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Abstract

To structure digital libraries and to allow readers to search for arti-
cles on specific topics, reliable and fine-grained document subject clas-
sification is essential. Currently, research article classification is largely
performed by human domain experts. Semi-supervised Machine Learn-
ing algorithms can support experts by exploiting the labeled data to
predict subject classes for unclassified new documents. However, pre-
vious research indicates that these algorithms are effective, i.e., produce
meaningful results, only when the ratio of training examples per class
is sufficiently high. Furthermore, in the domain of mathematical docu-
ments, the widely adopted Mathematical Subject Classification (MSC)
scheme presents multiple challenges: The classification is 1) multi-label,
2) hierarchical, 3) fine-grained, and 4) sparsely populated at the low-
est level. Specifically, the current MSC scheme contains 63 two-digit
classifications, 529 three-digit classifications, and 6,006 five-digit classi-
fications. In this paper, we extract and leverage the class-entity rela-
tions of mathematical texts for the first time to facilitate multi-label
hierarchical and fine-grained category predictions. We analyze the re-
lationships between specific subject classes and keyword entities using
the zbMATH Open service that yields the largest dataset of classified
mathematical publications with over 4 million documents. Moreover, we
compare fine-grained MSC prediction on the zbMATH corpus of math-
ematical texts to MeSH prediction on the PubMed corpus of medical
texts provided by ZB MED. Finally, we present approaches to explain
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the classification suggestions, thus easing the work of human reviewers
in either accepting or rejecting suggestions. The results show we can
predict MSCs from keywords with a precision-recall curve close to the
human baseline. A demo of our fine-grained MSC prediction explainer
(using text and keywords) and an interactive notebook to reproduce our
experiments are available at https://automscexplainer.wmcloud.org.
We also provide a public API for the fine-grained MSC prediction at
https://automscpredictor.wmcloud.org.

1 Introduction
Since the earliest known classification scheme by the Greek Callimachus, a li-
brarian of the Library of Alexandria, there have been countless efforts to classify
subject categories in document collections [16]. Libraries must be sorted so read-
ers can search for literature in specific areas or topics of interest. With the rise of
digital libraries, machine-readable documents, and Machine Learning methods,
human expert classifiers are being supported by computers.

In the case of mathematical literature, the world’s most comprehensive
record of bibliographic data, reviews, and abstracts is the zbMATH Open ser-
vice.1 zbMATH Open contains over 4M mathematical documents, individu-
ally assigned to 6k hierarchically organized classes, known as the Mathematical
Subject Classification (MSC). In contrast to commercial applications like Ama-
zon’s book categories,2 digital libraries containing academic texts have fewer
human resources and fewer development resources available. Additionally, an
impractically large number of domain experts would be required to classify the
highly technical and specialized literature in extensive fields that contain many
subdisciplines, such as mathematics. Thus, classifying academic literature as
automated, fine-grained, and as accurately as possible with limited resources is
desirable.

Unfortunately, automated Machine Learning document classifiers require
sufficient training data with a high ratio of examples per class. If the clas-
sification scheme is fine-grained and multi-label, the classification is often chal-
lenging3 and not feasible using a Machine Learning classifier due to class sparsity
(refer to the ‘curse of dimensionality’ problem [26]). Connecting category classes
with keyword concept entities mitigates this problem by employing a class-entity
knowledge graph to augment classification training data [1].

Using the class-entity knowledge graph, it is possible to build an Artificial In-
telligence (AI) model that can predict fine-grained hierarchical class labels. The
prediction can then be used for automatic unsupervised labeling or supervised
label suggestions to human expert classifiers. This considerably accelerates the
labeling process for unclassified documents that are constantly being added to
digital libraries. Moreover, we can use the class-entity (or category-concept)
knowledge graph to provide class-prediction explanations for humans.

1https://zbmath.org
2https://blog.reedsy.com/guide/kdp/amazon-book-categories/
3https://nfdi4ds.github.io/nslp2024/docs/forc_shared_task.html
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Document classification is often a black box and needs more transparency
and explainability for humans to understand AI decisions. The topic of ex-
plainable AI (XAI) has recently gained increasing interest in Machine Learning
applications, e.g., in medicine or jurisdiction [11], where AI decisions determine
the fate of individuals. Methods of XAI aim to reverse-engineer a class-entity
(or label-feature) correspondence.

In this paper, we show that by using concept keywords, we can perform ex-
plainable, multi-label, and fine-grained hierarchical document classifications for
6k class labels in the zbMATH Open mathematical library with precision and
recall close to the human baseline. By linking concept keywords to the Wiki-
data knowledge graph, we directly establish relations between feature Wikidata
entity QIDs4 and MSC subject class labels. In analogy to named entities for
natural language, keyword entities are mathematical notions, such as ‘path inte-
gral’ or ‘variational principle.’ Mapping keywords to hierarchical classifications,
when compared to LLM-based approaches, offers several distinct benefits, par-
ticularly in terms of explainability. In this way, explainability is augmented by
references to unique identifiers. This degree of transparency is a decisive advan-
tage over LLMs, which often function as "black boxes," offering limited insight
into the reasoning behind their classifications. While LLMs provide advanced
capabilities in handling unstructured, nuanced text, the approach of mapping
keywords to hierarchical classifications excels in areas of explainability, consis-
tency, and the potential for creating rich, structured knowledge representations
like ontologies.

To ensure reproducibility, our research results (tables and explanations),
data (raw and indexed), and code are publicly available.5 In addition, we pro-
vide an interactive notebook to easily run the code6 and a demonstration user
interface of the fine-grained MSC prediction recommender and recommendation
explainer using text and keywords.7 Finally, a public API for the fine-grained
explainable MSC prediction from mathematical texts can be accessed.8

2 Related Work
To highlight the existing research gap, we first review the state of the art in fine-
grained document classification and mathematical document classification. This
paper then addresses the challenges of limited training data and the absence
of explainability in Machine Learning document classifiers for mathematical
texts. It introduces an advanced, explainable, multi-class, hierarchical, fine-
grained mathematical document classification system that utilizes class-entity
relationships. Our research builds on and extends our previous publication [20].

4Unique Wikidata concept item identifiers (URIs) with corresponding URLs.
5https://github.com/AnonymousCSResearcher/FineGrainedMSCPred
6https://purl.org/fine-class
7https://automscexplainer.wmcloud.org
8https://automscpredictor.wmcloud.org

3



2.1 Fine-Grained Document Classification
The rapid increase in digital documents has called for the development and
employment of methods for Automatic Document Classification (ADC) [21].
While human domain expert labeling is costly, tedious, and time-consuming,
effective ADC approaches categorize documents at scale, instantaneously and
at a lower cost. Furthermore, the algorithms are portable and can be applied to
various other applications, such as spam filtering, sentiment analysis, product
categorization, speech categorization, author and text genre identification, es-
say grading, word sense disambiguation, and hierarchical categorization of web
pages [12].

Document classification can be divided into supervised, unsupervised, and
semi-supervised approaches. Semi-supervised approaches still require labeling;
however, they require less manual labeling of data. Further, classification ap-
proaches can be divided into few-shot learning (FSL), one-shot learning (OSL),
and zero-shot learning (ZSL) [13], where the number of ‘shots’ signifies the num-
ber of examples for which the model needs to predict new labels. Due to the
large number of classes in fine-grained classification schemes, there are often
only zero, one, or a few examples available for each class. This motivates using
ZSL, OSL, and FSL in this scenario. If the example per class ratio is very low
and classical Machine Learning does not work, we can employ class-entity rela-
tion statistics to perform ZSL. We demonstrate the effectiveness of this adaptive
approach in Section 4.3.

There are single-label and multi-label, as well as coarse-grained and fine-
grained (hierarchical) classification problems. Automated fine-grained multi-
label classification is much more challenging than coarse-grained single-label
classification [27]. Nonetheless, only a few recent approaches have addressed
the current research problems. Eykens et al. present and evaluate methods
for fine-grained multi-label classification of social science journal articles using
textual data. They achieve F1-scores of up to 0.55 when classifying 113,909
records into 31 sub-disciplines from three main disciplines [4].

In contrast to learning-based Extreme Multi-Label Text Classification (XMLC)
methods, which typically employ Deep Learning transformer models [25], do-
main ontology-based methods enhance 1) classification interpretability, 2) effi-
ciency in sparse scenarios, 3) reduction of noise in the label space [30]. On the
other hand, state-of-the-art XMLC methods [31] mostly lack prediction explain-
ability and exhibit complexity and computational demand due to their reliance
on large transformer architectures.

In the life sciences and medicine, fine-grained Medical Subject Headings
(MeSH)9 are used to index journal articles and books, most prominently in the
online Medical Literature Analysis and Retrieval System (MEDLINE)10 and the
National Library of Medicine PubMed11 database. The MeSH scheme includes

9https://www.nlm.nih.gov/mesh/meshhome.html
10https://www.nlm.nih.gov/bsd/medline.html
11https://pubmed.ncbi.nlm.nih.gov
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more than 28,000 entries12 used to index and catalog medical literature. Each
entry can have numerous subheadings, allowing for very fine-grained indexing.
The hierarchy includes multiple layers for detailed categorization of medical
topics, including diseases, drugs, and procedures. Methods for automated as-
signment of MeSHs [15] exploit abstract similarity and citations [8], as well as
knowledge graphs and hierarchical structure [29]. Approaches for medical doc-
ument classification based on the domain ontology MeSH find that employing
concept keywords enhances classification performance [3].

In this paper, we test the hypothesis of keyword enhancement for a fine-
grained mathematical document classification scheme, which we introduce in
the following.

2.2 Mathematical Document Classification
zbMATH Open1 provides a catalog with abstracts and reviews for mathematical
documents, sorted and labeled using the fine-grained hierarchical ‘Mathematics
Subject Classification (MSC)’ scheme.13 The MSC has a long history14 with
major version publications every ten years (e.g., 2000, 2010, 2020). The MSC
scheme is also developed and used [2] by the American Mathematical Society
(AMS) Mathematical Reviews (MR) electronic bibliographic database Math-
SciNet.15

In 2008, Watt examined relative symbols and expression frequencies to clas-
sify a mathematical document according to the MSC scheme [28]. He found
that the particular use of symbols and expressions, i.e., their frequency ranking,
varies from area to area between different top-level subjects of the MSC 2000.
However, the ‘pattern of relative frequencies for the most popular symbols’ was
noted to remain the same. It was claimed (but not verified) that the symbol fre-
quency ‘fingerprints’ for the different MSC areas could be used to classify given
mathematical documents. Kusmierczyk et al. compared hierarchical mathe-
matical document clustering against the hierarchical MSC classification tree [9].
They postulated that the hierarchy was highly correlated with the document
content. Using publications from the zbMATH database, they aimed to recon-
struct the original MSC tree based on document metadata. For the comparison,
they developed novel tree similarity measures. The best results were obtained
for 3-level hierarchical clustering using bigram encodings.

In 2014, Schöneberg et al. discussed part-of-speech (POS) Tagging and its
applications for mathematics [22]. They aimed to adapt NLP methods to the
special requirements for mathematical document content analysis. They pre-
sented a mathematics-aware POS tagger for mathematical publications. The
tagger was trained using keyphrase extraction and classification of documents
from the zbMATH database. The results showed that while precision was suf-
ficient (for 26 of the 63 top-level classes higher than 0.75 and only for 4 classes

12https://libguides.umsl.edu/pubmed/mesh
13https://zbmath.org/static/msc2020.pdf
14http://www.mi.uni-koeln.de/c/mirror/www.ams.org/msc/msc-changes.html
15https://mathscinet.ams.org
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smaller than 0.5), recall was very low.
In 2017, Suzuki and Fujii presented a structure-based method for Mathe-

matical Document Classification [24]. They included structures of mathemat-
ical expressions (ME) as classification features combined with the text. They
hypothesized that ME would hold important information about mathematical
concepts, being a central part of communication in Science, Technology, Engi-
neering, and Mathematics (STEM) fields. Employing 3,339 Q&A threads from
MathOverflow16 and 37,735 papers from arXiv,17 they achieved classification
F-measures of 0.68 on the text and 0.71 on the combined text and math encod-
ings.

In 2019, Ginev and Miller performed a supervised Scientific Statement Clas-
sification over arXiv.org [5]. Exploring 50 author-annotated categories, they
grouped 10.5 million annotated paragraphs into 13 classes. Using a BiLSTM
encoder-decoder model, they achieved a maximum F1-score of 0.91. Further,
they introduced a lexeme serialization for mathematical formulae and discuss
the limitations of both data and task design, highlighting the lacking capacity
to provide a live human evaluation of the classification results.

In 2020, Scharpf et al. presented large-scale experiments for classification
and clustering of arXiv documents, sections, and abstracts comparing encodings
of natural and mathematical language [21]. They evaluated the performance
and runtimes of selected algorithms, achieving classification accuracies of up to
82.8% and cluster purities of up to 69.4%. Further, they observed a relatively
low correlation between text and math similarity, indicating a potential inde-
pendence of text and formula document features. Moreover, they demonstrated
that the computer outperformed a human expert in classification performance.

2.3 Research Gap and Delta
Previously, Schubotz et al. introduced ‘AutoMSC’ - a system for the automatic
assignment of Mathematics Subject Classification (MSC) labels [23]. Evaluating
the performance of automatic methods in comparison to a human baseline, they
found that their best-performing method achieved an F1-score of 77.2%. The
authors claim that their models could reduce manual classification effort by
86.2% without losing classification accuracy.

However, using Machine Learning, Schubotz et al. could only classify the
main MSC (primary subject) label (63 available labels). The novel approach we
present in this paper addresses this shortcoming through its ability to predict 6k
fine-grained low-level MSCs by employing class-entity relations. Furthermore,
our classifications are explainable. This means that for each predicted class
(label), the distribution of keywords (features) is extracted and visualized.

16https://mathoverflow.net
17https://arxiv.org
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3 Methods
In this paper, we address the lack of explainable and interpretable fine-grained
hierarchical mathematical document subject category classification. Specifically,
we design a solution for the following challenges of the Mathematical Subject
Classification (MSC),18 in which the classification is 1) multi-label, 2) hierar-
chical, 3) fine-grained, and 4) sparsely populated at the lowest level. The new
MSC contains 63 two-digit classifications, 529 three-digit classifications, and
6,006 five-digit classifications. As described in Section 2, Machine Learning
approaches for the coarse-grained two-digit classification already exist, while
the fine-grained three-digit and five-digit classifications still need to be done
manually. Figure 1 demonstrates the hierarchical structure of the MSC, high-

37K15

MSC
example

1st 2nd 3rd

level

Figure 1: Example of the MSC document classification level hierarchy scheme.

lighting its progression from broad, coarse-grained categories to highly specific
fine-grained ones. This organization introduces several challenges: the depen-
dencies between hierarchical levels require consistency across predictions, the
sparsity of data at fine-grained levels makes accurate modeling difficult, and
the overlapping nature of categories necessitates handling multi-label assign-
ments effectively. Additionally, the complexity of navigating over 6,000 cate-
gories underscores the importance of explainable methods to ensure the results
are interpretable and usable for domain experts.

3.1 Research Tasks
To address these challenges, we analyze the relationships between categories
(labels) and entities (features) of a mathematical document. Our developed
approaches are guided by advances in the medical domain for the automated
assignments of medical document classification labels using a domain ontology,
as described in Section 2.1. Further, our methods build on the recent results and
datasets presented in Section 2.2. No other baselines for fine-grained Mathemat-
ical Subject Class (MSC) document classification exist to date. Furthermore,
we are also not aware of any baselines for similar fine-grained hierarchical multi-
label classification problems.

18The following exemplary descriptions focus on MSC prediction from mathematical texts.
The MeSH prediction from medical texts is done analogously.
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To predict fine-grained MSC class labels, we use the abstract (text), key-
words, and references19 as input. We define the following research tasks:

1. Develop methods for fine-grained subject classifications for sparse training
data using document (abstract) text or concept keywords.

2. Compare the subject class predictions to Machine Learning and human
baselines.

3. Evaluate entity linking of text entities to a knowledge base to persist class-
entity relations that enable a fine-grained label prediction.

3.2 Research Method
The problem of data sparsity prevents the feasibility of multi-class hierarchical
fine-grained classification of mathematical documents using Machine Learning.
Two conceivable methods could be used to address this problem:

1. Predicting missing data using augmentations from an existing knowledge
graph and subsequently executing Machine Learning classification algo-
rithms on the resulting, more densely populated, dataset;

2. Directly predicting the sparsely populated fine-grained category classes
using a knowledge graph created from available class-entity relations.

In our case (MSC prediction from text and keywords), no existing knowledge
graph is available. Thus, our approach is to use the second method to create a
knowledge graph using extracted class-entity (or category-concept)20 relations
stored in an index. Employing the created knowledge graph makes it possible to
use class-entity or entity-class co-occurrence frequency statistics to predict the
fine-grained and sparsely populated classes. We use mathematical documents
with both category class labels and concept entity features available to retrieve
the co-occurrence frequency relations.

This results in ranked lists, descending by co-occurrence frequency, where
for each class, a number of correlated entities exists, and vice versa. For the
class predictions, the assignment of category classes for each keyword entity up
to a specified prediction cutoff (maximum number of classes per entity) provides
respective prediction confidence scores.

Figure 2 illustrates index creation and reversion from class-entity to entity-
class. Let us explain the index creation using a general template with example
numbers. The class-entity co-occurrence frequency index could be:
{’class 1’: {’entity 1’: 15, ’entity 2’: 5, ...},
’class 2’: {’entity 7’: 8, ...}}.
In this case, for ’class 1’, ’entity 1’ co-occurs 15 times,
’entity 2’ 5 times, etc.

19The class labels of the references.
20The terms class or category and entity or concept can be used interchangeably.
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Subsequently, the index is reversed to
{’entity 1’: {’class 1’: 15, ’class 3’: 6, ...},
’entity 2’: {’class 1’: 5, ...}}.
The reverse entity-class index enables a multi-label prediction of classes from
entities.

In this example, the prediction confidence score for ’class 1’ given ’entity 1’
is three times higher than given ’entity 2’. The exact confidence score is com-
puted by normalizing the co-occurrence frequencies (dividing by their respective
maxima).

concept entity 
keyword

category class 
MSC label

MSC 81-01

physics

class-entity 
index

entity-class 
index

Example

Example

count: 15

gravitation

count: 13
...

physics

...

MSC 81-01

count: 
15

MSC 83-01

count: 7

...

...

Figure 2: Illustration of the class-entity and reverse entity-class index that is
used (as a knowledge graph) for multi-label hierarchical fine-grained classifica-
tion with co-occurrence frequency confidence.

Given a novel document labeled with a list of keyword entities, the procedure
is as follows:

1. In the first step, the reverse entity-class index is employed to compute a
ranked list of all co-occurring classes for each entity.

2. In the second step, the resulting ranking of the collected classes yields the
confidence of the prediction.

3. In a single-label classification, the class with the highest frequency is pre-
dicted.

4. In a multi-label classification, the first m classes from the ranked list with
descending frequency numbers are predicted.

So, using the class-entity co-occurrence frequency statistics index, we can
predict a specified number n of MSCs (category classes) given keyword entities
for a given mathematical text document.
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Keyword Entity Linking to Wikidata To persist the class-entity or entity-
class correspondence relations in a knowledge graph [6], we employ entity linking
(‘Wikification’) of zbMATH concept entity keywords to Wikidata21 QIDs. Wiki-
data QIDs are unique identifiers (URIs) with corresponding concept item URLs
(often also linked to a set of Wikipedia articles in different languages). For
example, the concept ‘speed’ can be linked to a Wikidata item22 with the QID
Q3711325. This allows us to make the fine-grained class-entity mapping entirely
unique and numeric since both MSCs and QIDs are not ambiguous. We employ
two Wikidata retrieval sources to link keywords (n-grams) to QIDs. For each
keyword, we predict Wikidata QIDs using both Pywikibot23 and SPARQL.24
The final unique class-entity or entity-class knowledge graph with URLs is then
seeded to the respective Wikidata concept entity items as ‘Mathematics Subject
Classification ID’ (P3285) property statements.

3.3 Implementation
We now outline the implementation of the data processing pipeline to apply and
evaluate our methods. Data and algorithms (code) for our experiments can be
found in the paper repository.5 Due to the large size of the classification indexes
(part of our contribution), we publish them separately (anonymously).25

The script evaluate_classification.py contains all required steps in the
data processing pipeline. The steps are explained in detail in an interactive
notebook.6

The procedure is as follows.26

1. Load train table: The full ‘zbMATH Open Mathematics Subject Classifi-
cation Dataset’ is downloaded from its open source.27

2. Generate mapping indexes: The MSC-keyword-MSC or MSC-reference-
MSC index is created from the train table. The indexes are dumped to
disk to be reloaded to provide MSC predictions.

3. Index statistics: Average index key entry numbers and index distribution
entropies are computed to illustrate that entities are much more sharply
defined by classes than classes by entities.

4. Load test table: The full MR-MSCs baseline, the ‘Mathematics Subject
Classification interrater agreement dataset’ is downloaded from its open
source.28

21https://www.wikidata.org
22https://www.wikidata.org/wiki/Q3711325
23https://www.mediawiki.org/wiki/Manual:Pywikibot/de
24https://query.wikidata.org
25https://zenodo.org/records/10251194
26For the exact script and function names, see the README in the repository.
27The dataset is publicly available at https://zenodo.org/record/6448360.
28The dataset is publicly available at https://zenodo.org/record/5884600.
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5. Predict MSCs: For each document in the input table, a ranked list of MSCs
is predicted from its (abstract) text, keywords, and references using the
indexes with a specified prediction cutoff at the nth MSC (see Section 3.2).

6. Evaluate MSC predictions: The MSC ranking quality of the predicted
MSCs is evaluated in comparison to selected baselines (e.g., MR-MSCs)
in terms of Discounted Cumulative Gain (DCG) scores.

7. Precision-recall curves: The prediction (from text, keywords, and refer-
ences) quality is evaluated in terms of precision and recall in comparison
to a human baseline.

8. MSC prediction explainer demo: A user interface is provided to test the
MSC prediction from (abstract) text or keyword entities.

3.4 Classification Explainability
Both the class-entity and the reverse entity-class index can be used to provide
explainability and interpretability of the prediction by displaying the respective
distributions to a human reader or reviewer. This is a decisive advantage over
classical Machine Learning models. Currently, only a few very simple and lean
classifiers support recent explainers, such as LIME [17] or SHAP [10]. In our
approach, using the entity-class index, it is possible to trace back the exact
prediction entity source for each predicted class label. This can help both to
explain semi-supervised suggestions to human annotators and to understand
the bottlenecks of the model in the performance evaluation. Our demo user
interface provides MSC prediction explanations as class distribution charts (see
Figure 3). Finally, our fine-grained prediction can be employed in production
using our public API provided.8

4 Evaluation
In this section, we present and discuss our evaluation results. Our data, code,
and result tables are publicly available.5 We present and evaluate our novel ap-
proach to provide fine-grained hierarchical multi-label prediction of MSC labels.
Moreover, we exploit class-entity correlations to achieve classification explain-
ability. Finally, we assess entity linking of MSCs to Wikidata URLs to persist
the class-entity relations as a knowledge graph.

In our experiments, we vary numerous evaluation parameters, such as in-
cluded subject classes and granularity, ranking size, distribution type, n-gram
length, and text cleaning. We evaluate our experimental results using several
different evaluation metrics, such as class prediction accuracy, entity prediction
relevance, and ranking quality using nDCG, as well as precision, recall, and
F1-score.

11



4.1 Dataset Statistics
In the following, we describe the two employed datasets, corpora of mathemat-
ical and medical texts, both with fine-grained classification labels, respectively.
The train-test split is done according to the available human baseline dataset
(interrater agreement) as the independent test set (yielding a ratio of approxi-
mately 10:1).

The ‘zbMATH Open Mathematics Subject Classification Dataset’27 contains
4,374,874 documents labeled both with MSCs and keywords. The columns con-
tain the document number, DOI, MSC, keywords, title, abstract, and references.
The generated class-entity index contains 6,679 MSC classes correlated with
keywords, while the entity-class index contains 2,481,029 keywords (composite
n-grams). On average, each MSC class is attributed to two keyword entities,
whereas each keyword entity is attributed to six MSC classes. The average en-
tropy of the individual class-entity distributions (6.02) is about six times larger
than that of the individual entity-class distributions (1.18). Both average index
entry length and distribution entropy indicate that, as expected, entities are
much more sharply defined by classes than classes by entities.

The medical corpus is a randomized subset with a training set and test set
of the same size as the mathematical corpus, taken from the complete PubMed
dataset provided by the National Library of Medicine.29 For ease of processing,
the data was taken from the corpus behind the Search Portal [14] LIVIVO30

provided by the German library ZB MED.31

4.2 Evaluation Metrics
To explore the potential of fine-grained multi-label classification using a class-
entity knowledge graph, we compare MSC predictions based on zbMATH Open
keywords to the predictions based on references and compare both against a hu-
man baseline from the AMS Mathematical Reviews (MR) journal annotators.27
We evaluate the respective predictions using the normalized Discounted Cu-
mulative Gain (nDCG) ranking performance measure, which can be calculated
according to [7] as

nDCG =
DCG

IDCG

with the ideal IDCG (predictions exactly match the baseline) and the individual
DCGs given by

DCGp =

p∑
i=1

reli
log2(i+ 1)

where reli is the relevance (here 0, 1, or 2) at position i, and p is the ranking
scale cutoff (here position 10).

29https://pubmed.ncbi.nlm.nih.gov/download
30https://www.livivo.de/app?LANGUAGE=en
31https://www.zbmed.de/en
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Both the quality of the fine-grained MSC predictions and the entity linking
of keywords to Wikidata are evaluated using classical information retrieval (IR)
metrics, such as precision, recall, and F1-score that are derived from the num-
ber of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN). We use the IR metrics to calculate a precision-recall curve.

4.3 Research Results
In the following, we present the results of our experiments for 1) fine-grained
MSC prediction from document abstract text, keywords, and references (nDCG,
precision-recall curve), and 2) Entity linking of keywords to Wikidata items (F1
measure).

Fine-grained MSC prediction from abstract text, keywords, and ref-
erences Table 1 shows the ranking performance of the MSC predictions for
different MSC number cutoffs (first column). The results show that the fine-
grained MSC predictions from keywords almost reach the nDCG scores of the
human zbMATH Open baseline while outperforming the state-of-the-art predic-
tion from reference MSCs [23]. In the medical corpus, MeSHes are unranked
(no nDCG).

Table 1: Comparison of nDCG for MSC predictions from keywords and refer-
ences for different numbers of assigned MSCs (prediction cutoffs). Mathematical
Reviews (MR) annotations are used as human baseline (Baseline-MSCs).

Nr. MSCs Baseline-MSCs Keyword-MSCs References-MSCs
10 0.61 0.53 0.40
5 0.61 0.49 0.32
3 0.58 0.44 0.27
1 0.35 0.26 0.16

Figure 4 shows the precision-recall curve of the MSC predictions from text,
keywords, or references compared to the human baseline. The results indicate
that the quality of the MSC predictions from keywords is close to the human
baseline (inter-reviewer agreement) for a prediction cutoff of up to three MSCs
with both precision and recall around 0.5 (F1 measure 0.5). The prediction from
text achieves lower scores. This could be attributed to the fact that the abstract
text contains a wider range and greater number of keywords, thus introducing
entropy.

Figure 5 shows the precision-recall curve of the MSC predictions from text
or keywords (references or a human baseline of independent annotators are
unavailable). The results show that the quality of the MSC predictions is much
better than that of the MeSH predictions. For both MSCs and MeSHes, the
prediction from keywords outperforms the prediction from (abstract) text.

One potential explanation for the strikingly low recall of MeSH prediction
from text (both in absolute terms and relative to MSC prediction from text)
is the difference in annotator freedom between the two corpora. In the MSC
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corpus, annotators have more flexibility in selecting keywords, allowing them to
choose words that frequently appear as entity names in the abstract. Conversely,
in the MeSH corpus, the selection of keywords is constrained by the MeSH
ontology, resulting in more conceptual terms that may not closely match the
concrete language used in the abstract text.

Overall, the concept keywords are a valuable predictor of the MSC category
classes (predicted_keywords). The lower performance of fine-grained MSC
prediction from reference MSCs
(predicted_references) differs from the results of Schubotz et al. for coarse-
grained MSC classification [23]. In their experiments, the prediction from refer-
ence MSCs (F1-score 0.74) performs better than the one from text features (F1
= 0.70) and is closer to the human baseline (F1 = 0.81).

In conclusion, the superior predictive performance achieved through the uti-
lization of keyword entities is a positive outcome. This result suggests that,
particularly in fine-grained scenarios, entities prove to be more valuable than
references. This finding underscores the significance of employing our keyword-
MSC index prediction method.

Entity linking of keywords to Wikidata items Finally, we assess the pre-
diction of Wikidata QIDs or concept item URLs from zbMATH Open keywords,
also known as Entity Linking or ‘Wikification’ for Knowledge Graph Popula-
tion. This step is necessary if no keywords are available for a given document. In
this case, the Entity Linker extracts them before the fine-grained classification.
Table 2 shows the evaluation of entity linking for 500 mathematical concept
keywords from 100 randomly selected documents. The complete evaluation lists
of results can be found in the repository. For the performance assessment of the
entity linking methods, a manual annotation benchmark is created.

Table 2: Manual evaluation of automatically linking 500 random mathemat-
ical concept keywords from zbMATH Open to Wikidata QIDs. The manual
benchmark can be reused to evaluate other approaches on this dataset.

Method Precision Recall Specificity F1
Pywikibot 1.0 0.875 1.0 0.933
SPARQL 0.987 0.570 0.667 0.723

The results in Table 2 show that both entity linkers are highly precise, with
only one false positive for Pywikibot and even zero for the SPARQL retrieval.
However, there are a number of false negatives for both, leading to a lower recall.
This can be traced back to linked disambiguation pages (both for Wikidata
items and Wikipedia articles). Moreover, some concepts have items and articles
named by their synonyms or aliases. Overall, the Pywikibot linker performs
better than the SPARQL retrieval in terms of precision, recall, and especially
true negative rate (TNR) and F1-score.
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5 Discussion
In this final section, we recall our findings, discuss and summarize our contri-
bution, and outline future research directions.

5.1 Conclusion
Our research shows that using the relations between mathematical keyword
entities and category classes in mathematical documents, we can achieve fine-
grained mathematical subject class category (MSC) predictions. To demon-
strate the effectiveness of this approach, we employed a dataset containing 4.4M
documents from zbMATH Open, labeled using MSC-keyword correspondences.

Our experiments indicate that we can predict fine-grained MSC subjects
in the zbMATH Open dataset using document keywords with a performance
in terms of normalized Discounted Cumulative Gain and precision-recall curve
close to the human baseline. The lower performance of the MSC prediction
from (abstract) text indicates that this method should primarily be employed
if keywords are unavailable.

Finally, we can link keywords to Wikidata items (Wikipedia articles) with a
precision of 1.0, recall of 0.88, and F1-score 0.93 on a collection of 500 manually
assessed samples. The linking allows the fine-grained class-entity mapping to
consist only of unique and numeric identifiers (MSCs and QIDs).

In summary, we show that by exploiting the relationships between category
classes and concept entities, we can address fine-grained classification with data
sparsity and provide high classification explainability. Our work is the first to
apply entity linking to Wikidata in mathematical texts by using MSC classifi-
cation labels.

Impact The research we present in this paper has already impacted the math-
ematical and research community. Our public API8 is used in production by the
mathematical library zbMath Open, which is being accessed around 40 million
times per year.32

5.2 Future Work
In the future, we will seed additional entity linking relations between MSC cat-
egory classes and concept entity Wikidata QIDs to the Wikidata knowledge
graph and persist entity-category linkings to evaluate the quality of knowledge
graph labeling. For example, the Wikidata item for the keyword ‘least squares
method’ (Q74304)33 is linked to the MSC ‘62J02’ via the property ‘Mathematics
Subject Classification ID’ (P3285). We seeded the concept entities34 into Wiki-

32https://www.fiz-karlsruhe.de/sites/default/files/FIZ/Dokumente/
Jahresberichte/\\Jahresbericht-2022.pdf

33https://www.wikidata.org/wiki/Q74304
34https://github.com/AnonymousCSResearcher/FineGrainedMSCPred/blob/main/src/

entitylinking/qid-msc_wikidata-seeding.csv
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data, for which there was a humanly verified concept benchmark. For batch
processing, we used the Wikidata ‘quickstatements’ toolforge.35

Since there are often not enough training examples per class for fine-grained
classification, a classification using knowledge graph relations (linking entity
keywords to subject classes) may be very beneficial to label small classes with
little training data. If expedient, we will also employ costly supervised entity and
category annotation in an active learning framework, a process for which we will
first need to develop guidelines. Finally, we plan to explore how mathematical
entity linking (MathEL) [19, 18] of formula entities to concept keyword entity
names can support the classification of mathematical documents.

Our approach to enabling explainable fine-grained hierarchical multilabel
classification of mathematical and medical documents using concept keywords
can be generalized and applied to other libraries and schemes. Having tackled
the presented classification schemes in the mathematical and medical domains,
we plan to extend our research to arXiv’s Category Taxonomy. Our approach
will foster explainability and transparency. The transparency provided by map-
ping keywords to hierarchical classifications is especially crucial in fields where
understanding the basis of classification decisions is essential, such as in legal
or medical contexts.
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Figure 3: Demonstration interface for explainable MSC classification using an
example document abstract from
https://zbmath.org. Class-entity distributions are visualized as pie charts,
allowing readers or reviewers to understand the classification reason. The demo
is available at
https://automscexplainer.wmcloud.org with an API to implement the pre-
dictions in production at
https://automscexplainer.wmcloud.org.
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Figure 4: Mathematical texts: Precision-recall curve for MSC predictions based
on text (abstract), keywords, and references compared to the human annotator
baseline. The MSC prediction cutoff varies from 1 (upper left) to 10 (lower
right). Figure best viewed in color.
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Figure 5: Medical texts: Precision-recall curve for MeSH predictions based on
text (abstract) and keywords. References or a human baseline of independent
annotators are unavailable. The MeSH prediction cutoff varies from 1 (upper
left) to 10 (lower right). Figure best viewed in color.
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