, verbs and
adjectives is based on the utilization of the cor-
responding WN taxonomy structures. For nouns
and verbs, this taxonomy is hierarchically struc-
tured, allowing us to utilize this natural ordering
of the lexical database to determine the specificity
of the parts of speech. However, adjectives do not
share this hierarchical structure with nouns and
verbs in WN. Therefore, we use a novel adjective
specificity measure to quantify their specificity.
In the following, we will consider both equations
and explain them in detail.
Specificity Score for Nouns and Verbs. Us-
ing the specificity score introduced by Bolognesi
et al. (2020) [33], we compute the specificity for
noun and verb synonyms based on the following

formula:

Snoun/verb = d+ log

(
1 + n

N

)
→ log(l), (1)

where d is the distance (number of nodes) be-
tween a word and the top root node, N represents
the total number of nodes in the WN taxonomy
restricted to a part of speech, n denotes the to-
tal number of direct and indirect hyponyms for a
given word, and l is the number of synsets for the
corresponding part of speech. Given that the tax-
onomy for nouns and verbs is hierarchically struc-
tured, with specificity increasing downwards, this
equation aims to determine the relative position
of a synset along its path in the respective WN
taxonomy. The first term d counts the number
of nodes from the root to the synset of interest.
The second term log

(
1+n
N

)
represents the number

of nodes directly and indirectly connected to the
synset, normalized by the total number of nodes
in the taxonomy for better comparability. By
considering the nodes above and below, we can
locate the synset within its respective path in the
taxonomy. The term log(l), which we added to
the original equation, is based on the intuition
that more specific words have less distinct senses.
Our analysis of 940 nouns and 745 verbs shows
that the average number of synsets for hypernyms
is significantly higher than for hyponyms. The
overview of the assessment with the correspond-
ing results of the Mann-Whitney U test [34] are
displayed in Tab. 2. Given that hypernyms are
inherently broader in meaning, while hyponyms
convey greater specificity, this observation aligns
with our intuition that words with fewer synsets
tend to be more specific. Furthermore, we tackled
a challenge where synonyms frequently belonged
to the same synset as the target word, yielding
identical specificity scores under the original mea-
sure. To address this, we integrated the total
number of synsets associated with each synonym,
e”ectively mitigating this issue.
Bolognesi et al. (2020) [33] used only the first
sense of words for specificity calculations, as it
represents the most common sense. However, this
approach may not be ideal for our use case, as it
cannot always ensure the correct sense for a given
context is chosen,
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Figure 2: Confusion Matrix of WSD Model Eval-

uation. The performance agreement of Llama-3.1-

70B-Instruct and finetuned T5 for WSD when pre-

dicting against the human evaluated ground truth.

Model Accuracy

Fine-Tuned T5 0.63± 0.05
Llama-3.1-70B-Instruct 0.79± 0.02

Table 3: WSD Model Evaluation. Results of

WSD performance assessment for fine-tuned T5 and

Llama-3.1-70B-Instruct models for 50 mixed sam-

pled (nouns and verbs) over three seeds.

which could alter the semantic meaning of the
sentence and might mislead the LLM. To address
this, we apply WSD [31] to ensure the synonym
is accurately aligned with the context.
For this task, we selected the Llama-3.1-70B-
Instruct model, which o”ers faster processing and
significantly reduces computation time compared
to the fine-tuned T5 model used by Wahle et
al. (2021) [31]. To validate this model substitu-
tion, we benchmarked it against the fine-tuned T5
model using 50 mixed samples (nouns and verbs)
on three di”erent seeds. As demonstrated in Ta-
ble 3, Llama-3.1-70B-Instruct achieved higher ac-
curacy (0.79 ± 0.02) compared to the fine-tuned
T5 (0.63 ± 0.05).
We applied the McNemar test [35] across three
random seeds using the confusion matrix depicted
in Fig. 2 to assess whether the observed perfor-
mance di”erences between the models are statis-
tically significant. The test returned a p-value of
0.003 with a test statistic of 21. Out of 67 cases
where the models produced divergent results (46
+ 21), the Llama-3.1-70B-Instruct model cor-
rectly identified the sense in 46 instances. The
low p-value suggests that the performance dis-
parity between the two models is statistically sig-
nificant across the three runs. Given that Llama-
3.1-70B-Instruct consistently outperforms the

Parameter
Adjectives

good phenomenal small tiny
ssw 56 1 63 2
s 32 1 13 7
a 2 0 2 0
l 21 2 10 1

Table 4: Comparison of Adjective Specificity

Measure Parameters. The number of words with

similar meaning ssw, number of direct synonyms s,
number of direct and indirect antonyms a and num-

ber of senses l of the adjectives good, phenomenal,
small and tiny.

fine-tuned T5 model, it emerges as a viable al-
ternative for the WSD process, o”ering both en-
hanced e!ciency and accuracy
Specificity Score for Adjectives. As previ-
ously mentioned, adjectives do not share the same
structural properties as nouns and verbs in WN,
lacking a hierarchical arrangement. Therefore,
we propose a new equation to measure adjective
specificity:

Sadjectives =
1

log(1 + ssw + s+ a+ l)
(2)

where ssw represents the number of words with
semantically similar relation to the considered ad-
jective, s is the number of synonyms, a is the
count of antonyms for the adjective and its syn-
onyms, and l refers to the number of synsets for
the adjective. The derivation of this equation is
based on four underlying assumptions:

1. The number of words with similar meaning
ssw as the adjective is reverse proportional
to its specificity S ↑ 1

ssw

2. The number of direct synonyms s of an ad-
jective is reverse proportional to its speci-
ficity S ↑ 1

s

3. The number of direct and indirect antonyms
a of an adjective is reverse proportional to
its specificity S ↑ 1

a

4. The number of senses l of an adjective is
reverse proportional to its specificity S ↑ 1

l

The underlying premise of these assumptions is
that as the specificity of adjectives increases, their
contextual meaning becomes more constrained.
In other words, if an adjective can be substituted
by many others (e.g., similar words, senses, di-
rect synonyms, or even antonyms), it likely cap-
tures a broader range of features that those ad-
jectives share. Consider the following examples:
good vs. phenomenal and small vs. tiny. In
both cases, the second adjective is more specific
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due to its narrower scope of applicability. For in-
stance, while many things can be considered good,
not all good things are phenomenal. Likewise,
although everything tiny is small, not all small
things are tiny. The results derived from param-
eter calculations based on these assumptions are
summarized in Tab. 4. The parameters for phe-
nomenal and tiny are consistently smaller than
those for good and small, which aligns with our
assumptions. By incorporating all the assumed
proportional relationships into an additive model
for adjective specificity, we derive the following
expression:

S ↑ 1

ssw + s+ a+ l
. (3)

Each added term enhances the interpretability
of the equation, as all parameters are treated in-
dependently. The additive model also reduces
sensitivity to outliers and extreme values com-
pared to the multiplicative model. To smooth the
resulting specificity measure and make it more re-
sponsive to small changes, we apply a log function
to the denominator and add +1 to prevent divi-
sion by zero, leading to our final equation 3.

To validate this approach, we used GPT-4o as
an evaluator, comparing our systematic ranking
of adjective specificity in various contexts with
GPT-4o’s rankings for a sample of 91 instruc-
tions. For each instruction, we filtered all ad-
jectives, retrieved their respective synonyms, and
iteratively created synonym pairs by increment-
ing the index by 1:

[syn1, syn2, syn3] ↓ [syn1, syn2],

[syn2, syn3],

[syn3, syn1]

These pairs, along with the original instruction,
were then passed into a three-shot prompt tem-
plate for GPT-4o, shown in Appendix A, Fig. 11.
The model generated an ordered list where the
first element represents the adjective with greater
specificity, given the context of the instruction.
By applying this process to all adjective pairs, we
used transitivity

(A > B ↔B > C) =↗ A > C

to combine all sub-rankings into a single, com-
plete ranking of adjectives for each instruction.
We then correlated these GPT-4o adjective rank-
ings with those derived from our adjective speci-
ficity model. The resulting Spearman correlations
are shown in Fig. 3. The median Spearman cor-
relation coe!cient of 0.50 indicates a moderate
alignment between the equation-based and LLM-
based rankings of adjective specificity,

Figure 3: Spearman-Correlations for Adjective

Ranking. The histogram displays the distribution

of Spearman correlations from the LLM-as-a-judge

experiment, which compares the model’s qualita-

tive ranking of adjective specificity with the calcu-

lated specificity score measure for 91 samples. The

median Spearman correlation in this distribution is

0.50.

demonstrating that the methods are generally
consistent. Notably, in 23 cases, a perfect posi-
tive correlation of 1.0 was observed, where both
methods produced identical rankings, suggesting
that the equation-based approach is highly e”ec-
tive in many instances. While 32 out of the 91
samples exhibited negative correlations, this di-
vergence underscores the potential for refining the
equation-based model to further improve align-
ment with LLM judgments, but the overall results
reflect a solid foundation for its use in ranking ad-
jective specificity.
Calculating Prompt Specificity. The previ-
ous calculations focused solely on individual parts
of speech and their corresponding synonym speci-
ficities, without considering the full composition
of parts of speech within the prompt. To pro-
vide a broader perspective, we also evaluate over-
all changes in prompt specificity by converting
the ordinal categories (33% Low Specificity, ...,
100% High Specificity) into continuous specificity
scores. This is achieved by aggregating the indi-
vidual specificity scores for each part of speech
(nouns, verbs, and adjectives) within each in-
struction and calculating their average. As a re-
sult, each prompt is assigned a continuous speci-
ficity score for the considered part of speech,
which varies across specificity levels and replace-
ment levels A simple example that illustrates this
method can be seen in Fig. 4.

3.4 Data

The datasets utilized in this study span diverse
domains, including STEM, law, and medicine, as
well as varying levels of expertise, ranging from
high school and undergraduate to
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Figure 4: Example for Prompt Specificity Calcu-

lation. This example schematically illustrates the

calculation of the prompt specificity, by aggregat-

ing the specificities of one part of speech (nouns

in this case) and calculating the average that we

call prompt specificity. Additionally, it shows the

prompt specificity change from 19.36 to 20.60 after

we substitute the noun dog with the more specific

synonym poodle.

PhD-level. These datasets also encompass dif-
ferent task formats, such as multiple-choice ques-
tions (MMLU, GPQA) and reasoning-based as-
sessments (GSM8K), ensuring a robust founda-
tion for our evaluation. A detailed summary of all
datasets including examples is presented in Ap-
pendix C.

MMLU. The Massive Multitask Language Un-
derstanding dataset is an evaluation benchmark
designed to assess the performance of models
across a wide range of subjects and expertise lev-
els. It contains approximately 57 tasks, each
with up to 500 samples, accompanied by cor-
responding ground truths. These tasks are di-
vided into various categories, including STEM,
law and medicine in di”erent expertise levels.
The tasks include multiple-choice questions that
span both general knowledge and highly spe-
cialized domains. The diversity of the MMLU
dataset allows us to evaluate how well models gen-
eralize across a variety of topics, expertise levels,
and formats, ensuring that the findings of this
study are applicable to a broad range of real-
world applications [36].

GPQA. The Google-Proof Question Answering
dataset consists of 448 expertly curated multiple-
choice questions, with a focus on biology, physics,
and chemistry. Each question is accompanied by
a domain expert-evaluated ground truth, ensur-
ing high-quality, reliable answers. The dataset is
designed to test models at a PhD level of exper-
tise, making it particularly challenging for assess-
ing the performance of LLMs in specialized fields
that require in-depth knowledge and understand-
ing. This dataset is particularly useful for test-
ing the robustness of models in handling precise,
domain-specific questions that require not only

basic factual knowledge but also a deep compre-
hension of scientific principles and reasoning [37].

GSM8K. The Grade School Math 8K dataset
is a carefully curated collection of 8,500 human-
written math problems, each designed to re-
flect the complexity of grade-school-level arith-
metic. The problems typically require two to
eight steps to solve, involving sequential exe-
cution of arithmetic operations such as addi-
tion, subtraction, multiplication, and division.
The dataset tests the model’s ability to reason
through multistep problems, handle intermedi-
ate results, and execute operations in the cor-
rect order, which are crucial skills for success-
ful mathematical problem-solving. The exper-
tise level targeted by this dataset corresponds to
middle school students, and solving these prob-
lems provides a clear benchmark for evaluating
models’ capacity for stepwise reasoning. For this
study, GSM8K will serve as a key resource for as-
sessing the models’ abilities to handle arithmetic
reasoning tasks with chain-of-though prompting,
a critical area in understanding the reasoning ca-
pabilities of LLMs in structured problem-solving
contexts [38].

3.5 Models

The following models were selected due to the
diverse architectures and sizes (3B, 13B, 70B,
123B) they present, while o”ering the capabilities
of handling complex natural language processing
tasks across specialized domains such as question-
answering (zero-shot and few-shot), allowing a
comprehensive analysis of prompt specificity. For
each dataset, we use di”erent prompt templates
from the data sources to perform the question-
answering and reasoning tasks [36, 37, 38]. We
call the models using a temperature of zero to
select only tokens with the highest probability,
since question-answering and reasoning task re-
quire a high level of precision and determinism.
Further, we set a threshold to the maximum
output token size to 500, because during initial
experimental runs, we observed that sometimes
models repeat phrases until there is a timeout,
stopping the process. To mitigate this issue, we
stop the output generation process after the 500
token threshold is reached. For reproducibility,
we set a random seed. In all our experiments, we
use a zero-shot prompt-templates for the MMLU
and GPQA datasets and a zero-shot Chain-of-
Thought (CoT) prompt template for the GSM8K
dataset. An overview of the prompt templates
and the parameters are displayed in Appendix A
Fig. 11 and Appendix B Tab. 10, respectively.
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(a) Nouns and Verbs. (b) Adjectives.

Figure 5: Specificity Score Distribution for nouns, verbs and adjectives. The histograms show the

distribution of specificity scores for the respective part of speech. The mean specificity score for nouns is

µnouns = 21.37, for verbs µverbs = 12.09 and for adjectives µadjectives = 0.40

Flan-T5-XL. Flan-T5-XL (3B) is a 3 billion
parameter model that belongs to the Flan-T5
family. It is based on Google’s T5 architecture,
which uses an encoder-decoder model, and is pre-
trained on a mixture of supervised and unsuper-
vised tasks that have been reformulated into a
text-to-text format. The model is fine-tuned on
the Fine-tuned LAnguage Net (FLAN) dataset,
which incorporates instruction-based tuning to
enhance its capabilities in zero-shot and few-shot
learning scenarios [39].

Granite-13B-Instruct-V2. Granite-13B-
Instruct-V2 is a general-purpose decoder-only
model developed by IBM. This 13-billion-
parameter model is optimized for a variety of
NLP tasks through instruction tuning. It builds
on the Granite-13B-V2 base, which was pre-
trained on 2.5 trillion tokens sourced from IBM’s
Data Pile. Granite-13B-Instruct-V2 has been
fine-tuned to handle a broad range of tasks
including text generation, comprehension, and
question-answering, making it well-suited for
zero-shot and few-shot learning paradigms [40].

Mistral-Large 2. Mistral Large 2 is a 123
billion parameter model designed for NLP tasks
with a focus on code generation, reasoning, and
multilingual support. The model is fine-tuned to
minimize hallucinations and follows instructions
more accurately, making it e”ective in complex,
long-context applications [41].

Llama-3.1-70B-Instruct. Llama-3.1-70B-
Instruct is part of Meta’s Llama (Large Language
Model Meta AI) series, known for their high per-
formance in a wide variety of NLP tasks.

Part of Speech Statistic p-value
Nouns 0.233 0.0
Verbs 0.068 3.15e-34

Adjectives 0.087 1.08e-5

Table 5: Results of Kolmogorov-Smirnov Test.

The table displays the results for the Kolmogorov-

Smirnov test, which was performed on the speci-

ficity score distribution for nouns, verbs and adjec-

tives. Since all p-values are smaller than 0.05, we

cannot reject the null hypothesis and therefore the

distributions cannot be considered as normal distri-

butions.

With 70 billion parameters, this model lever-
ages its size to capture a wide range of linguistic
and semantic nuances. The Llama series has been
pretrained on vast amounts of data and sub-
sequently fine-tuned through instruction-based
learning and preference tuning, which enhances
its ability to follow detailed and specific prompts
[42].

4 Experimental Results and

Discussion

The data, processed using the specificity-based
synonymization framework, together with the
models, are employed to investigate the distri-
butional properties of parts of speech at di”er-
ent specificity levels and the relationship between
specificity changes and LLM performance.
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(a) Nouns. (b) Verbs.

Figure 6: Specificity Score Distributions for nouns and verbs according to specificity. The histogram

represents the distribution, including Kernel-Density-Estimations, of the specificity score for nouns and verbs

according to their specificity. Based on the intersection points of the Kernel-Density estimations, we de-

rive the specificity level boundaries BLow-Intermediate = 17.74 and BIntermediate-High = 20.90 for nouns, and

BLow-Intermediate = 11.17 and BIntermediate-High = 13.74 for verbs.

Q1: What is the distribution of specificity
scores for each considered part of speech? What
are the ranges of specificity scores for low, inter-
mediate and high specificity?

Answer. We use all the specificity score cal-
culated with eq. 1 for nouns and verbs, repre-
senting the distribution in Fig. 5a. In total there
were 35848 nouns and 8323 verbs used for this
representation. To quantify whether the under-
lying distributions are normally distributed, we
conduct a Kolmogorov-Smirnov test [43], which
reveals that they are not similar to a normal dis-
tribution as seen in Tab. 5. The observable shift,
also represented by the strong deviating means
of nouns (21.37) and verbs (12.09) specificities,
can be explained by minor structural di”erences
in the taxonomy of nouns and verbs. Besides
the fact that the overall taxonomy of nouns is
larger (82000 unique nouns compared to 11500
unique verbs), the number of direct and indirect
hyponyms varies strongly for these two parts of
speech, leading to smaller values in the second
term of eq. 1 for verbs.
For the set of adjectives (790 in total), the speci-
ficity, as defined by eq. 3, is predominantly con-
centrated around the mid-range (mean of 0.40)
on a scale from zero to one. This suggests that
highly specific adjectives are scarcely represented
in our sample. Similar to the distributions ob-
served for nouns and verbs, the specificity of ad-
jectives does not follow a normal distribution, as
indicated by the Kolmogorov-Smirnov test, which
yielded a p-value of 1.08e-5. It is important to
note that the specificity ranges di”er between ad-
jectives and the other parts of speech. For adjec-
tives, specificity is calculated using a fractional

measure constrained between zero and one, un-
like the measures used for nouns and verbs
To address the second question, we group the
specificity scores by the specificity levels (low,
intermediate and high) and combine their indi-
vidual distribution in Fig. 6. Adjectives are ex-
cluded from this part of the analysis, since only
high specificity synonyms were selected due to
the small number of samples remaining after the
preprocessing. By categorizing synonyms based
on their minimum, average, and maximum val-
ues within the pool for a given part of speech, we
expect each specificity level’s distribution to shift
progressively to the right as specificity increases.
This expectation is confirmed, as the grouped
means consistently rise with increasing specificity
levels (the di”erence in grouped means for nouns
and verbs is approximately 3). Notably, the
high-specificity group for nouns exhibits a much
larger standard deviation (8.26) compared to the
low-specificity (2.58) and intermediate-specificity
(2.69) groups. This larger variation is likely due
to the higher frequency of nouns with specificity
scores exceeding 30, which skews the distribution
to the right
To accurately define the valid ranges for each
specificity category, we employed Kernel Den-
sity Estimation (KDE) [44], a non-parametric
method, given that the specificity distributions
for nouns and verbs do not follow a normal dis-
tribution. We calculated the intersection points
between the low-intermediate and intermediate-
high levels, resulting in boundaries of 17.74 and
11.74 for low-intermediate and 20.90 and 13.74
for intermediate-high, respectively for nouns and
verbs.
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Specificity
Nouns Verbs

Lower Bound Upper Bound Lower Bound Upper Bound

Low Specificity 10.130 17.74 7.87 11.17
Intermediate Specificity 17.741 20.90 11.171 13.74

High Specificity 20.901 195.62 13.741 21.16

Table 6: Specificity Score Intervals. Interval boundaries for the specificity categories low, intermediate and

high for nouns and verbs.

”intermediate-high”, yielding the low-
intermediate boundaries 17.74 and 11.17, and the
intermediate-high boundaries 20.90 and 13.74,
respectively for nouns and verbs. The corre-
sponding intervals for each specificity level are
presented in Tab. 6.

Q2: How does the specificity of synonyms a!ect
the performance of the models Llama-3.1-70B-
Instruct, Granite-13B-Instruct-V2, Flan-T5-XL
and Mistral-Large 2 for question answering and
reasoning tasks?

We separate the analysis of the e”ects of
prompt specificity on the LLM performance in
two approaches. The first approach, called cat-
egorical approach, provides a high-level view by
grouping and categorizing nine permutations of
specificity levels (low, intermediate, high) and re-
placement ratios (33%, 67%, 100%) into ordinal
categories (33% Low, ..., 100% High). It allows
for a clearer comparison between these prede-
fined categories with respect to the model perfor-
mance, and provide insights about potential pat-
terns in how performance shifts across the varying
replacement-specificity permutations.
The second approach, called numerical approach,
translates these ordinal replacement-specificity
permutations into continuous values, which al-
lows for a more precise quantification of prompt
specificity and performance correlation. By treat-
ing prompt specificity as a continuous variable
and computing correlations, this method captures
finer details of how incremental changes in speci-
ficity a”ect performance.
Categorical Approach. For each model,
dataset, specificity and replacement level com-
bination we group the outputs and evaluate
them with the ground truth. For the evalua-
tion, we opted to use the Jaccard metric [45]
rather than the commonly employed exact-match
approach for multiple-choice question-answering
tasks. This decision was made to account for re-
sponses that included additional characters, such
as ”A.” or ”- B,” which would incorrectly result
in a score of 0 under exact matching, despite the

answer being correct. For each combination, we
aggregate the Jaccard similarity scores and calcu-
late the average over all samples per category to
get the accuracy. Fig. 7 illustrates the compar-
ison of these accuracies for original, low, inter-
mediate and high specificity next to each other
for each model, dataset and replacement level.
Each row represents the di”erent models and each
column shows performance across the datasets:
MMLU, GSM8K and GPQA. The y-axis reflects
the calculated accuracy, while the x-axis en-
codes the replacement ratio of the synonymiz-
able nouns. Across all models and datasets, ac-
curacy seems to decrease with an increasing re-
placement and specificity level, although there
are some exceptions from this observable trend.
For the GSM8K dataset, the models Granite-13B-
Instruct-V2 and Flan-T5-XL show small sensitiv-
ity of performance with specificity changes, while
for the GPQA dataset, the performance decreases
notably compared to the baseline (original). In
particular, for the larger models, Llama-3.1-70B-
Instruct and Mistral-Large 2, this performance
decrease is strongly visible. Similar trend can be
also seen for verbs in the Appendix A, Fig. 13.
For adjectives, considering a full replacement
with high specificity synonyms, we observe sim-
ilar performance changes as for the other parts
of speech. Notably, the performance of Llama-
3.1-70B-instruct and Mistral-Large 2 increases
strongly for the GSM8K dataset using high speci-
ficity synonyms, which would mark a di”erence to
the other parts of speech. However, the sample
size, particularly for GSM8K with 4 instructions,
is too small to consider these results as signifi-
cant. More samples would be required to make a
more sophisticated observation.
This overall trend indicates that the fractional
adjustment of nouns and verbs with higher speci-
ficities harmfully a”ects the LLMs performance,
particularly Llama-3.1-70B-Instruct and Mistral-
Large 2, in the domains of STEM, law and
medicine and therefore seems not to be suitable
approach to generally optimize prompts in these
domains.
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Figure 7: Average Accuracy Comparison across multiple LLMs for Nouns. Average accuracy comparison

across all models (Granite-13B-Instruct-v2, Flan-T5-XL, LLaMA-3.1-70B-Instruct, and Mistral-Large 2) for

the datasets (MMLU, GSM8K, GPQA) for varying specificity levels (low, intermediate, high) and replacement

levels of synonymizable nouns (33%, 67%, 100%).
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Figure 8: Average Accuracy across all Datasets and Models for Nouns. These heatmaps represent the

performance di!erences in percentages for each model across all data for nouns. Each x-axis represents the

replacement ratio (fraction of how many synonyms were used), the y-axis encodes the categorical specificity

levels (low, intermediate, high) and the color encodes the average accuracy scores.

To get a better comparison of the performance
changes for each combination of specificity and
replacement level, we group each class by each
model and average the performance across all
datasets. We calculate the relative performance
change with respect to the baseline performance
for each model. The heatmaps in Figs. 8 and
9, respectively for nouns and verbs, illustrate
these precentral changes in accuracy when vary-
ing specificity levels (low, intermediate, high) and
replacement ratios (33%, 67%, 100%) across our
four models. Each cell represents the change in
performance relative to the baseline (original) ac-
curacy, showing how accuracy shifts when more
specific synonyms replace the original words.
For nouns, as the replacement ratio and speci-
ficity increase, performance generally declines
across all models. This indicates that more spe-
cific or frequent replacements of synonyms nega-
tively impact the models’ abilities to handle zero-

shot and chain-of-thought question-answering
tasks. For instance, Mistral-Large 2 exhibits the
most significant performance drop at 100% noun
replacement and low specificity, showing a de-
crease of up to -0.154 in accuracy. Llama-3.1-
70B-Instruct also shows substantial reductions,
especially at higher replacement ratios (-0.117 at
high specificity for 100% replacement). Granite-
13B and Flan-T5-XL follow similar patterns, with
negative accuracy changes, although Flan-T5-XL
shows slightly better resilience to noun replace-
ment.
In the case of verbs, the models display more var-
ied responses to synonym specificity and replace-
ment ratios. Flan-T5-XL, for example, demon-
strates some positive accuracy changes at lower
replacement ratios and low specificity, indicat-
ing that it handles verb replacements better,
particularly in low and intermediate specificity
settings. This suggests that for zero-shot and
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Figure 9: Average Accuracy across all Datasets and Models for Verbs. These heatmaps represent the

performance di!erences in percentages for each model across all data for verbs. Each x-axis represents the

replacement ratio (fraction of how many synonyms were used), the y-axis encodes the categorical specificity

levels (low, intermediate, high) and the color encodes the average accuracy scores.

chain-of-thought question-answering tasks, Flan-
T5-XL is more adaptable to verb changes com-
pared to nouns. Mistral-Large also exhibits re-
silience, showing smaller accuracy reductions for
verb replacements, although its performance de-
clines as replacement ratios increase. However, at
100% verb replacement, all models show a decline
in performance, with Granite-13B and Llama-
3.1-70B displaying the most significant accuracy
drops, particularly at higher specificity levels.

Answer. Overall, the results suggest that
noun replacements with more specific synonyms
have a stronger negative impact on model per-
formance than verb replacements, with perfor-
mance generally deteriorating as the replacement
ratio increases. The findings highlight that while
all models experience degradation in accuracy,
Llama-3.1-70B-Instruct and Mistral-Large 2 are
more sensitive to high replacement ratios, par-
ticularly with specific nouns, whereas Flan-T5-

XL exhibits more robustness, especially in han-
dling verb replacements in question-answering
tasks. Notably, Llama-3.1-70B-Instruct (0.97)
and Mistral-Large 2 (0.95) perform stronger
on the reasoning Tasks (GSM8K) compared to
Granite-13B-Instruct-V2 and Flan-T5-XL. These
performance di”erences could be attributed
to the additional Direct Preference Optimiza-
tion (Llama-3.1)[46] and larger parameter size
(Mistral-Large 2 with 123B parameters) [47].
However, the categorical approach only o”ers a
broach perspective on the potential relationship
between increasing specificity and LLM perfor-
mance. By only focusing on the predefined cate-
gories, specificity level and replacement ratio, this
approach does not take into account the overall
prompt specificity since instructions are assigned
to one category based on the number of individual
synonyms with varying specificity. There might
be cases where a modified instruction will be as-
signed to the 33% High
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Model
Nouns

MMLU(zero-shot) GPQA(zero-shot) GSM8K(zero-shot, CoT)
Corr p-value Corr p-value Corr p-value

Granite-13b-instruct-v2 -0.48 0.159 -0.68 0.030 -0.20 0.580
Flan-T5-XL 0.36 0.309 0.04 0.906 -0.04 0.907

Llama-3.1-70b-instruct -0.29 0.422 -0.32 0.365 -0.001 0.987
Mistral-Large 2 -0.05 0.881 0.62 0.054 -0.01 0.987

Model
Verbs

MMLU(zero-shot) GPQA(zero-shot) GSM8K(zero-shot, CoT)
Corr p-value Corr p-value Corr p-value

Granite-13b-instruct-v2 -0.37 0.292 0.46 0.177 -0.18 0.627
Flan-T5-XL -0.08 0.836 0.50 0.139 -0.78 0.008

Llama-3.1-70b-instruct -0.79 0.006 0.42 0.229 -0.89 5.4e-4
Mistral-Large 2 0.38 0.276 -0.02 0.960 -0.87 0.001

Table 7: Correlation Results. Results (Spearman Correlation) for each model, grouped on each part of

speech and each dataset. Values in bold display the significant correlations, where the p-value is under 0.05,

while underlined values represent the greatest correlation out of all significant ones.

category, but would exhibit a smaller prompt
specificity than the 100% intermediate variation.
To address this limitation of the categorical ap-
proach, we shift from a word-level focus to a
prompt specificity perspective in the numerical
approach.

Numerical Approach. For each model, we
systematically aggregate all outputs alongside the
corresponding ground truth labels provided by
the original datasets. We then partition these
into sub-datasets based on part of speech (nouns
and verbs) and dataset type (MMLU, GSM8K,
GPQA), resulting in six distinct sub-datasets per
model. To evaluate the performance of the LLM,
we employ the Jaccard metric as utilized in the
categorical approach. Final performance scores
for each dataset and model are obtained by cal-
culating accuracy across all samples, stratified by
nine permutations of specificity levels (low, inter-
mediate, high) and replacement levels (33%, 67%,
and 100%).
Additionally, for each modified instruction, we
compute the prompt specificity corresponding to
the analyzed part of speech (refer to Section 3.3),
and average these scores across each combination
of specificity and replacement levels within each
dataset. This comprehensive approach allows us
to capture the holistic e”ect of synonymization
with varying specificities on the entire prompt,
rather than focusing solely on the subset of syn-
onyms. For instance, in a prompt containing
ten nouns, where only three nouns are subject
to synonymization, calculating the average speci-
ficity based only on the three modified nouns may
yield skewed results compared to averaging across
all ten nouns. Such an approach could artifi-
cially inflate the perceived impact of synonymiza-
tion, even though the actual changes might be
minimal. Furthermore, while discrepancies in

total word count between two samples with an
equivalent number of nouns could introduce bias,
we deem this e”ect negligible, as the number of
nouns is likely to positively correlate with the
number of sentences, thus diminishing the bias
in our approach.
Finally, we compute the Spearman correlation be-
tween the average prompt specificity and the per-
formance of the LLM across datasets and speci-
ficity levels to evaluate the relationship between
these variables. We use Spearman instead of
Pearson, since there are only ten values for each
parameter, and we cannot assume that these are
normally distributed.

Answer. Table 7 presents a comparison of cor-
relations and p-values for four large LLMs across
three distinct tasks, MMLU (zero-shot), GPQA
(zero-shot), and GSM8K (zero-shot, Chain-of-
Thought), separated by nouns and verbs. In gen-
eral, increasing prompt specificity tends to neg-
atively impact LLM performance, though most
of these changes are not statistically significant
(p-values > 0.05). For nouns, the only significant
result is a strong negative correlation of →0.68 (p-
value = 0.03) observed for Granite-13b-instruct-
v2 on the GPQA (zero-shot) task. For verbs,
significant negative correlations are observed for
Llama-3.1-70b-instruct on MMLU (→0.79, p =
0.006) and Flan-T5-XL on GSM8K (→0.78, p =
0.008), along with very strong negative correla-
tions for GSM8K with Llama-3.1-70B-Instruct
(→0.89, p = 5.4e-4) and Mistral-Large 2 (→0.87,
p = 0.001). Notably, most of the significant cor-
relations pertain to verbs. However, with only
five out of 24 evaluations showing significant re-
sults, this suggests that synonymization generally
does not have a substantial impact on LLM per-
formance for our tasks.
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(a) Distribution of correct answers for nouns. (b) Distribution of correct answers for verbs.

Figure 10: Distribution of correct Answers for each Model. These histograms represent the distributions

of correct answers for the original samples for each model and part of speech. The x-axis depicts the re-

spective prompt specificity of the unmodified instructions, while the y-axis counts the correct answers for the

corresponding prompt specificity.

Contradictory to our intuition, that increas-
ing the prompt specificity would lead to better
LLM performance, these results imply a rather
unexpected opposite outcome. However, this
evaluation reveals several insights into how in-
creasing prompt specificity impacts LLM per-
formance. Although the overall trend indicates
a negative e”ect on performance, the fact that
most changes are not statistically significant sug-
gests that LLMs are generally resilient to prompt
variations in terms of specification through syn-
onymization.
Interestingly, the higher frequency of significant
negative correlations observed for verbs in the
reasoning task (GSM8K) compared to nouns in-
dicate that prompt changes related to actions
and relationships in a sentence (verbs) may have
a more disruptive e”ect on model performance in
reasoning than changes in descriptive or referen-
tial elements (nouns). It is possible that models
require di”erent levels of abstraction or generality
depending on the dataset’s task structure, with
reasoning tasks being negatively impacted from
more specific terms, as these might complicate
the LLMs ability to follow logical progression. In
particular, Llama-3.1-70b-instruct and Mistral-
Large 2 exhibited very strong negative correla-
tions, suggesting that these models are especially
sensitive to prompt variations in tasks requiring
problem-solving and reasoning. Their heightened
sensitivity to changes in verb specificity could
be attributed to di”erences in their pre-training
data distributions or the manner in which they
handle syntactic dependencies. Llama-3.1-70B-
Instruct and Mistral Large 2 may have been ex-
posed to fewer domain-specific verbs, leading to
increased di!culty when processing specific verb
synonyms. Further research into the architec-
tural di”erences between the considered models

might reveal whether these sensitivities are due
to inherent biases in the attention mechanisms or
pre-training corpora.
While this model-depended sensitivity might re-
flect model-specific weaknesses, the small number
of significant results overall (5 out of 24 evalu-
ations) suggests that synonymization does not
pose a substantial challenge for most LLMs in
the tested tasks.

Q3. Is there a specific level of prompt specificity
for nouns and verbs that results in the best LLM
performance in question answering and reasoning
tasks across di!erent models?

To address this question, we analyzed the out-
puts of the original, unmodified samples for each
model and dataset, applying a stricter evaluation
criterion compared to previous analyses by us-
ing exact match to identify correct answers. This
approach was adopted to eliminate all noise and
ensure higher precision in the evaluation. Addi-
tionally, we computed the prompt specificity for
each part of speech (nouns and verbs) in the orig-
inal prompts. The aggregation of correct answers
across all datasets for each model is visualized in
Fig. 10. In each histogram, the x-axis represents
the prompt specificity for the respective part of
speech, while the y-axis indicates the count of cor-
rect answers. A dashed line marks the prompt
specificity associated with the highest number of
correct answers for each model.
For nouns, the distributions converge around sim-
ilar prompt specificity values, ranging from 17.72
to 18.79. The more recent models, Llama-3.1
and Mistral-Large 2, exhibit higher median speci-
ficities, whereas Flan-T5-XL and Granite-13B
achieve optimal performance with less specific
prompts. This indicates a positive correlation be-
tween higher prompt specificity for nouns and
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Model
Nouns Verbs

Lower Upper Median Lower Upper Median
Granite-13b-instruct-v2 17.24 22.00 18.95 9.20 14.74 10.55

Flan-T5-XL 17.03 22.04 18.94 8.29 14.80 10.47
Llama-3.1-70b-instruct 17.58 22.57 19.41 8.08 14.14 10.57

Mistral-Large 2 17.58 22.57 19.70 9.03 14.49 10.57

Table 8: Optimal Specificities. Ranges of prompt specificities for nouns and verbs, in which the LLM perform

best across all datasets.

the number of correct answers; however, beyond
a certain threshold, increasing specificity may not
enhance performance across all models and could,
in fact, negatively impact accuracy.
A similar pattern is observed for verbs, with
the highest concentration of correct answers cor-
responding to prompt specificities between 8.4
and 9.5. Granite-13B performs best with a
higher verb specificity (9.5), while other mod-
els achieve their optimal performance at slightly
lower prompt specificities.
From these observations, we can infer that for the
original, unmodified samples, a moderate level of
specificity improves model performance. How-
ever, excessive or insu!cient specificity may de-
grade performance across models. We apply this
approach to the modified instructions, examining
each replacement level, specificity level, model,
and dataset combination. The resulting prompt
specificities for each parameter combination are
displayed in Appendix B, Tab. 9.

Answer. Based on this assessment, we de-
rive the ranges of optimal prompt specificity for
each model and part of speech, displayed in Tab.
8, where the LLM achieves the highest perfor-
mance across all datasets. The results indicate
that there is a range of prompt specificity for
both nouns and verbs, beyond which further de-
creases or increases in specificity can negatively
impact performance. For nouns, the optimal
specificity falls between 17.72 and 19.70, with
newer models like Llama-3.1 and Mistral-Large
2 performing better with slightly higher speci-
ficity than smaller models like Granite-13B and
Flan-T5-XL. Similarly, for verbs, optimal per-
formance occurs between 8.08 and 10.57, with
Granite-13B benefitting from higher specificity
compared to other models. These findings sug-
gest that while some level of specificity improves
accuracy, exceeding the optimal range can dimin-
ish performance, highlighting the importance of
fine-tuning prompt specificity based on the model
and task. Particularly, in domain-specific NLP
applications, one should consider that increasing
prompt specificity, particularly for verbs, may not
always yield better performance. Instead, balanc-
ing specificity with generality could help models

retain broader reasoning capabilities while main-
taining accuracy.

5 Conclusion

In this study, we examined the e”ects of syn-
onymizing nouns, verbs, and adjectives with vary-
ing levels of specificity across four di”erent mod-
els. By applying this synonymization to samples
from three domain-specific datasets for question-
answering and reasoning tasks, we identified a
range of prompt specificity for nouns and verbs,
consistent across all models, that leads to the best
LLM performance for these tasks.
Contrary to our initial hypothesis that increas-
ing prompt specificity would improve LLM out-
puts, our findings show no significant perfor-
mance changes when increasing noun specificity
in prompts. However, using more specific verb
synonyms resulted in a negative impact on per-
formance in reasoning tasks. This suggests that
prompt design might benefit more from focusing
on clarity, contextual appropriateness and other
linguistic factors rather than purely on specificity.
We also introduced an approach to quan-
tify adjective specificity that shows an overall
intermediate-strong correlation with the ranking
of GPT-4o. However, our experiments showed
that adjectives are underrepresented in our ques-
tion answering datasets and are not suitable for
further analysis to quantify their impact on LLM
performance in our scope. Despite that, it is plau-
sible that adjectives play a more critical role in
tasks involving subjective analysis, such as senti-
ment analysis, where they carry significant emo-
tional or descriptive meaning. Therefore, future
research could explore how adjective specificity
a”ect the LLM performance in other NLP tasks,
such as sentiment analysis or narrative text gen-
eration, where they have a more substantial role
compared to the neutral toned question answer-
ing tasks.
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6 Limitations

Despite the promising results obtained from our
exploration of specificity a”ects LLM perfor-
mance, several limitations remain that warrant
further attention.
First, our approach relies on WSD to identify and
substitute synonyms. Although, our algorithm
guarantees the correct sense of a word most of the
time, as shown in Tab. 3, it misclassifies the sense
in some cases. This limitation can result in the
selection of inappropriate synonyms with respect
to the given context, which may cause confusion
for the model and a”ect performance by introduc-
ing noise into the input and reducing the preci-
sion of the generated outputs. In the future, one
could improve the WSD process by fine-tuning
Llama-3.1-70B-Instruct specifically on the WSD
task similar to Wahle et al. (2021) [31], since the
base version already provided promising results
(79% accuracy). A less computational resource
method to address this issue would be to incor-
porate human feedback after the WSD process,
which would allow a manual correction of the false
senses. Second, our analysis primarily focused on
the domains of STEM, medicine, and law. While
these areas are widely applicable, they do not
fully encompass the breadth of all potential fields
and contexts in which domain-oriented prompt
engineering may be applied. Consequently, the
findings in this work may not generalize to other
domains, limiting the overall applicability of the
results. Future research could extend the scope to
include a wider variety of domains such as psy-
chology, finance or engineering, to enhance the
robustness of the conclusions. Finally, the intro-
duction of an adjective specificity equation repre-
sents an initiative toward quantifying and rank-
ing adjectives. Although, this equation shows
promising results according to our evaluation in
the STEM, law and medicine domains, its e”ec-
tiveness needs to be rigorously tested on large
scale across a larger scope of domains to deter-
mine its generalizability.
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A Figures

Figure 11: Prompt Templates. Overview of all the prompt templates used for performing the question-

answering and reasoning tasks (MMLU, GPQA and GSM8K), and the LLM-as-a-Judge experiment for the

adjective specificity measure evaluation.

Figure 12: Average Accuracy Comparison across multiple LLMs for Adjectives. Average accuracy

comparison across all models (Granite-13B-Instruct-v2, Flan-T5-XL, LLaMA-3.1-70B-Instruct, and Mistral-

Large 2) for the datasets (MMLU, GSM8K, GPQA) for original and 100% high specificity instructions. Due

to the small sample size of 172 instructions in total, these results cannot be considered as significant.
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Figure 13: Average Accuracy Comparison across multiple LLMs for Verbs. Average accuracy comparison

across all models (Granite-13B-Instruct-v2, Flan-T5-XL, LLaMA-3.1-70B-Instruct, and Mistral-Large 2) for

the datasets (MMLU, GSM8K, GPQA) for varying specificity levels (low, intermediate, high) and replacement

levels of synonymizable verbs (33%, 67%, 100%).
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B Tables

Dataset Model Replacement Ratio [%]
Nouns Verbs

Low Intermediate High Low Intermediate High

A
ll

Granite-13b-instruct-v2
33 17.23 18.49 18.95 9.20 9.96 10.55
67 17.58 19.24 20.52 9.24 10.87 12.63
100 17.71 19.67 22.00 9.23 12.19 14.74

Flan-T5-XL
33 17.03 18.56 18.94 8.29 9.98 10.47
67 17.54 19.16 20.90 9.31 10.89 12.29
100 17.48 20.38 22.04 9.42 11.92 14.80

Llama-3.1-70B-Instruct
33 18.61 18.76 19.41 8.08 9.86 10.57
67 17.58 19.70 20.90 9.29 10.59 12.82
100 17.83 19.66 22.57 9.03 12.14 14.49

Mistral-Large 2
33 17.97 18.86 19.70 9.20 9.86 10.57
67 17.58 19.70 20.58 9.29 10.59 12.82
100 17.83 20.35 22.57 9.03 12.14 14.49

M
M
L
U

Granite-13b-instruct-v2
33 17.24 18.49 18.95 9.20 9.96 10.55
67 17.58 19.24 20.52 9.24 10.87 12.63
100 17.71 19.67 22.00 9.23 12.19 14.74

Flan-T5-XL
33 17.03 18.60 18.94 8.29 9.98 10.47
67 17.54 19.16 20.90 9.31 10.89 12.29
100 17.48 20.38 22.04 9.42 11.92 14.80

Llama-3.1-70B-Instruct
33 18.61 18.76 19.41 8.08 9.86 10.57
67 17.58 19.70 20.90 9.29 10.59 12.61
100 17.83 19.65 22.57 9.03 12.14 14.14

Mistral-Large 2
33 17.97 18.86 19.70 9.20 9.86 10.57
67 17.58 19.70 20.58 9.29 10.59 12.82
100 17.83 20.35 22.57 9.03 12.14 14.49

G
S
M
8K

Granite-13b-instruct-v2
33 19.29 19.59 20.16 8.40 7.40 9.14
67 16.54 19.05 19.21 8.63 9.51 10.86
100 18.25 19.12 23.12 9.30 10.24 12.08

Flan-T5-XL
33 20.86 20.29 19.16 8.20 9.80 9.51
67 16.25 20.25 20.28 8.85 6.64 7.99
100 16.18 17.75 23.93 8.94 10.29 14.48

Llama-3.1-70B-Instruct
33 19.26 19.53 20.09 8.81 9.79 10.56
67 18.35 19.88 21.75 8.57 9.90 11.09
100 18.51 19.66 22.03 9.22 11.36 14.60

Mistral-Large 2
33 19.26 19.53 20.09 8.81 9.79 10.36
67 18.83 19.88 21.75 8.81 9.90 11.75
100 18.51 21.11 23.63 8.59 11.36 14.60

G
P
Q
A

Granite-13b-instruct-v2
33 16.96 18.58 18.38 7.97 9.77 11.13
67 16.55 19.38 19.06 9.22 12.08 12.22
100 16.57 19.59 20.54 8.59 11.99 14.47

Flan-T5-XL
33 17.05 17.29 18.45 7.86 9.18 11.40
67 17.04 20.27 18.88 8.39 10.00 11.41
100 16.61 19.68 22.05 9.05 12.46 14.66

Llama-3.1-70B-Instruct
33 17.01 17.47 18.38 8.24 8.31 9.24
67 17.79 17.76 19.06 9.25 10.76 11.26
100 17.71 19.58 21.02 9.37 12.33 11.85

Mistral-Large 2
33 19.07 17.44 18.38 8.24 8.31 9.32
67 16.92 17.98 20.81 9.25 10.13 11.12
100 17.87 19.55 21.01 9.37 12.33 11.85

Table 9: Optimal Specificities for each Dataset. Optimal prompt specificities for nouns and verbs for each

combination of replacement ratios (33%, 67%, 100%) and specificity levels (low, intermediate, high) for all

data combined, MMLU, GSM8K and GPQA.

Parameter Value

temperature 0
max tokens 500
random seed 31415

Table 10: Model Parameters. Overview of parameters used for prompting in all the experiments in this

study.
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C Data overview

Dataset Domains Di!culty Samples

M
M
L
U

task686 biology college 162
task687 chemistry college 110
task688 computer science college 113
task689 mathematics college 113
task691 physics college 96
task699 biology high school 184
task700 chemistry high school 174
task701 computer science high school 111
task708 physics high school 169
task710 statistics high school 175
task729 law professional 302
task730 medicine professional 183

GSM8K mathematics grade school 7473
GPQA biology, chemistry, physics PhD graduate 448

Table 11: Overview of Datasets. The overview of all datasets used in our experiments with the corresponding

domains, di”culty levels and initial sample sizes.

MMLU: Task686

Proteins were shown to move about in a plane of the plasma membrane when 
mouse cellsurface proteins and human cell-surface proteins were observed to 
integrate along a fused mouse-human cell plasma membrane. Which of the 
following cell culture techniques was most likely employed in order to yield these 
results?

(A)Producing a heterokaryon 
(B)Producing a hybrid cell 
(C)Isolating an immortal variant cell from culture and using it to create a cell line 
(D)Inserting a tumor-inducing virus into a normal cell to initiate transformation

Question:

Choices:

Figure 14: Example for Task686 (MMLU). An example from the MMLU dataset: ”Task686”. This question

is from the biology domain, which requires domain knowledge at a college level.
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MMLU: Task687

The 13C spectrum of which isomer of C6H14 has lines with five distinct chemical 
shifts?

(A) hexane 
(B) 2-methylpentane 
(C) 3-methylpentane 
(D) 2,3-dimethylbutane

Question:

Choices:

Figure 15: Example for Task687 (MMLU). An example from the MMLU dataset: ”Task687”. This question

is from the chemistry domain, which requires domain knowledge at a college level.

MMLU: Task688

Which of the following comes closest to being a perfectly secure encryption 
scheme? 

(A)The Caesar Cipher, a substitution cipher 
(B)DES (Data Encryption Standard), a symmetric-key algorithm 
(C)Enigma, a transposition cipher 
(D)One-time pad

Question:

Choices:

Figure 16: Example for Task688 (MMLU). An example from the MMLU dataset: ”Task688”. This question

is from the computer science domain, which requires domain knowledge at a college level.
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MMLU: Task689

A tree is a connected graph with no cycles. How many nonisomorphic trees with 
5 vertices exist?

(A)1 
(B)2 
(C)3 
(D)4

Question:

Choices:

Figure 17: Example for Task689 (MMLU). An example from the MMLU dataset: ”Task689”. This question

is from the mathematics domain, which requires domain knowledge at a college level.

MMLU: Task691

A resistor in a circuit dissipates energy at a rate of 1 W. If the voltage across the 
resistor is doubled, what will be the new rate of energy dissipation?

(A)0.25 W 
(B)0.5 W 
(C)1 W 
(D)4 W

Question:

Choices:

Figure 18: Example for Task691 (MMLU). An example from the MMLU dataset: ”Task691”. This question

is from the physics domain, which requires domain knowledge at a college level.
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MMLU: Task699

Unlike large populations, small populations are vulnerable to various processes 
that draw populations down an extinction vortex toward smaller and smaller 
populations until no individuals survive. Which of the following statements 
correctly identifies the factors that endanger a population?

(A)Inbreeding and loss of genetic variation threaten a population. 
(B)Migration of new individuals into the population threatens a population. 
(C)Mutation reduces the health of a population. 
(D)Breeding with individuals from a different population may cause the extinction 
of the first population due to a decrease in diversity.

Question:

Choices:

Figure 19: Example for Task699 (MMLU). An example from the MMLU dataset: ”Task699”. This question

is from the biology domain, which requires domain knowledge at a high school level.

MMLU: Task700

The dimerization of NO2(g) to N2O4(g) is an endothermic process. Which of the 
following will, according to Le Châtelier's principle, increase the amount of N2O4 
in a reaction vessel?

(A)Decreasing the temperature 
(B)Increasing the size of the reaction vessel 
(C)Adding a selective catalyst 
(D)Making the reaction vessel smaller

Question:

Choices:

Figure 20: Example for Task700 (MMLU). An example from the MMLU dataset: ”Task700”. This question

is from the chemistry domain, which requires domain knowledge at a high school level.
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MMLU: Task701

Which of the following best explains what happens when a new device is 
connected to the Internet?

(A)A device driver is assigned to the device. 
(B)An Internet Protocol (IP) address is assigned to the device. 
(C)A packet number is assigned to the device. 
(D)A Web site is assigned to the device.

Question:

Choices:

Figure 21: Example for Task701 (MMLU). An example from the MMLU dataset: ”Task701”. This question

is from the computer science domain, which requires domain knowledge at a high school level.

MMLU: Task708

An object is released from rest and falls a distance h during the first second of 
time. How far will it fall during the next second of time?

(A)h 
(B)2h 
(C)3h 
(D)4h

Question:

Choices:

Figure 22: Example for Task708 (MMLU). An example from the MMLU dataset: ”Task708”. This question

is from the physics domain, which requires domain knowledge at a high school level.
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MMLU: Task710

The director of a local food bank asks for data on all donations given during the 
month of November. Of the 100 checks received, the average donation is $155 
with a standard deviation of $32. Which of the following is the most appropriate 
statement?

(A)This November, the average donation is $155. 
(B)50% of all donations this November are more than $155. 
(C)We are 95% confident that the average donation in November is between 
about $91 and $219. 
(D)We are 95% confident that the average donation in November is between 
about $149 and $161.

Question:

Choices:

Figure 23: Example for Task710 (MMLU). An example from the MMLU dataset: ”Task710”. This question

is from the statistics domain, which requires domain knowledge at a high school level.

MMLU: Task729

A seller sold his boat to a buyer. During negotiations, the buyer said that he planned to sail 
the boat on the open seas. The seller told the buyer that the boat was seaworthy and had 
never sustained any significant damage. In fact, the hull of the boat had been badly 
damaged when the seller had run the boat aground. The seller had then done a cosmetic 
repair to the hull rather than a structural repair. The buyer relied on the seller's 
representations and paid a fair price for a boat in good repair, only to discover after the sale 
was completed that the hull was in fact badly damaged and in a dangerous condition. The 
seller has refused to refund any of the buyer's money, and the buyer is contemplating suing 
the seller. Under what theory would the buyer be most likely to recover? 

(A)Fraud. 
(B)Intentional endangerment. 
(C)Negligent misrepresentation. 
(D)Strict products liability.

Question:

Choices:

Figure 24: Example for Task729 (MMLU). An example from the MMLU dataset: ”Task729”. This question

is from the law domain, which requires domain knowledge at a professional level.
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MMLU: Task730

A 22-year-old woman comes to the physician in October for a follow-up 
examination. She feels well. She has a 2-year history of type 1 diabetes mellitus 
controlled with insulin. She had a normal Pap smear 3 months ago and saw her 
ophthalmologist 6 months ago. Her 67-year-old grandmother has breast cancer. 
She is 168 cm (5 ft 6 in) tall and weighs 57 kg (125 lb); BMI is 20 kg/m2 . Her 
hemoglobin A1c is 6.2%, and fingerstick blood glucose concentration is 118 
mg/dL. Which of the following health maintenance recommendations is most 
appropriate at this time?

(A)Dietary modification for weight loss 
(B)Human papillomavirus testing 
(C)Mammography 
(D)Influenza virus vaccine

Question:

Choices:

Figure 25: Example for Task730 (MMLU). An example from the MMLU dataset: ”Task730”. This question

is from the medicine domain, which requires domain knowledge at a professional level.

GPQA

A large gene has dozens of exons, of which the central ones code for folded triple 
helical repeats that connect the cytoskeleton with sarcolemma and extracellular 
space. Each exon usually codes for one folded triple alpha helix. The most common 
mutations of the gene are central exon deletions that create out-of-frame peptides and 
progressive degenerative organ waste. A solution is to deliver a Morpholino that 
recognizes the 5' end of the out-of-frame exon in pre-mRNA. The molecule prevents 
binding of the spliceosome and creates exon skipping and in-frame joining. Several 
missing exons are well tolerated by an organism. Which structure below is not involved 
in the proposed therapy?

(A)R-loops 
(B)lariat
(C)polyA tail 
(D)antisense

Question:

Choices:

Figure 26: Example for GPQA. An example from the GPQA dataset. This question is from the biology

domain, which requires domain knowledge at a PhD level.
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GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many 
clips in May. How many clips did Natalia sell altogether in April and May?

Natalia sold 48/2 = <<48/2=24>>24 clips in May.
Natalia sold 48+24 = <<48+24=72>>72 clips altogether in April and May.
#### 72

Question:

Answer:

Figure 27: Example for GSM8K. An example from the GSM8K dataset. This question is from the mathe-

matics domain, which requires domain knowledge at a grade school level.

34



Instruction Specificity Replacement Ratio

A breeder of dogs induced a purchaser to buy a puppy by representing
that it was a registered basset hound, when in fact the breeder knew it
was a mixed breed. The purchaser later discovered that the representation
was false. She wants to sue to disa!rm the contract and get a refund.
What legal theory would be best applicable to decide this case?

Original -

A breeder of domesticated animals induced a client to buy a puppy by
representing that it was a registered basset hound dog, when in record
the breeder knew it was a mixed variety. The client later discovered that
the psychosexuality was false. She wants to sue to disa!rm the grant and
get a refund. What legal explanation would be best applicable to decide
this instance?

Low 100%

A breeder of mongrels induced a emptor to buy a puppy by representing
that it was a registered basset Afghan hound, when in basics the breeder
knew it was a mixed animal group. The emptor later discovered that the
version was false. She wants to sue to disa!rm the charter and get a
refund. What legal atomistic theory would be best applicable to decide
this bit?

Intermediate 100%

A breeder of puppys induced a customer agent to buy a puppy by rep-
resenting that it was a registered basset greyhound, when in rudiments
the breeder knew it was a mixed bloodstock. The customer agent later
discovered that the appearance was false. She wants to sue to disa!rm
the adhesion contract and get a refund. What legal atomism would be
best applicable to decide this humiliation?

High 100%

Table 12: Examples for processed Instructions. This is one example of a 100% replacement of nouns for

low, intermediate and high specificity. Words highlighted in red represent synonymizable nouns in the original

sample, and in the modified samples, they denote the corresponding synonyms for low, intermediate, and high

specificity.
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