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Abstract

Literature recommendation systems assist readers in the discovery of relevant documents.
Content-based systems recommend documents similar to the currently viewed document.
However, the simple distinction between similar and dissimilar documents neglects the many
aspects that make documents similar. For instance, two scientific papers may use a similar
methodology while covering different research problems. Current document similarity measures
are aspect-free, i.e., they cannot differentiate between specific aspects of the document content.

To address this limitation, this thesis proposes aspect-based document similarity for literature re-
commendations. By incorporating aspect information, recommendations can account for specific
aspects of the document content. This thesis makes three contributions: First, it evaluates docu-
ment representations and similarity measures and demonstrates that the lack of aspect information
notably impacts recommendations. Second, it designs a new scientific document representation
method that improves upon the state-of-the-art. Third, it designs two approaches for aspect-based
document similarity that address the limitations of aspect-free similarity.

The thesis evaluates existing document similarity methods, focussing on methods that use graph
and text information. The qualitative and quantitative evaluations reveal that although the overall
user satisfaction is comparable between the two information sources, users perceive the recom-
mendations from these sources as different. Therefore, the choice of similarity measures affects
the generated recommendations, i.e., they implicitly address different aspects.

Furthermore, the thesis designs a novel scientific document representation method. The method is
called SciNCL and relies on citation graph embeddings to select the most informative samples for
the contrastive fine-tuning of a text-based document encoder. SciNCL achieves state-of-the-art
results and is applicable for both aspect-free and aspect-based similarity.

Subsequently, the thesis first designs an aspect-based document similarity measure based on a
pairwise multi-class classification approach. Unlike aspect-free similarity, which is a pairwise
binary document classification – similar or not, the extension to a multi-class classification allows
measuring similarity for a given aspect. The pairwise classification approach is implemented
and evaluated for Wikipedia articles and scientific literature. The thesis also implements a
second approach using specialized document representations to further improve the efficiency of
aspect-based similarity. By formulating aspect-based similarity as a vector similarity problem in
aspect-specific embedding spaces, aspect information is encoded only once per document and
aspect. This makes the approach scale linearly with the corpus size. Further evaluations reveal
that aspect-free representations have an implicit bias towards one aspect, confirming the problem
of missing aspect information. The specialized document representations mitigate potential risks
from implicit biases by making them explicit and controllable.

Finally, the practicality of aspect-based document similarity is demonstrated with a prototypical
research paper recommender system. The prototype provides diverse recommendations from
different aspects and recommendations tailored to specific aspects.
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Zusammenfassung

Literaturempfehlungssysteme unterstützen den Leser relevanten Dokumente zu finden. Dabei
nutzen inhaltsbasierte Systeme sog. Dokumentenähnlichkeitsmaße. Die alleinige Unterscheidung
zwischen ähnlichen und unähnlichen Dokumenten vernachlässigt jedoch die vielen Aspekte, die
Dokumente ähnlich machen. So können beispielsweise wissenschaftliche Artikel ähnlich in ihrer
Methodik aber unterschiedlich in dem behandelten Problem sein. Heutige Dokumentenähnlich-
keitsmaße sind aspektfrei, d.h. sie unterscheiden nicht zwischen Aspekten des Dokumentinhalts.

Um dieses Problem zu adressieren, schlägt diese Arbeit eine aspektbasierte Dokumentenähn-
lichkeit vor. Die Einbeziehung von Aspekten ermöglicht Empfehlungen für bestimmte Aspekte
des Dokumentinhalts. Diese Arbeit leistet drei Forschungsbeiträge: Erstens werden Dokumen-
trepräsentationen und Ähnlichkeitsmaße evaluiert und es wird gezeigt, dass das Fehlen von
Aspektinformationen Empfehlungen beeinträchtigt. Zweitens wird eine Methode zur Dokumen-
tenrepräsentation entwickelt, die den Stand der Technik verbessert. Drittens werden zwei Ansätze
zur aspektbasierten Dokumentenähnlichkeit entwickelt, die die genannten Probleme adressieren.

Die Arbeit evaluiert Dokumentenähnlichkeitsmaße, die Graph- bzw. Textinformationen ver-
wenden. Die Evaluationen zeigen, dass die Nutzerzufriedenheit zwischen den beiden Informa-
tionsquellen zwar vergleichbar ist, die Nutzer aber die Empfehlungen aus diesen Quellen als
unterschiedlich wahrnehmen. Daher beeinflusst die Wahl der Ähnlichkeitsmaße die generierten
Empfehlungen, d.h. sie adressieren implizit unterschiedliche Aspekte.

Außerdem entwickelt die Arbeit eine Repräsentationsmethode für wissenschaftliche Artikel. Die
Methode mit dem Namen SciNCL nutzt Contrastive Learning und Embeddings des Zitationsgra-
phen, um einen Dokumentenkodierer zu trainieren. SciNCL verbessert den Stand der Technik
und ist sowohl für aspektfreie als auch aspektbasierte Dokumentenähnlichkeit anwendbar.

Anschließend wird zunächst ein aspektbasiertes Dokumentenähnlichkeitsmaß entwickelt, das
auf einem paarweisen Mehrklassen-Klassifikationsansatz beruht. Im Gegensatz zur aspektfreien
Ähnlichkeit, bei der es sich um eine paarweise binäre Dokumentenklassifikation handelt, ermög-
licht die Mehrklassenklassifikation die Messung der Ähnlichkeit für einen bestimmten Aspekt.
Der Klassifikationsansatz wird für Wikipedia und wissenschaftliche Artikel implementiert und
evaluiert. Die Arbeit implementiert auch einen zweiten Ansatz mit verbesserter Effizienz, der
auf speziellen Dokumentrepräsentationen basiert. Die aspektbasierte Ähnlichkeit wird als Vek-
torähnlichkeitsproblem in aspektspezifischen Embedding Spaces formuliert, dadurch werden
die Aspektinformationen nur einmal pro Dokument und Aspekt kodiert. Weitere Evaluatio-
nen zeigen, dass aspektfreie Repräsentationen eine implizite Tendenz zu einem der Aspekte
aufweisen, was das Problem der fehlenden Aspektinformationen bestätigt. Die spezialisierten
Dokumentrepräsentationen machen diese Tendenzen explizit und somit kontrollierbar.

Schließlich wird die Anwendbarkeit der aspektbasierten Dokumentenähnlichkeit anhand eines
prototypischen Empfehlungssystems für wissenschaftliche Artikel demonstriert. Der Prototyp
bietet nicht nur vielfältige Empfehlungen zu unterschiedlichen Aspekten, sondern auch auf
bestimmte Aspekte zugeschnittene Empfehlungen.

xi



xii



Part I

Introduction and Related Work

1



2



Chapter 1

Introduction

This thesis investigates aspect-based document similarity measures to improve content-based
literature recommender systems, which is an open research challenge in information retrieval (IR)
and natural language processing (NLP). Section 1.1 describes and motivates the problems arising
from using document similarity measures for content-based recommender systems. Section 1.2
summarizes the research gap regarding the lack of aspect information in existing document
similarity measures. Section 1.3 presents the research objective and research tasks, which guided
the research, and defines relevant terminology. Section 1.4 outlines the presentation of my
research in this thesis. Section 1.5 gives an overview of peer-reviewed publications, which are
fully contained in this thesis.

1.1 Problem Setting

The continuously increasing amount of digitally available content has led to an information
overload making it increasingly difficult to find relevant content (Roetzel, 2018). For example,
the number of scientific papers published each year has grown steadily for over two centuries by
about 3% per year (Johnson et al., 2018; Ware and Mabe, 2015). Such growth makes it more
difficult and time-consuming for scientists to browse all papers published in their field (Ding
et al., 2014). Consequently, recommender systems have become a crucial filtering and discovery
tool for coping with the information overload, which many users of digital libraries rely on. For
example, Lin and Wilbur (2007) report that PubMed’s recommender system1 for biomedical
literature receives about 19% of the clicks.

Many recommender approaches like the popular collaborative filtering (Resnick et al., 1994, CF)
rely on information about their users to provide individual recommendations based on the col-
lected data. CF and related user-based approaches are crucial to many commercial services, e.g.,
recommendations for Amazon products (Smith and Linden, 2017) or Youtube videos (Davidson
et al., 2010). However, in numerous scenarios, user-based recommender systems are not appli-
cable because of the unavailability of user information or the user’s information need changing
too frequently to provide meaningful recommendations. Literature recommender systems often
deal with such a scenario. Therefore, most of the literature recommender systems (approximately
55%) employ content-based document features and corresponding similarity measures instead of
user-based features (Beel et al., 2016b). Content-based systems are based on the assumption that
a user perceives a recommendation as relevant when the recommended document is semantically
similar to the currently viewed document (Van Rijsbergen, 1979).

The task of recommending documents is typically divided into two major phases, feature repre-
sentation and retrieval. First, features of documents are represented as numerical vectors, both
the seed document (also called query document) and the document collection. Translating natural
language text and other information into n-dimensional vectors is a core problem in IR and NLP.
The vector space model (Salton et al., 1975), TF-IDF (Jones, 1972), Paragraph Vectors (Le and

1https://pubmed.ncbi.nlm.nih.gov/, last accessed: 18/01/2023
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Section 1.1. Problem Setting

Mikolov, 2014), and BERT (Devlin et al., 2019) are common approaches to capture semantic text
features. Similarly, non-textual document elements, such as citations in the scientific literature
or hyperlinks in the Web, are an essential source of semantic information (Garfield, 2001; Gipp
and Beel, 2009; Kessler, 1963; Small, 1973). Second, a retrieval method selects the most similar
documents from the collection to the seed document. The cosine similarity is one common mea-
sure that computes the similarity score between document vectors. As illustrated in Figure 1.1, a
similarity score is assigned to each document pair of seed and recommendation candidates. Then,
the top-k recommendations are chosen from the candidate documents with the highest similarity
to the seed document.

top-k recommendations

similar

seed
document candidate documents

…

Figure 1.1: Content-based recommender systems assume that a user perceives a recommendation
as relevant when the recommended document is semantically similar to the seed document, i.e,
the recommendations are the most similar candidate documents.

The described process works entirely on content-based features and does not require any user
information. Content-based features refer to all information directly derived from the documents
themselves such as textual content like titles or the body text, graph information like citations,
and metadata like author information. In contrast, user-based features are collected from user-
document interactions, i.e., implicit feedback like clicks and explicit feedback in the form of
ratings. Citations share some properties of user-based features. For instance, citations can be
used to measure the popularity of a document. However, they are essentially document-document
interactions that can be derived from the documents alone without users interacting with a system.
Therefore, citations are typically considered content-based features.

Content-based recommender systems are independent of user information and, therefore, have
the advantage of avoiding the cold start problem (Lika et al., 2014; Volkovs et al., 2017), which
user-based approaches face when handling new items or novel users. But the disadvantage is
that content-based approaches rely heavily on the notion of similarity and similarity acts only
as an approximation for relevancy or another optimization goal. This originates from the goal
of providing relevant recommendations. The question of whether a recommendation is relevant
or not, however, is highly subjective and depends on the information needs of the individual
users. Accordingly, relevancy can only be measured through user interactions. Since content-
based systems do not have access to user information and instead rely on similarity measures,
content-based recommendations struggle to address individual information needs. Moreover,
similarity is also not necessarily an indicator of relevance. For instance, a document can be too
similar to the seed to make it a relevant recommendation but rather be considered a duplicate or
even plagiarism (Foltýnek et al., 2019). Determining the similarity of documents also requires
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encoding the semantic information contained in the documents. Despite the recent progress in
NLP induced by large language models (Brown et al., 2020; Devlin et al., 2019; Liu et al., 2019;
Radford et al., 2019), the understanding of documents semantics remains challenging, especially
for expert domains like law (Dehio et al., 2022) or for long documents (Beltagy et al., 2020).

Despite the challenges that arise with the development of content-based literature recommender
systems, the demand for recommender systems will further increase. The trend of more available
content is accelerating rather than slowing down, therefore, making progress on this problem
is crucial. Moreover, document similarity is relevant to other related IR and NLP problems.
For instance, finding semantically similar content is fundamental for many other applications,
including question answering (Schwarzer et al., 2016a), plagiarism detection (Wahle et al., 2022),
semantic storytelling (Rehm et al., 2022), and visualizations (Breitinger et al., 2020).

1.2 Research Gap

Content-based recommender systems provide a single untailored set of recommendations that is
the same for all users and that is based on the similarity of the candidate documents with the seed
document (as illustrated in Figure 1.1). The composition of the recommendations exclusively
depends on the underlying feature representation method and the employed similarity measure.
In contrast to these untailored recommendations, user-based approaches tailor recommendations
specifically for individual users and their information needs. Content-based systems lack the
ability to tailor recommendations. This inability is one major limitation of content-based recom-
mendations compared to their user-based counterparts. The limitation originates from the use of
similarity measures.

Today’s similarity measures simply distinguish between similar and dissimilar documents. To put
it differently, they neglect that documents can be similar not just in one but in many different ways.
Such a distinction is too simple and does not reflect the heterogeneous semantics of complex
documents such as research papers or court decisions, which are subjects of literature recommen-
der systems. For instance, research papers cover multiple aspects of a topic, e.g., methodology,
background, or results. Consequently, research papers can be similar in methodology but differ-
ent in their results. Likewise, court decisions can have similar statements of facts but different
legal consequences. These aspects, in which documents can be similar, are neglected by today’s
similarity measures. Instead, the similarity measures treat documents as singular entities even
though the document semantics are rather heterogeneous. As a result, it remains unclear to what
aspect the similarity relates, i.e., the similarity is aspect-free. Goodman (1972) already argued
that the similarity of A to B is meaningless unless one can say “in what respect” A is similar to B.
Hence, the similarity of A and B should only make sense if we know what aspects are considered.
In other words, the similarity should be aspect-based instead of aspect-free.

Figure 1.2 illustrates how the similarity of documents can change depending on a given aspect.
For aspect a1 (green), the most similar documents and corresponding recommendations differ
from the ones for aspect a4 (orange). In practice, the set of aspects depends on the application
domain and should be chosen to match potential user information needs. For example, the aspects
of scientific literature could be the background, methodology, or results of research papers. De-
termining the document similarity with respect to one of these aspects enables recommendations
tailored to specific aspects, which are relevant to the users.
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Figure 1.2: Aspect-based document similarity for recommender systems. Document semantics
are heterogeneous (illustrated by different colors). The similarity measurement changes depend-
ing on the considered aspect. Recommendations can be tailored to a specific aspect.

Assuming that the set of aspects matches with information needs, the recommendations gen-
erated from aspect-based similarity are more likely to be relevant compared to the ones from
aspect-free similarity. That is because recommendations from aspect-free similarity cannot be
tailored to specific information needs. The aspect-based similarity would be especially beneficial
for recommender systems with an expert audience. Experts have complex information needs and
often search for relations between literature that may not be evident at first sight. For the domain
of scientific literature, Chan et al. (2018) emphasized how important the discovery of analogies
between research papers is for scientific progress. Current document similarity measures are not
designed for solving analogical queries. An example of an analogical query is the recommenda-
tion of other papers with similar methodology but different results, i.e., combining the similarity
or dissimilarity in multiple aspects. Solving such queries is crucial for finding distantly related
yet highly relevant documents. One relevant paper that shares a specific aspect might remain
undiscovered because it is from a different research field and does not share the vocabulary or
citations with the seed document (Kang et al., 2022). At the same time, the ability to address
aspects individually also allows mixing aspects to improve recommendation diversity.

Measuring the similarity of documents based on aspects also allows using these aspects as
explanations to users. Aspects provide a better intuition on why a certain document is being
recommended. With current recommendations from aspect-free similarity, the reasons for the
recommendation remain opaque to the users. The lack of transparency can lead to mistrust,
ultimately risking the general success of recommender systems, as pointed out by Zhang and Chen
(2020) and Kunkel et al. (2019). More explainable recommendations improve the transparency,
persuasiveness, effectiveness, and satisfaction of recommendation systems.
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In this thesis, I investigate what I call aspect-based document similarity to address the previously
described limitations. Instead of determining similarity in an aspect-free manner, namely as a
tuple of a seed document ds and a target document dt , the aspect-based document similarity is
a triple of ds, dt and an aspect ai. My aspect-based interpretation of document similarity goes
beyond the traditional document similarity approaches commonly used in related work. Hence,
aspect-based document similarity can be considered a less established research problem. This
is also reflected in diverse terminology, i.e., the literature refers to aspects as facets, semantic
relations, or fine-grain document similarity.

In summary, the inability to tailor recommendations to specific information needs is one key weak-
ness of content-based systems compared to their user-based counterparts. Aspect-based similarity
measures address this weakness and also enable more explainable and diverse recommendations
without the need to collect user information.

1.3 Research Objective

Taking the identified research gap as motivation, I define the following objective for my research:

� Research Objective

Design, implement, and evaluate automated approaches to generate literature
recommendations based on aspect-free and aspect-based document similarity measures.

To achieve my research objective, I derived the following research tasks:

e Research Tasks

I Evaluate state-of-the-art document similarity measures and underlying document
representations that use text or graph information.

II Design one document representation method that improves upon the state-of-the-art
while using both text and graph information.

III Design an aspect-based document similarity measure to address the limitations of
existing aspect-free similarity measures.

IV Implement aspect-based document similarity such that it scales to large document
corpora.

To further specify the research objective and tasks, I define the relevant terminology and the
scope of this thesis in the following. A definition of other terms can be found in the glossary of
the thesis. Section 2.2 presents a more detailed discussion about the similarity term.

Aspects. The term aspect originates from the Latin word aspectus that means “looking at”
(Lewis, 1891). Thus, an aspect of something is the direction or perspective from which it is
looked at. Following this meaning, the Merriam Webster dictionary defines an aspect as “a
particular status or phase in which something appears or may be regarded”.2 Transferred to the
context of this thesis, an aspect of a document is the perspective from which a user may look at

2https://www.merriam-webster.com/dictionary/aspect, last accessed: 18/01/2023
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Section 1.4. Thesis Outline

the document’s content. Thus, aspects are closely coupled to the information need a user may
have and depend on the application domain. For example, a researcher might be interested in the
methodology or the research problem of a paper, whereas a legal professional might be interested
in the statement of facts or legal consequences of a court decision. Generally, the thesis considers
only aspects concerned with the semantic level of documents. Other commonalities, such as
visual or linguistic features, are excluded.

The literature uses various terms for such aspects. For instance, aspects are also referred to as
multi-senses (Mancini et al., 2017; Nguyen et al., 2017), multi-perspectives (He et al., 2015),
facets (Mysore et al., 2021; Risch et al., 2021), or contexts (Hofmann et al., 2010). These terms
can have slightly different connotations and nuanced meanings while often referring to the same
concept. However, these terms sometimes also refer to concepts different from this thesis. Facets
are often referred to as boolean filters, whereas this thesis’ scope is a more fuzzy similarity.
Multi-senses are often used to describe word-level senses, whereas this thesis is about senses on
a document level. Therefore, I settle on the term of aspects following the related and established
NLP task of aspect-based sentiment analysis.

Aspect-based similarity. The key characteristic of aspect-based similarity is that the similarity
assessment changes as the considered aspect changes. Given that an aspect is the perspective from
which something is looked at, the aspect in the aspect-based similarity defines the perspective
from that one looks at the document content when assessing the similarity. The aspect-free
similarity is the counterpart to aspect-based similarity, i.e., the similarity assessment is regarded
without any particular aspect.

Literature recommendations. Recommender systems are applied in diverse use cases.
Prominent examples of use cases are e-commerce (Smith and Linden, 2017), entertainment
(Davidson et al., 2010), or news (Karimi et al., 2018). This thesis focuses on the use case of
literature recommender systems that are used by digital libraries to assist their users in finding
relevant content. Accordingly, the goal is to recommend pieces of literature, which are generally
any form of written work. To account for the diversity of available literature, the thesis conducts
experiments with three types of literature: Wikipedia articles, court decisions, and research
papers. In general, the thesis refers to instances of these literature types as documents.

Content-based features. Digital libraries often operate in a setting where no or only little user
data is available (Beel et al., 2016b). To reflect this limitation, the thesis restrains its experiments
to methods that rely exclusively on content-based features to generate recommendations and that
do not require user data. Accordingly, the investigated methods exclusively rely on information
derived from the content of documents, which is the main body text, graph data like citations or
links, and metadata, e.g., the title or abstract of the document.

1.4 Thesis Outline

This thesis presents experiments that can be divided into aspect-free and aspect-based document
similarity. The aspect-free experiments investigate a diverse set of methods in three different
application domains, namely, Wikipedia articles, legal documents in the form of court decisions,
and research papers. The aspect-based experiments propose and evaluate approaches to integrate
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aspect information into document similarity measures. Wikipedia articles and research papers
are revisited as application domains. The overall thesis is structured as follows:

PART I: INTRODUCTION AND PRELIMINARIES

Chapter 1 presents the problem of content-based literature recommendations and document
similarity measures, identifies the research gap that motivated this thesis, and describes how the
thesis addresses the research objective and the four research tasks.

Chapter 2 introduces the reader to related literature and background information relevant to
the experiments presented in this thesis. The chapter reviews methods for document similarity
and document representations on a conceptual level (Research Task I).

PART II: ASPECT-FREE DOCUMENT SIMILARITY

Chapter 3 evaluates document similarity measures for Wikipedia articles comparing two
graph-based and one text-based method (Research Task I). The methods are compared in an
empirical offline evaluation and a qualitative user study. The comparison reveals that text-based
and graph-based methods yield different notions of document similarity, each addressing different
information needs and that this difference is also perceived by the users.

Chapter 4 evaluates 25 document representation methods for legal literature recommendations
(Research Task I). This chapter extends the experiments of the previous chapter to a new literature
domain and to a large number of state-of-the-art methods. The experiments reveal a little overlap
in the recommendations from text-based and graph-based methods.

Chapter 5 designs a document representation method combining text and graph information
(Research Task II). The designed method, called SciNCL, uses citation graph embeddings for
the contrastive fine-tuning of a language model and achieves new state-of-the-art results.

PART III: ASPECT-BASED DOCUMENT SIMILARITY

Chapter 6 conducts the first experiments on extending document similarity with aspect infor-
mation using a pairwise multi-class document classification approach (Research Task III). This
chapter revisits the literature domain of Wikipedia articles.

Chapter 7 extends the pairwise classification approach from a single-label to a multi-label
classification problem and demonstrates its validity for research papers (Research Task III).

Chapter 8 continues with research papers as literature domain and improves upon the pairwise
classification approach (Research Task IV). This is achieved by modeling the aspect-based
similarity as a classical vector similarity task in aspect-specific embedding spaces.

PART IV: FINAL CONSIDERATIONS

Chapter 9 summarizes the research contributions of this thesis and proposes future work.
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1.5 Prior Publications

To subject my research to peer review, I have published most of the content in this thesis in the
publications listed below. The publications are in chronological order and associated with the
chapters to which they contribute.

1. “Evaluating Link-based Recommendations for Wikipedia” by Malte Schwarzer, Moritz Schubotz,
Norman Meuschke, Corinna Breitinger, Volker Markl, and Bela Gipp. In: Proceedings of the 16th
ACM/IEEE-CS on Joint Conference on Digital Libraries (JCDL), 2016. Chapter 3.

2. “Citolytics: A Link-based Recommender System for Wikipedia” by Malte Schwarzer, Corinna
Breitinger, Moritz Schubotz, Norman Meuschke, and Bela Gipp. In: Proceedings of the Eleventh
ACM Conference on Recommender Systems (RecSys), 2017. Chapter 3.

3. “Pairwise Multi-Class Document Classification for Semantic Relations between Wikipedia Articles”
by Malte Ostendorff, Terry Ruas, Moritz Schubotz, Georg Rehm, and Bela Gipp. In: Proceedings
of the 2020 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2020. Chapter 6.

4. “Contextual Document Similarity for Content-based Literature Recommender Systems” by Malte
Ostendorff. In: Proceedings of the Doctoral Consortium at ACM/IEEE Joint Conference on Digital
Libraries (JCDL), 2020. Chapter 6-7.

5. “Aspect-based Document Similarity for Research Papers” by Malte Ostendorff, Terry Ruas, Till
Blume, Bela Gipp, and Georg Rehm. In: Proceedings of the 28th International Conference on
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6. “Evaluating Document Representations for Content-Based Legal Literature Recommendations”
by Malte Ostendorff, Elliott Ash, Terry Ruas, Bela Gipp, Julián Moreno-Schneider, and Georg
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Additionally, I contributed the following publications that are partially related to the research pre-
sented in this thesis. For example, such publications address related natural language processing
or information retrieval tasks like semantic storytelling, summarization, question answering, or
document classification.

11. “An Interactive e-Government Question Answering System” by Malte Schwarzer, Jonas Düver,
Danuta Ploch, and Andreas Lommatzsch. In: LWDA 2016 conference - Lernen, Wissen, Daten,
Analysen (LWDA), 2016.

12. “Enriching BERT with Knowledge Graph Embeddings for Document Classification” by Malte
Ostendorff, Peter Bouronje, Maria Berger, Julián Moreno-Schneider, Georg Rehm, and Bela Gipp.
In: Proceedings of the GermEval Workshop 2019 – Shared Task on the Hierarchical Classification
of Blurbs co-located with the 15th Conference on Natural Language Processing (KONVENS), 2019.

13. “Towards an Open Platform for Legal Information” by Malte Ostendorff, Till Blume, and Saskia
Ostendorff. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2020.

14. “Towards Discourse Parsing-inspired Semantic Storytelling” by Georg Rehm, Karolina Zaczyn-
ska, Julián Moreno-Schneider, Malte Ostendorff, Peter Bouronje, et al. In: Proceedings of the
Conference on Digital Curation Technologies (QURATOR), 2020.

15. “Named Entities in Medical Case Reports: Corpus and Experiments” by Sarah Schulz, JuricaŠeva,
Samuel Rodriguez, Malte Ostendorff, and Georg Rehm. In: Proceedings of the 12th Language
Resources and Evaluation Conference (LREC), 2020.

16. “Semantic Storytelling: From Experiments and Prototypes to a Technical Solution” by Georg
Rehm, Karolina Zaczynska, Peter Bouronje, Malte Ostendorff, Julián Moreno-Schneider, et al. In:
Computational Analysis of Storylines: Making Sense of Events, 2021.

17. “Ordering Sentences and Paragraphs with Pre-trained Encoder-Decoder Transformers and Pointer
Ensembles” by Rémi Calizzano, Malte Ostendorff, and Georg Rehm. In: Proceedings of the 21st
ACM Symposium on Document Engineering (DocEng), 2021.

18. “HiStruct+: Improving Extractive Text Summarization with Hierarchical Structure Information” by
Qian Ruan, Malte Ostendorff, and Georg Rehm. In: Findings of the Association for Computational
Linguistics (ACL), 2022.

19. “Generating Extended and Multilingual Summaries with Pre-trained Transformers” by Rémi Cal-
izzano, Malte Ostendorff, Qian Ruan, and Georg Rehm. In: Proceedings of the 13th Language
Resources and Evaluation Conference (LREC), 2022.

20. “Semantic Relations between Text Segments for Semantic Storytelling: Annotation Tool – Dataset
– Evaluation” by Michael Raring, Malte Ostendorff, and Georg Rehm. In: Proceedings of the 13th
Language Resources and Evaluation Conference (LREC), 2022.

21. “Claim Extraction and Law Matching for COVID-19-related Legislation” by Niklas Dehio, Malte
Ostendorff, and Georg Rehm. In: Proceedings of the 13th Language Resources and Evaluation
Conference (LREC), 2022.

22. “Identification of Relations between Text Segments for Semantic Storytelling” by Georg Rehm,
Malte Ostendorff, Rémi Calizzano and Karolina Zaczynska and Julián Moreno-Schneider. In:
Proceedings of the Conference on Digital Curation Technologies (QURATOR), 2022.

23. “Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning”
by Malte Ostendorff and Georg Rehm. In: Practical ML for Developing Countries Workshop
co-located with the International Conference on Learning Representations (PML4DC@ICLR),
2023.
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24. “Integration of a Semantic Storytelling Recommender System in Speech Assistants” by Maria
Gonzalez Garcia, Julian Moreno Schneider, Malte Ostendorff, and Georg Rehm. In: Proceedings
of Text2Story – Sixth International Workshop on Narrative Extraction from Texts held in conjunction
with the 45th European Conference on Information Retrieval (ECIR), 2023.

To acknowledge the fellow researchers with whom I published, collaborated, and discussed ideas,
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Preprints of all my publications are available at
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My Google Scholar profile is available at
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Chapter 2

Related Work

This chapter provides background knowledge and relevant literature for the subsequent chapters.
It introduces the fundamentals of recommender systems while focusing on a particular type of
recommender systems that will be used throughout the thesis, namely content-based systems
(Section 2.1.1), and their evaluations (Section 2.1.3). Given that similarity is crucial for content-
based recommendations, the concept of similarity and its use in psychology (Section 2.2.2) and
information theory (Section 2.2.3) is explained in this chapter. The remaining sections introduce
methods relevant throughout this thesis, while we separately discuss text-based (Section 2.3) and
graph-based approaches (Section 2.4). A review of related work about aspect-based NLP tasks
concludes this chapter (Section 2.5).

2.1 Recommender Systems

A recommender system can be defined as an application that recommends the most suitable item
to a particular user given a collection of items (Ricci et al., 2011). The problem of recommending
items can be considered a sub-problem of information filtering or information retrieval. In other
words, the most suitable item must be filtered or retrieved for the item collection. Recommender
systems are applied in various domains and contexts, from shopping or entertainment over social
media to digital libraries (Lu et al., 2015; Schafer et al., 1999). Examples for recommend items
are Amazon products (Smith and Linden, 2017), YouTube videos (Davidson et al., 2010), research
papers (Beel et al., 2016b), and news articles (Karimi et al., 2018), to name a few. Depending on
the recommended item and the application domain, what is considered as the most suitable item
can change. Thus, recommender systems are optimized for different goal metrics, for instance,
relevance (Zheng et al., 2010), clicks (Feng et al., 2019b; Pan et al., 2019), novelty and diversity
(Kaminskas and Bridge, 2017; Kunaver and Požrl, 2017; Mendoza and Torres, 2020), or business
profit (Azaria et al., 2013; Jannach and Adomavicius, 2017).

Aside from their application domain, recommender systems can be categorized based on the
information they rely on to generate recommendations. In the literature, you typically distinguish
between user-based or content-based systems and a hybrid combination of user and content
information (Adomavicius and Tuzhilin, 2005; Aymen and Imène, 2022; Fayyaz et al., 2020;
Ricci et al., 2011).

2.1.1 Content-based Recommender Systems

Content-based recommender systems originate from research about information retrieval (Baeza-
Yates and Ribeiro-Neto, 1999; Manning et al., 2008; Salton, 1989) and information filtering
(Belkin and Croft, 1992). In line with collaborative filtering, content-based recommender systems
are also referred to as content-based filtering (Aggarwal, 2016).

The literature also discusses content-based approaches that match users to items that are similar
to what they have liked in the past without relying on other users’ data (Pazzani and Billsus,
2007). However, this thesis focuses on content-based recommendations that do not require user
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data and are generally user-independent. In this pure content-based setting, the system selects the
recommendations for a given seed item based on their similarity to the seed item. The underlying
assumption is that a user would perceive a recommendation as relevant if the seed item and the
recommended item are similar (Van Rijsbergen, 1979). Unlike collaborative filtering, content-
based recommendations do not experience cold-start issues and are less prone to filter bubbles. In
the following, we review specific instances of content-based recommender systems categorized
by their application domains relevant to this thesis. For other domains and a general overview,
we refer to the surveys from Aggarwal (2016), Deldjoo et al. (2020), and Lops et al. (2011).

2.1.1.1 Research Paper Recommender Systems

Several literature surveys provide a comprehensive overview of studies about research paper
recommender systems (Ali et al., 2021; Aymen and Imène, 2022; Bai et al., 2019; Beel et al.,
2016b; Li and Zou, 2019; Ma et al., 2020). In particular, the recent survey from Kreutz and
Schenkel (2022) highlights the recent developments in this field of study. To complement the
existing surveys, we review studies in the following that reflect the diverse approaches to this
research problem while we focus on more recent works.

The first research paper recommender systems can be traced back to traditional libraries science
approaches such as bibliographic coupling or co-citations (see Section 2.4). Most studies reflect
the general progress in NLP and IR, whereby the degree of task-specific modifications differ from
study to study. Early recommender systems apply text-based techniques like n-grams (Ferrara
et al., 2011; Nascimento et al., 2011), word-based topic models (Jiang et al., 2012; Lin and
Wilbur, 2007; Wang and Blei, 2011), or term-frequency weighting (Ekstrand et al., 2010; Giles
et al., 1998; Nascimento et al., 2011). But also, the citation graph is commonly used to find
related research papers (Giles et al., 1998; Habib and Afzal, 2019). Graph information is not
limited to citation graphs, i.e., studies also rely on graphs from co-author or venue networks (Ali
et al., 2020; Baez et al., 2011; Du et al., 2020; Zhou et al., 2008).

In recent works, we can observe a trend towards more machine learning-based approaches and
towards combining text and graph information. For instance, Kong et al. (2018) build paper
embeddings from text with Paragraph Vectors (Section 2.3.5) and from citations with struc2vec
(Ribeiro et al., 2017) and retrieve related papers based on the cosine similarity of their embeddings.
Bhagavatula et al. (2018) use bag-of-words representations to encode the textual content of
papers and then rank the papers with a second model that is trained with a triplet loss, whereby
citations are used to sample positive and negative papers. Collins and Beel (2019) compare
recommendations generated from key phrases (Ferrara et al., 2011), TF-IDF, and Paragraph
Vectors in an online evaluation based on the Mr. DLib system (Beel et al., 2011). Mohamed
Hassan et al. (2019) conduct the first study with Transformers, in which a combination of BM25
and Universal Sentence Encoder (Cer et al., 2018) outperformed strong baselines such as ELMo,
BERT, or SciBERT on the CiteULike dataset (Wang and Blei, 2011). Zhang et al. (2019) learn
hybrid text- and citation-based embeddings with a Skip-gram model (Section 2.3.4), whereby
they incorporate word-to-word relations similar to word2vec, document-to-word relations with
Paragraph Vectors, and document-to-document relations with a random walk approach on the
citation graph (similar to DeepWalk). Ali et al. (2020) employ a mixture of Sentence-BERT
embeddings, LDA topic modeling, and graph information from citations, co-authorship, and
venues. Kanakia et al. (2019) present a hybrid recommender system based on the Microsoft
Academic Graph using co-citation and a combination of word vectors and TF-IDF.
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Despite this trend, the recent literature still investigates rather classical methods. Habib and Afzal
(2019) extend bibliographic coupling with information about the section in which the citations
are located, similar to CPA. Renuka et al. (2021) generate recommendations based TF-IDF
representations from extracted keywords and key phrases. Tao et al. (2020) rank candidate
recommendations based on their PageRank extracted from the citation graph.

Even though the literature employs a wide range of methods, the underlying approach is often
essentially the same. In the first step, research papers are converted into embeddings, sometimes
separately converted into text and graph embeddings, and then concatenate, sometimes jointly
learned. Next, the recommendations are generated based on a similarity measure between the
paper embeddings, e.g., cosine similarity. Studies that account for the many aspects a research
paper can represent are only exceptions. Jiang et al. (2012) propose to satisfy user-specific
information needs by recommending the most problem-related papers or solution-related papers
to the user separately. They achieve this through splitting abstracts into a problem and a solution
part and training separate LDA topic models for each segment. A similar segmentation approach
is presented by Chan et al. (2018). Chan et al. segment abstracts into background, purpose,
mechanism, and findings. Huang et al. (2020) apply the same segmentation approach as Chan
et al. but to biomedical research papers. Kobayashi et al. (2018) classify sections into discourse
facets. Related aspect-based approaches are also discussed in Section 2.5.4 and 2.5.5.

2.1.1.2 Citation Recommender Systems

The citation recommendation task is closely related to the recommendation of research papers
(Section 2.1.1.1). The distinction between both tasks lies in incorporating a local context. A
local context refers to the text surrounding a citation marker. Typical paper recommendations are
independent of the local context and are only about the paper-to-paper relation. Unlike research
papers, citations are specifically recommended based on a local context. The recommended
citation is meant to back up single statements or claims contained in the local context. Since the
local context can be also considered as an aspect, the citation recommendation task is related to
the aspect-based document similarity as proposed in this thesis. The literature does not strictly
follow the distinction between citation and paper recommendations, i.e, the terms research papers
recommendations and citations recommendations are often interchangeably used (Ali et al., 2021;
Ma et al., 2020). For an overview of the citation recommendation literature, we refer to the survey
from Färber and Jatowt (2020).

Citation recommender systems are typically not personalized (Färber and Jatowt, 2020), excep-
tions are Liu et al. (2013) and Yin and Li (2017) who utilize the citing paper’s author information
in addition to content-based features. He et al. (2010) presented the first study explicitly focusing
on citation recommendations based on a local context. He et al. rely on LDA to construct topic
models for candidate papers and citation contexts. TF-IDF vectors and cosine similarity are used
by Duma and Klein (2014). Huang et al. (2015) use the Skip-gram model (Section 2.3.4) to
represent words in the citation context and associate them with document embedding via a feed-
forward neural network. Ebesu and Fang (2017) propose an encoder-decoder model consisting
of a CNN-based citation context encoder, an encoder for the paper author, and an RNN-based
decoder with attention. It is worth noting that Farber et al. (2020) tried to reproduce the work
from Ebesu and Fang but were unable to achieve the same model performance.
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The discussed studies focus on the citations of research papers. However, there are also other
applications domains, e.g., Wikipedia (Fetahu et al., 2015; Piktus et al., 2021) or news articles
(Peng et al., 2016).

2.1.1.3 Legal Recommender Systems

The legal domain is another domain of interest for this thesis. Therefore, this section presents
studies about recommender systems for legal literature. Legal literature covers case law, court
decisions, statutes, and other documents in the context of the law.

Winkels et al. (2014) are among the first to present a content-based approach to recommend
legislation and case law. Their system uses the citation graph of Dutch Immigration Law and is
evaluated with a user study conducted with three participants. Boer and Winkels (2016) propose
and evaluate LDA (Blei et al., 2003) as a solution to the cold start problem in a collaborative
filtering recommender system. In an experiment with 28 users, they find the user-based approach
outperforms LDA. Wiggers and Verberne (2019) study citations for legal information retrieval and
suggest citations should be combined with other techniques to improve performance. Kumar et al.
(2011) compare four different methods to measure the similarity of the Indian Supreme Court
decision: TF-IDF on all document terms, TF-IDF on only specific terms from a legal dictionary,
Co-Citation, and Bibliographic Coupling. They evaluate the similarity measure on 50 document
pairs with five legal domain experts. In their experiment, Bibliographic Coupling and TF-IDF
on legal terms yield the best results. Mandal et al. (2017) extend this work by evaluating LDA
and document embeddings (Paragraph Vectors) on the same dataset, whereby Paragraph Vectors
were found to correlate the most with the expert annotations. Indian Supreme Court decisions
are also used as evaluation by Wagh and Anand (2020), using document similarity based on
concepts instead of the full text. They extract concepts (groups of words) from the decisions and
compute the similarity between documents based on these concepts. Their vector representation
(average of word embeddings and TF-IDF) shows that IDF for weighting word2vec embeddings
improve results. Also, Bhattacharya et al. (2020a) compare citation similarity methods, i.e.,
Bibliographic Coupling, Co-citation, Dispersion (Minocha et al., 2015) and Node2Vec (Grover
and Leskovec, 2016), and text similarity methods like Paragraph Vectors. They evaluate the
algorithms and their combinations using a gold standard of 47 document pairs. A combination of
Bibliographic Coupling and Paragraph Vectors achieves the best results. With Eunomos, Boella
et al. (2016) present a legal document and knowledge management system that allows searching
legal documents. The document similarity problem is handled using TF-IDF and cosine similarity.
Other experiments using embeddings for similarity of legal documents include Landthaler et al.
(2016), Nanda et al. (2019), and Ash and Chen (2018).

More recently, several shared tasks and public benchmarks contributed to the progress in legal
document processing and retrieval, e.g., the AILA series (Bhattacharya et al., 2019; Bhattacharya
et al., 2020b; Parikh et al., 2021), the COLIEE series (Rabelo et al., 2022; Rabelo et al., 2020;
Rabelo et al., 2021), LeCaRD (Ma et al., 2021b), and LexGLUE (Chalkidis et al., 2022). In
the AILA 2019 task (Bhattacharya et al., 2019), the two best teams (Shao and Ye, 2019; Zhao
et al., 2019) both use combinations of TF-IDF and BM25. The same methods were also used
by many teams in the 2020 continuation of the AILA task (Bhattacharya et al., 2019) but also a
BERT-based approach yielded the best result for one of the sub-tasks. The best team (Tran et al.,
2019) in the retrieval sub-task of COLIEE 2019 (Rabelo et al., 2020) addresses the problem of
lengthy legal documents by first summarizing the candidate documents before matching them to
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a query. Westermann et al. (2021) achieve the best results at COLIEE 2020 (Rabelo et al., 2021).
Westermann et al. exploit the fact that relevance in the legal context is often only concerned with
specific parts of a document. Therefore, they first split each case into paragraphs, embed the
paragraphs with Universal Sentence Encoder (Cer et al., 2018), retrieve candidates based on their
embedding similarity, and finally select the best candidate with an SVM model that works on
TF-IDF document vectors. Also, the COLIEE 2021 retrieval task Rabelo et al. (2022) is won
by a rather traditional method, Ma et al. (2021a) apply the Language Model for Information
Retrieval from Banerjee and Han (2009), which is a statistical probabilistic framework based
on the bag-of-words representations. Having traditional methods performing so well on these
shared tasks emphasizes that they are strong baselines in diverse application domains. However,
more and more legal adoption from state-of-the-art approaches, e.g., Lawformer (Xiao et al.,
2021) or LegalBERT (Chalkidis et al., 2020; Holzenberger et al., 2020), are being published and,
therefore, we expect that future tasks will be dominated by deep learning approaches as we can
already see in other application domains.

2.1.1.4 Book Recommender Systems

As the third application domain, we consider the recommendations of books. In contrast to
the specific domains of research papers or legal documents, we consider books without further
specification and rather as generic examples of literature. Alharthi et al. (2018a) provides an
overview of the literature on book recommender systems.

While for the recommendations of research papers semantic similarity is crucial, for book recom-
mendations also other dimensions of similarity are relevant. For instance, Vaz et al. (2012) utilize
not only semantic similarity (e.g., through LDA topic models) but also style similarity that is
measured based on vocabulary richness, document length, part-of-speech bigrams, and the most
frequent words in a book. Garrido et al. (2014) present the SOLE-R book recommender system,
which relies on topic maps (Garrido et al., 2013) that are generated from the textual content of a
book and reviews about the respective book. Garrido et al. extend the topic maps with lexical
concepts, e.g., WordNet (Fellbaum, 2010), to remove redundancies and ambiguities. Tsuji et al.
(2014) investigate book recommendations through a user study at a university library. Their
system is based on user information (loan records) and content features like TF-IDF vectors. The
children’s book recommender system from Ng (2016) also incorporates user-based information
through collaborative filtering and TF-IDF vectors from the book descriptions. Align with their
use case of children’s books, Ng further filter recommendations based on the readability level
of a book such that it is appropriate for the user. Similar to Vaz et al., Alharthi et al. (2018b)
as well consider style as a factor for book recommendations but their approach learns the style
representation through an author identification model.

The presented studies about book recommender systems suggest that this particular application
domain is a niche with respect to general recommender system research. Domain-specific
adaptations are applied, e.g., focus on style similarity or readability level. Even more than other
domains, the research about book recommendations suffers from data scarcity. The full text of
books is typically not available and, therefore, recommendations are only generated based on
book descriptions (blobs) and public book reviews.
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2.1.2 User-based Recommender Systems

In its most common setting, recommender systems rely on user information for recommending
items. The recommendation problem is often reduced to the problem of predicting ratings for the
items that users have not seen based on their past ratings. A rating can be explicit information, e.g.,
given in the form of ratings or likes and dislikes. When explicit rating information is unavailable
or insufficient, recommender systems utilize implicit ratings that are derived from user behavior,
such as click histories (Oard and Kim, 1998). In the context of scientific literature, citations are
often used as an implicit positive vote for a paper (Cohan et al., 2020; McNee et al., 2002).

User-based recommender systems are referred to as collaborative filtering approaches. Goldberg
et al. (1992) coined the term “collaborative filtering” and made the first step toward user-based
recommendations by incorporating user opinions into a message database and search system.
The Tapestry system from Goldberg et al. (1992) still required its users to query for other
users’ opinions actively, e.g., explicit filtering for “marked as excellent by Chris”. Resnick et al.
(1994) introduced the concept of collaborative filtering as it is understood today. The GroupLens
system from Resnick et al. (1994) relieved users from the burden of formulating queries about
other users’ opinions. Instead, GroupLens used a database of historical user opinions to match
each individual to others with similar opinions automatically. The underlying approach consists
of gathering ratings from users, computing the correlations between pairs of users to identify
a user’s “neighbors” in the opinion space, and combining the ratings of those neighbors to
make recommendations. The collaborative filtering approach dominates today’s recommender
system research as various surveys show (Koren et al., 2022; Schafer et al., 2007; Su and
Khoshgoftaar, 2009; Yang et al., 2014). On the methodological level, collaborative filtering is
typically implemented with matrix factorization techniques (Bokde et al., 2015; He et al., 2017;
Koren et al., 2009), but also deep learning is gaining more attention in recommender system
research (Cheng et al., 2016; Khan et al., 2021; Wang et al., 2015; Zhang et al., 2020b). A simple
alternative to collaborative filtering but still a strong baseline is the recommendation of the most
popular items (Beel et al., 2017; Ji et al., 2020).

User-based recommender systems predict ratings based on past or current information about the
users and items. If this information is not available for new users or new items, the recommender
system suffers from the so-called cold start problem (Bernardi et al., 2015; Lika et al., 2014).
The cold start problem is prevailing predominantly in the context of literature recommendations.
For example, Yang et al. (2009) find that their explicit rating data is too sparse to produce
accurate recommendations since users were “too lazy to provide ratings”. According to Beel
et al. (2016b), data sparsity is a general problem when using collaborative filtering for research
paper recommender systems.

Another problem that user-based recommender systems face are filter bubbles (Pariser, 2011),
echo chambers (Ge et al., 2020), and feedback loops (Jiang et al., 2019). The reliance on machine
learning-based systems that learn from past ratings or the ratings from similar users can lead to a
feedback loop that decreases the diversity of personalized recommendations. Moreover, this can
lead to echo chambers in which users’ interests are reinforced by repeated exposure to similar
items. Due to the social and political implication, i.e., polarization and radicalization (Chitra
and Musco, 2020; Ledwich and Zaitsev, 2020), an increasing number of studies address these
problems (Fabbri et al., 2022; Kaminskas and Bridge, 2017; Kotkov et al., 2020).
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2.1.3 Recommender System Evaluations

To judge the superiority of one recommendation approach over another one, evaluations are
essential. Similar to evaluations of other information systems, a valid recommender system
evaluation requires appropriate evaluation methods, a sufficient number of data points, and a
comparison of the novel approach against one or more state-of-the-art baselines (Grover et al.,
1996; Rossi et al., 2018; Symons, 1991). While the exact evaluation setting depends on the
application context, the literature typically distinguishes between three evaluation types: user
studies, online evaluation, and offline evaluations (Beel et al., 2016b; Beel and Langer, 2015;
Erdt et al., 2015).

2.1.3.1 User Studies

A user study is a scientific method to evaluate how a recommender system is perceived by its users
(Knijnenburg, 2012). The evaluation is typically conducted through explicit ratings, which can be
collected through a questionnaire and aim to quantify the participant’s satisfaction or experience
with the recommendations. The recommender system that receives on average the highest ratings
can be considered the best system (Ricci et al., 2011). User studies can be conducted as a lab or
real-world study, whereby lab studies might be affected by the participants being aware of taking
part in a study (Leroy, 2011).

In general, participants in a user study should be unbiased to the evaluated recommendation
approaches and need to be a random representative sample (Shani and Gunawardana, 2011).
The number of participants should be large enough to produce statistically significant results
(Knijnenburg, 2012). The requirement for a large number of participants makes user studies
expensive to conduct, in particular in domains where expert participants are needed, e.g., law or
scientific literature. This leads to the problem that many recommender system evaluations do not
arrive at meaningful conclusions since their user studies are not large enough (Beel et al., 2016a).

Examples of user studies evaluating recommender systems are: Tsuji et al. (2014) conduct a user
study with 32 students to evaluate their book recommender systems. Chan et al. (2018) ask mem-
bers of their research group about the usefulness of their aspect-based paper recommendations.
Kanakia et al. (2019) evaluate their recommender system with 40 researchers from their company.
Ekstrand et al. (2010) conduct first an offline evaluation and then validate their findings with a
user study.

2.1.3.2 Online Evaluations

An online evaluation, also known as real-world testing, measures the effectiveness of recommen-
der systems in a real-world application in which real users are exposed to and interact with the
recommendations (Erdt et al., 2015; Shani and Gunawardana, 2011). The key distinction from
other evaluation methods is that the recommendations are evaluated under normal conditions, i.e.,
the evaluation setting is identical to the deployment setting.

The effectiveness is typically measured by metrics like click-through rate or download counts
to approximate user satisfaction. But this approximation of user satisfaction is not without
drawbacks. For instance, Zheng et al. (2010) have shown that clicks and relevance do not always
correlate. In less user-centric evaluations, business metrics like advertising revenue or product
sales can also be part of online evaluations (Azaria et al., 2013; Jannach and Adomavicius, 2017).
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Despite providing valuable insights, online evaluations are out of the scope of most academic
researchers as they require access to real-world recommender systems.

As a result, fewer literature recommender studies rely on online evaluations, as reported in surveys
(Beel et al., 2016b; Erdt et al., 2015). Specifically, Kreutz and Schenkel (2022) report in their
literature survey that only 3.7% of the studies were evaluated with an online evaluation. One
example of an online evaluation is the work from Collins and Beel (2019), in which the authors
compare three recommender approaches in the Mr. DLib system (Beel et al., 2011). Outside
of the literature recommendation domain, online evaluations are more common (Amatriain and
Basilico, 2015; Falk and Karako, 2022; Freno, 2017).

2.1.3.3 Offline Evaluations

Offline evaluations typically measure the accuracy of a recommender system based on a gold
standard or ground truth data. Offline evaluations are also referred to as batch or data-centric
evaluations since no users are involved in the evaluation. Being only dependent on data makes
offline evaluation cheap and convenient to conduct. Therefore, most recommender system
research relies on this type of evaluation, as the surveys from Erdt et al. (2015) and Beel et
al. (2016b) reveal. But the heavy use of offline evaluation has been criticized since results from
offline evaluations do not necessarily correlate with results from user studies or online evaluations
(Hersh et al., 2000; Sanderson et al., 2010; Turpin and Hersh, 2001).

Common datasets used for offline evaluations in the context of research papers are CiteULike
(Jiang et al., 2012; Mohamed Hassan et al., 2019), CiteSeer (Habib and Afzal, 2019; He et al.,
2010; Zhou et al., 2008), DBLP (Ali et al., 2020; Bhagavatula et al., 2018; Zhou et al., 2008),
ACL Anthology (Ali et al., 2020; Tao et al., 2020), PubMed (Bhagavatula et al., 2018; Jain et al.,
2018; Lin and Wilbur, 2007), or Microsoft Academic Graph (Kanakia et al., 2019; Zhang et al.,
2019).

2.1.3.4 Evaluation Metrics

Recommender systems are typically evaluated with common IR metrics of which precision and
recall are the most prominent metrics.

Precision. Precision is the number of relevant recommendations in relation to the total number
of retrieved recommendations.

Recall. Recall is the number of retrieved recommendations that are relevant in relation to the
total number of relevant recommendations.

A high recall can be achieved if a system recommends all items regardless of their relevance.
However, this strategy will lower the precision since irrelevant items are also recommended.
Likewise, a recommender system that recommends only one relevant item when multiple relevant
items exist achieves high precision but a low recall. Commonly, precision and recall behave
contradictory. Whether a high precision or high recall is preferable depends on the domain and
the use case. A typical user of a video platform might be interested in browsing exclusively
through the first ten results (Davidson et al., 2010), thus, prefers a high precision over recall. On
the contrary, a researcher doing a literature review may be willing to look at significantly more
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than ten literature recommendations to find a relevant paper. Hence a researcher may favor high
recall over precision.

F1-score. F1 is the harmonic mean of the precision and recall. Hence, the F1 score is typically
used when neither a high recall nor a high precision is preferred by the use case.

Micro and macro average. When computing evaluations metrics for classification tasks, the
final metrics can computed either as micro or macro average. The difference between macro and
micro averaging is that macro averaging gives equal weight to each class while micro averaging
gives equal weight to each sample. In particular for unbalanced class distributions, this difference
is important. When each class has the same number of samples, macro and micro yield the
identical scores.

Both precision and recall rely on the ability to judge an item’s relevance. Following Manning
et al. (2008), relevance is the ability to satisfy a user’s information need, which can differ from
user to user and query to query. In most real-world use cases, a strict division into relevant or
irrelevant items is difficult. Some items might be highly relevant and others marginally. However,
for simplicity and comparability, binary classification of relevance is typically used. Relevance
ratings can be gathered through a user study.

Precision and recall are set-based evaluation metrics. They are calculated using unranked sets
of items. However, recommender systems typically produce ranked item sets. Accordingly,
rank-based metrics provide a more meaningful evaluation.

Precision and recall at k. Precision and recall at k (P@k and R@k) refers to the precision
and recall limited to the top k recommendations.

Mean average precision (MAP). The MAP metric provides a single-figure measure of quality
across recall levels and is defined for a set of queries Q as follows:

MAP(Q) =
1
|Q| ∑

q∈Q

1
|Rq|

|Rq|

∑
j=1

Precision(Rq, j) (2.1)

where Rq, j is the recommendation for query q at rank j.

Mean reciprocal rank (MRR). The MRR metric reflects the scenario where the user is only
interested to see one relevant item. For a single query q, the reciprocal rank is 1

rq
where the rank

r is the position of the first relevant recommendation. If no recommendation is relevant, the
reciprocal rank is 0. For multiple queries Q, MRR is the mean over the reciprocal ranks of all
queries in Q:

MRR(Q) =
1
|Q| ∑

q∈Q

1
rq

(2.2)
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Normalized discounted cumulative gain (nDCG). The nDCG metric is made for evalua-
tions of non-binary notions of relevance. Like precision at k, nDCG is evaluated over the top k
recommendations. For a set of queries Q, let R( j,d) be the relevance score associated with the
item d for query j. Then,

nDCG(Q,k) =
1
|Q|

|Q|
∑
j=1

Zk j

k

∑
m=1

2R( j,m)−1
log2(1+m)

(2.3)

where Zk j is a normalization factor that makes a perfect nDCG ranking at k for query j equal to
1. For queries for which k′ < k items are retrieved, the last summation is done up to k′.

Click-through-rate (CTR). The click-through-rate represents the ratio of clicks Cs,d from a
seed item s to a recommended item d and the number of all outgoing clicks for the seed item s:

CTR(s,d) =
Cs,d

∑
|Cs|
j=1Cs, j

(2.4)

Coverage. Coverage measures the ratio of the recommended items to all available items, i.e.,
coverage reflects the diversity of the recommendations and not their relevance. The coverage for
the method a is defined as in Equation 2.5 where D denotes the set of all available items in the
corpus and Da denotes the recommended items by a (Ge et al., 2010).

Cov(a) =
|Da|
|D| (2.5)

The evaluation metrics discussed above represent the ones used throughout this thesis. These met-
rics are generally only a fraction of all metrics used in recommender system research. Depending
on the application domain and use case, other metrics might be more suitable for evaluating a
recommender system.
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2.2 Similarity

The Oxford dictionary defines similarity as “the state of being like someone or something but not
exactly the same.”1 This definition is vague since it remains unclear how “being like something”
is defined. Given that similarity is essential to this work, this section discusses the concept of
similarity from different perspectives and introduces relevant similarity measures. We start this
section by contrasting the terminology of similarity and relatedness.

2.2.1 Similarity vs. Relatedness

Most of the literature uses the two terms similarity and relatedness interchangeably. For instance,
Collins and Beel (2019) and Lin and Wilbur (2007) investigate “related articles” whereas the
research subject of Mysore et al. (2022) and Mandal et al. (2017) is “document similarity”. How-
ever, there are also different connotations of both terms. As noted by Resnik (1995), “semantic
similarity represents a special case of semantic relatedness”. According to Budanitsky and Hirst
(2006), “relatedness is a more general concept than similarity”. Budanitsky and Hirst provide
a further differentiation in the context of lexical semantics: “similar entities are semantically
related by virtue of their similarity, but dissimilar entities may also be semantically related by
lexical relationships”. However, in the context of literature recommendations and on the level
of document semantics, the difference between similarity and relatedness is negligible. For this
reason, we regard the terms as equivalent and use only the term of similarity throughout this
thesis. If not otherwise mentioned, we also refer to the similarity with respect to the semantics
and not to other forms of similarity such as stylistic, lexical, or structural similarity.

2.2.2 Similarity in Philosophy and Psychology

During the twentieth century, philosophical and psychological theories about similarity have been
dominated by the geometrical model of similarity (Carnap, 1967; Decock and Douven, 2011).

According to Blough (2001), the geometric model expresses the representation of the similarity
relationships among the members of a set of objects. An object is represented by its coordinates
in a “similarity space.” The similarity is defined as the distance between objects in this space.
The closer together two objects are, the more similar they are. The geometric approach makes
two assumptions: First, objects can be represented by values on a few continuous dimensions.
Second, similarity can be represented by a distance measure δ in the coordinate space. Figure 2.1
visualizes an example of objects placed in a space with the dimensions of size and color.

The geometric approach to similarity yields a formally exact implementation of similarity, which
allows comparative similarity judgments. The objects a and b are more similar to each other
than objects c and d if δ (a,b)< δ (c,d). With the help of a threshold value t for distances in the
similarity space, an absolute similarity judgment can also be modeled. The objects a and b are
similar if δ (a,b)< t.

However, the geometric model has been criticized for its shortcomings. In his famous philo-
sophical critique, Goodman (1972) describes “similarity as a slippery and both philosophically
and scientifically useless notion” (Decock and Douven, 2011). Goodman argues that similarity

1https://www.oxfordlearnersdictionaries.com/definition/american_english/similarity,
last accessed: 18/01/2023
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Size

Color

Figure 2.1: The geometric similarity model according to Blough (2001). Objects (stars) are
arranged in a two-dimensional similarity space depending on their size (top to bottom) and color
(left to right). In the simplest implementation, the length of a straight line between any two starts
would determine their similarity.

judgments are highly context-sensitive. He states that “we must recognize that similarity is rela-
tive and variable” and that “similarity is much like motion” which requires a frame of reference.
According to Goodman, similarity is an ill-defined notion unless one can say in what respects two
things are similar. Medin et al. (1993) reaffirms Goodman’s arguments with empirical evidence.

In addition to the context-sensitivity, Tversky (1977) criticizes the symmetry of the similarity in
the geometric model, i.e., δ (a,b) = δ (b,a). Tversky argues that similarity should not be treated
as a symmetric relation. His work presents empirical evidence for the asymmetric notion of
similarity, e.g., human similarity judgments find that an ellipse is more similar to a circle than
a circle is to an ellipse. Given these findings, Tversky (1977) proposes his own set-theoretical
approach to similarity based on feature matching: A central assumption of Tversky’s linear
contrast model is that objects are not characterized by points in a geometrical space but through
a set of their features. For example, an strawberry can be represented as a set of features
A = {round, red, juicy, ...}. The similarity of objects is then defined in terms of set-theoretical
relations, whereby Tversky’s model accounts for asymmetry and context-sensitivity.

Object A Object B

f1 f4

f2
f3

f5

f6

f7
f11

f10f8
f9

unique to A common

Figure 2.2: The feature similarity model from Tversky (1977). Objects A and B are represented
as sets of their features, i.e., A = { f1, ..., f6} and B = { f5, ..., f11}. The similarity of A and B
depends on their common features and on what features are considered.
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More recently, Gardenfors (2004) introduces with his Conceptual Spaces a contextualized version
of the geometrical notion of similarity. Gardenfors argues that the relevant context for similarity
can be achieved by a reference to conceptual spaces, e.g., if one compares objects with respect to
color, the color sub-space should define the similarity of the objects.

We refer to Decock and Douven (2011) for a comprehensive discussion of the aforementioned
similarity models. Decock and Douven conclude that “Goodman critique effectively highlights
some shortcomings of the geometric model of similarity that was dominant at the time”. But
concerning the approaches from Tversky and Gardenfors, they find that both approaches do
account for context-sensitivity and asymmetry, and, therefore, neither of these define “similarity
is a slippery notion” (Decock and Douven, 2011).

2.2.3 Similarity in Information Theory

Most information retrieval systems, such as recommender systems, are based on computing
the similarity between query and candidate items. Other NLP tasks, such as summarization or
clustering, require computing the similarity between texts, too. Thus, computing similarity is
either implicitly or explicitly a fundamental problem to many information systems. However, the
similarity is mostly empirically compared without any theoretical foundation. This gap is closed
by studies that use information theory to define the concept of similarity.

Resnik (1995) derives an information-theoretical definition of the semantic similarity of concepts
in a taxonomy. Resnik defines the similarity between any two concepts c1 and c2 as the maximum
information content of the set C1,2 of all ancestors of c1 and c2. Relationships between concepts
are given by the taxonomy. For example, “cash” and “credit” have the parent concept of “medium
of exchange”, while “coin” and “bill” are associated with the parent concept of “cash”. More
formally, Resnik defines the similarity of c1 and c2 as:

SimResnik(c1,c2) = max
ci∈C1,2

[I(ci)] (2.6)

Central to Resnik’s definition is the information content of a concept which follows the standard
argumentation of information theory (Cover and Thomas, 2006), i.e., the information content I
of a concept c is the negative log-likelihood of the probability of the concept: I(c) =−logP(c).
The empirical probability P(c) is computed from a dataset. Taking the maximum information
content is analogous to taking the shortest path in the taxonomy network with respect to edge
distance.

Lin (1998) investigates the theoretical basis of similarity and derives a general form of an
information-theoretic measure for object similarity. The similarity definition from Lin captures
three intuitions:

1. The similarity between A and B is related to their commonality. The more commonality
they share, the more similar they are.

2. The similarity between A and B is related to their differences. The more differences they
have, the less similar they are.

3. The maximum similarity between A and B is reached when A and B are identical, indepen-
dent of the commonality they share.
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Given these intuitions, Lin derives six assumptions about the commonality, difference, simila-
rity of identical objects, zero similarity, and similarity with independent perspectives. These
assumptions lead to Lin’s formal definition of similarity:

SimLin(A,B) =
I (common(A,B))

I (description(A,B))
(2.7)

The commonality of A and B (common features of A and B) is denoted as common(A,B),
whereas description(A,B) is a proposition that describes what A and B are. Since similarity is
the ratio between the information contained in the commonality and the description of the two
objects, we can derive one from the other if the similarity is given.

For objects which can be represented as a set S of independent features s, the similarity definition
can be reformulated to:

SimLin(A,B) =
2 ·∑s∈A∩B logP(s)

∑s∈A logP(s)+∑s∈B logP(s)
(2.8)

Aslam and Frost (2003) extend this general definition to document similarity by formulating the
similarity of two documents as follows:

SimAslam(A,B) =
2 ·∑t min(pA,t , pB,t)logP(t)

∑t pA,t logP(t)+∑t pB,t logP(t)
(2.9)

The definition assumes that a document represents a set of independent term features. The
probability P(t) is the fraction of corpus documents containing the term t. For each document d
and term t, let pd,t be the fractional occurrence of term t in a document d with ∑t pd,t = 1 for all
documents in the corpus. The commonality of A and B is the minimum amount of term t they
share in common and denoted as min(pA,t , pB,t), while they contain pA,t and pB,t amount of term
t individually.

The similarity definition from Lin (1998) accounts already for context-sensitivity through the
probability of features. The similarity increases when commonalities are less likely. The residual
entropy similarity from Cazzanti and Gupta (2006) aims to capture the context more strongly than
Lin’s similarity. Cazzanti and Gupta apply Tversky’s linear contrast model with fixed parameters
and measure the residual entropy to account for the context-sensitivity:

SimCazzanti(A,B) = f (A∩B)−0.5 f (A\B)−0.5 f (B\A) (2.10)

where the salience function f is the conditional entropy of random objects R regarding their
observed features with f (X) = H(R|X ⊂ R). The salience function ensures that less frequent
features are assigned with a higher weight than more frequent features, i.e., the specificity of
features is captured. Amigó et al. (2017) provide a further discussion of information theoretical
similarity definitions.

Even though these similarity definitions are backed by information theory and support the findings
in philosophy and psychology (Section 2.2.2), they are less relevant in practice. Most of today’s
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information systems are based on the geometric similarity model and employ the corresponding
similarity measures, e.g., vector representation and cosine similarity.

2.2.4 Similarity Measures

There are various methods to quantify the similarity between two items, a and b. An item can
be given in the form of a text document di but also as any vector representation xi ∈ Rn. For a
comprehensive overview of text similarity and other distance measures, we refer to Deza and
Deza (2013), Gomaa and Fahmy (2013), Jurafsky and Martin (2009), and Wang and Dong (2020).
In the following, we discuss the similarity measures relevant to this thesis.

Euclidean distance. The Euclidean distance is the length of a straight line between two points
xa,xb in the Euclidean space with n dimensions:

δ (a,b) =

√
n

∑
i=1

(x(i)a − x(i)b )2 (2.11)

Minimum edit distance. The minimum edit distance between two strings da,db is defined as
the minimum number of editing operations (insertion, deletion, substitution) to convert da into
db. In its simplest form, in which each operation is weighted equally, the minimum edit distance
is also referred to as Levenshtein distance (Levenshtein, 1965). Wagner and Fischer (1974) is
one example of an algorithm that determines the number of editing operations.

Cosine similarity. The cosine similarity measures the cosine of the angle between two vectors,
which is the normalized dot product of the two vectors xa and xb:

cosine(xa,xb) =
xa ·xb

|xa||xb|
=

∑
n
i=1 x(i)a x(i)b√

∑
n
i=1 x(i)a

2
√

∑
n
i=1 x(i)b

2
(2.12)

Especially in a high-dimensional space, such as in word or document embeddings, cosine simila-
rity is preferred over the Euclidean distance since cosine similarity accounts for different scales
of the vectors. When vectors are pre-normalized, i.e., by dividing each vector by its length, the
dot product is equal to the cosine. Cosine similarity is by far the most common similarity metric
(Jurafsky and Martin, 2009).

Jaccard similarity coefficient. The Jaccard similarity coefficient (or Jaccard index) measures
the similarity between two finite sets Sa and Sb and is defined as the size of the intersection
Sa ∩Sb divided by the size of the union Sa ∪Sb of the two sets (Jaccard, 1912):

Jaccard(a,b) =
|Sa ∩Sb|
|Sa ∪Sb|

(2.13)

In NLP, the Jaccard coefficient can be applied by representing documents as sets of words.
Chapter 4 uses Jaccard to measure the similarity of recommendation sets.
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2.3 Text-based Representations

In its original form, a text is just a string of characters with no particular structure that allows its
processing by any mathematical means. Hence, the first step of any IR or NLP system is typically
to derive a numerical representation of an input text. These methods of text-based representations
range from the simple vector space model to complex Transformer language models and are
discussed in the following section.

2.3.1 Vector Space Model

The vector space model organizes documents as vectors in a so-called term-document matrix
(Salton, 1971). As illustrated in Figure 2.3, a row represents a term ti that is part of the vocabulary
V of the document collection D and a column represents a document d j, whereby a matrix
element or term weight wi, j is the number of occurrences of the term ti in the document d j.

d1 d2 ... d|D|
t1 w1,1 w1,2 ... w1,|D|
t2 w2,1 w2,2 ... w2,|D|
... ... ... ... ...

t|V | w|V |,1 w|V |,2 ... w|V |,|D|

(a)

d1 d2 d3 d4

car 1 5 3 0
truck 9 4 3 1
the 1 3 0 1

flower 0 0 0 4

(b)

Figure 2.3: The vector space model as a concept (a) and an example (b) for a term-document
matrix with the four documents d1−4 and the four terms “car”, “truck”, “the”, and “flower”.

The term weight wi, j can be also a binary value (with 1 indicating that the term occurs in the
document, and 0 indicating that it does not occur) or a term-frequency value (see Section 2.3.2).
In practice, the term-document matrix becomes large, e.g., with a vocabulary size |V |> 104 and a
document corpus |D|> 106. Due to most term weights being zero, the document representations
are considered sparse vectors.

2.3.2 TF-IDF

Measuring the raw term frequencies as proposed by Salton (1971) can be skewed towards less
informative words like the, it, or they, which occur very frequently but provide very little semantic
meaning. The term frequency-inverse document frequency (TF-IDF) introduced by Jones (1972)
addresses this shortcoming.

TF-IDF evaluates how relevant or important a term is to a document in a collection of documents.
The importance of a term increases proportionally to the number of times a term appears in the
document but is offset by the frequency of the term in the whole corpus. This intuition is achieved
by the two factors TF-IDF consists of:

tfidf(t,d,D) = tf(t,d) · idf(t,D) (2.14)

The first factor of TF-IDF is the term frequency tf(t,d), i.e., the frequency of the word t in the
document d (Luhn, 1957), which can be simply the raw count of occurrences:
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tf(t,d) = count(t,d) (2.15)

With the raw count, too frequently appearing words may be over-represented. Hence, the term
frequency is often normalized, for example, as in the Apache Lucene implementation2:

tf(t,d) =
√

count(t,d) (2.16)

The second factor of TF-IDF is the inverse document frequency idf(t,D) that measures the
specificity of a term t with respect to its occurrences in the corpus of all documents D:

idf(t,D) = 1+ log
( |D|

1+∑d∈D count(t,d)

)
(2.17)

TF-IDF is used in many studies about document similarity measures such as Boella et al. (2016),
Collins and Beel (2019), Duma and Klein (2014), Kanakia et al. (2019), Kumar et al. (2011),
Renuka et al. (2021), Tsuji et al. (2014), Wagh and Anand (2020), and Westermann et al. (2021),
to name a few.

2.3.3 Neural Networks

Neural networks (also referred to as artificial neural networks) underpin most state-of-the-art
techniques in natural language processing and other machine learning domains. Neural networks
are not limited to text but can also process other modalities, e.g., graphs (Section 2.4). Essentially,
neural networks can be seen as a composition of functions aggregated as layers. Different layers
may perform different transformations on their inputs. In the following, we illustrate the inner
workings of a neural network in its simplest form with only a single layer and with the example
of a logistic classification model, which is defined as:

f (x) = W x+b,

g(z) = softmax(z),

softmax(z)i =
ezi

∑
C
j=1 ez j

(2.18)

where the input is represented as a vector x ∈ Rd of d features, weight matrix W ∈ RC×d , bias
vector b ∈ RC, intermediate output variable z ∈ RC, and C is the number of classes. The logistic
model is a composition of g( f (·)) of two functions f and g, where f (·) is an affine function
and g(·) is a non-linear activation function. In this example, the softmax function is used as an
activation function. Other examples of common activation functions are the sigmoid function or
the rectified linear unit (Glorot et al., 2011).

2https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/search/similarities/
TFIDFSimilarity.html, last accessed: 18/01/2023
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Non-output layers are called hidden layers. Neural networks are typically defined according to
the number of hidden layers they consist of. For example, a network with one hidden layer is
commonly known as a feed-forward neural network, or multi-layer perceptron (MLP):

h1 = g1(W1x+b1),

y = softmax(W2h1 +b2)
(2.19)

where x is the input, x is the output, g1 is the activation function of the first hidden layer. Each
layer l is parameterized by a weight matrix Wl and bias vector bl. hl is commonly referred to as
the hidden state of the neural network at layer l. The weights of the neural network are typically
trained with stochastic gradient descent and back-propagation (Rumelhart et al., 1986).

2.3.4 Word Vectors

A word vector aims to numerically represent the meaning of a word. Each word wi in the
vocabulary V is mapped to its vector representation xi, which is known as the word embedding
of wi. The word embeddings are stored in an embedding matrix E ∈ R|V |×d . A given text such
as a single sentence or a full document, which consists of a sequence of words wi, ...,wn can be
represented by a sequence of word embeddings xi, ...xn.

Traditional count-based and sparse approaches to text representations, such as TF-IDF do not
capture information about the context in which words are used. In essence, the count-based
approaches treat words as atomic units and represent them as indices in a vocabulary (also
referred to as one-hot-encodings). This neglects the (semantic) relationships between words
and, therefore, represents language in a naive way. Instead, word embeddings map semantically
similar words to proximate points in the embedding space. This results in multidimensional
continuous real-valued number representations, i.e., dense vectors as opposed to sparse vectors
(illustrated by Figure 2.4 and 2.5). In order to learn such a mapping, word embedding techniques
rely on the distributional hypothesis (Harris, 1954), which states that words that share similar
contexts tend to have similar meanings.

truck

car

flower

Figure 2.4: One-hot representation.

truck

car
flower

Figure 2.5: Dense representation.

The surveys from Camacho-Collados and Pilehvar (2018) and Wang et al. (2020b) provide an
extensive overview of word embedding techniques.
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2.3.4.1 Word2Vec

With Word2Vec, Mikolov et al. (2013a) and Mikolov et al. (2013b) popularized neural network-
based learning of word embeddings. Word2Vec implements two models: Continuous Bag-of-
Words (CBOW) and Skip-gram which are both simple single-layer neural networks based on the
inner product between a pair of word vectors.

The training objective of the Skip-gram model is to learn word embeddings that predict the
surrounding words in a sentence or a document given a target word wt . More formally, given a
sequence of training words w1,w2, ...,wT , the objective of the Skip-gram model is to maximize
the average log probability, which is defined as:

1
T

T

∑
t=1

∑
−c≤ j≤c, j ̸=0

logp(wt+ j|wt) (2.20)

where wt is the target word, wt+ j is a word in the context of t, and c is the context window size
(number of words before and after the target word). The basic Skip-gram formulation defines
p(wt+ j|wt) using the softmax function as in Equation 2.18. However, the traditional softmax
formulation is computationally inefficient since it must sum across the entire vocabulary in order
to evaluate the softmax function. Mikolov et al. show that the softmax formulation can be
approximated through a hierarchical softmax approach (Morin and Bengio, 2005) and noise
contrastive estimation (Gutmann and Hyvärinen, 2012). These approximations allow the efficient
training of word embedding on a large corpus.

CBOW follows a similar intuition but is trained to predict the target word by its context words
(or surrounding words). The objective of the CBOW is to maximize the following probability:

1
T

T

∑
t=1

∑
−c≤ j≤c, j ̸=0

logp(wt |wt+ j) (2.21)

According to Mikolov et al. (2013b), Skip-gram yields better results on small datasets, and can
better represent less frequent words, whereas CBOW trains more efficiently than Skip-gram and
can better represent more frequent words.

2.3.4.2 GloVe

The word embeddings from Word2Vec rely on the local context (given as words before and after
the target word) to represent the semantics of a word but do not account for the global statistics of
the underlying corpus. Pennington et al. (2014) show that word embeddings can be also learned
with global word statistics.

The GloVe model is based on the global word-to-word co-occurrence matrix denoted as C, whose
entries Ci, j represent the number of times the word j occurs in the context of the word i. To
obtain word embeddings, GloVe factorizes this co-occurrence matrix to yield a lower-dimensional
matrix, where each row yields a dense vector representation for the respective word. The matrix
factorization corresponds to optimizing the following weighted least-squares objective:
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J =
|V |
∑

i, j=1
f (Ci, j)(x

T
i x̃ j +bi + b̃ j − logCi, j)

2 (2.22)

where f (·) is a weighting function that accounts for too frequent words, xi ∈Rd is a word vector,
x̃i ∈ Rd is a context word vector, bi and b̃i are bias terms. The final word vectors are constructed
as the sum of xi and x̃i.

2.3.4.3 FastText

Both word embedding techniques, Word2Vec and GloVe, rely on a fixed vocabulary V where
each word of the vocabulary is assigned to a distinct vector. At the same time, the vocabulary
size cannot be increased indefinitely due to limited computational resources. This can lead to the
problem of words being out-of-vocabulary (OOV) that can occur especially for languages with
large vocabularies and many rare words. The fastText method from Bojanowski et al. (2017)
addresses the OOV problem by representing words as a bag-of-character n-grams. fastText builds
upon the Skip-gram model (Mikolov et al., 2013b) and extends it with sub-word representations
through character n-grams.

A character n-gram is a set of co-occurring characters within a given context window and a
bag-of-character n-grams means that a word is represented by a sum of its character n-grams.
Bojanowski et al. rely on boundary symbols < and > at the beginning and end of words to
distinguish prefixes and suffixes from other character sequences. For example, the word where
and n = 3 will yield the following character n-gram representation:

<wh, whe, her, ere, re>

The fastText method also includes the word itself in the set of n-grams, e.g., <where>. To obtain
a vector representation for any word w, fastText computes the sum of the vector representations
of the set of n-grams appearing in w.

2.3.4.4 Word Vector Pooling

While word embeddings can produce meaningful representations of words, this thesis is not
concerned with single words but rather with sequences of words in the form of documents or
sentences. To get from word to document embeddings, the most straightforward approach is
to aggregate the embeddings of each word appearing in a document. For example, document
embeddings can be computed as element-wise average, minimum, or maximum. These strategies
are called average-pooling, min-pooling, and max-pooling, respectively. In addition to the
aggregation, one can also concatenate different pooled embeddings. More sophisticated pooling
strategies as well exist, e.g., the smooth inverse frequency model from Arora et al. (2017).

Pooling embeddings is a simple but effective approach for document embeddings. However,
pooling completely ignores the order of the words in the document.
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2.3.5 Paragraph Vectors

Paragraph Vectors (Le and Mikolov, 2014) extends the idea of Word2Vec (Mikolov et al., 2013b)
to the learning of embeddings for word sequences of arbitrary length, e.g., paragraphs or docu-
ments. Paragraph Vectors is also referred to as Doc2Vec due to its popular implementation in the
Gensim framework (Rehurek and Sojka, 2010). Similar to Word2Vec, Paragraph Vectors proposes
two separate models to learn document embeddings: Distributed Memory Model of Paragraph
Vectors (PV-DM) and Distributed Bag of Words version of Paragraph Vector (PV-DBOW).

In the PV-DM model, each paragraph is mapped to a unique vector and every word is also mapped
to a unique vector. The paragraph vector and word vectors are concatenated to predict the next
word in a context, similar to Equation 2.21. The contexts are fixed-length and sampled from a
sliding window over the paragraph. The paragraph vector is shared across all contexts generated
from the same paragraph but not across paragraphs.

PV-DBOW ignores the context words in the input but predicts words randomly sampled from the
paragraph in the output. This has the advantage that word vectors do not need to be stored, i.e.,
the model requires less storage. PV-DBOW is analog to the Skip-gram model from Word2Vec.

2.3.6 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of neural networks, which is made for processing
sequential data. Originally proposed by Rumelhart et al. (1986), an RNN reuses its previous
outputs as inputs in a recurrent fashion and shares the weights across the processing steps. RNNs
can process variable-length sequences of inputs due to their internal state (memory). Since text
can be represented as a sequence of words (or word embeddings), RNNs are often used in the
context of NLP.

Vanilla recurrent neural networks. More formally, for each input x(t) at the time step t an
RNN computes the hidden state h(t) and the output y(t) as follows:

h(t) = g1(Wah(t−1)+Wxx
(t)+bh),

y(t) = g2(Wyh
(t)+by)

(2.23)

where Wx, Wh, Wy, by, and bh are weights and bias terms that are shared across time steps and
g1,g2 are activation functions. The hidden state h can be seen as a “memory” of the previous time
steps in the sequence. The network weights can then be trained with the help of back-propagation
through time (Rumelhart et al., 1986).

Long-short Term Memory (LSTM). Traditional RNNs often encounter the problem of van-
ishing and exploding gradient, to address this issue Hochreiter and Schmidhuber (1997) proposed
the LSTM as a gated version of recurrent networks. The gates of an LSTM decide what informa-
tion should be kept and what should be forgotten.
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In contrast to the traditional RNN, the LSTM contains a forget gate f (t), input gate i(t), and output
gate o(t), which are all functions of the current input x(t) and the previous hidden state h(t−1).
The gates select which information to retain or overwrite depending on the previous cell state
c(t−1), the current input x(t), and the current cell state c(t):

i(t) = σ(Wix
(t)+Uhh(t−1)+bi),

f (t) = σ(W f x
(t)+U f h

(t−1)+b f ),

o(t) = σ(Wox(t)+Uoh(t−1)+bo),

c(t) = f (t)⊙c(t−1)+ i(t)⊙ tanh(Wcx
(t)+Uch

(t−1)+bc),

h(t) = o(t)⊙ tanh(c(t))

(2.24)

where W and U are weight matrices, b is a bias term, tanh and σ are activation functions, and
⊙ is an element-wise multiplication. The gates discard irrelevant information which is then not
back propagated in time. This mitigates the problem of vanishing or exploding gradients.

2.3.7 Transformer Language Models

The current state-of-the-art in most NLP tasks uses Transformer language models. In the follow-
ing, we introduce the Transformer architecture and language models based on it.

2.3.7.1 Transformer

The Transformer (Vaswani et al., 2017) is a neural network architecture motivated by the goal of
replacing the inherently sequential computation of RNNs with a more parallelizable approach
based on self-attention (Bahdanau et al., 2014). At the core of a Transformer model is the
Transformer layer (or block), which we introduce in the following:

A Transformer layer is a parameterized function class fθ (x) = z that transforms the input
x ∈ Rn×d into the output z ∈ Rn×d . The input can be assumed to be a length-n sequence of
d-word vectors. First, the input vector xi is transformed into three vectors, query Q(h)(xi), key
K(h)(xi), and value V (h)(xi), through the learnable weight matrices W

(h)
q , W

(h)
k and W

(h)
v and

for h ∈ H attention heads:

Q(h)(xi) = W T
q xi, K(h)(xi) = W T

k xi, V (h)(xi) = W T
v xi,

Wq,Wk,Wv ∈ Rd×k
(2.25)

Intuitively, in each of the attention heads the relation between queries and keys has a different
meaning, e.g., syntactic similarity or distance in the input sequence.

The second step is calculating the self-attention score for word pairs in the sequence (Bahdanau
et al., 2014). The score is the softmax function (Equation 2.18) over the dot product of the query
vector with the key vector normalized by the square root of the dimension of the key vectors k.
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α
(h)
i, j = softmax j

(
Q(h)(xi)K(h)(xi)

T
√

k

)
(2.26)

The next step is the summation of value vectors V , weighted with the self-attention scores
αi,1, ...,αi,n, over each attention head H.

u′
i =

H

∑
h=1

W T
c,h

n

∑
j=1

α
(h)
i, j V (h)(xj),

Wc,h ∈ Rk×d

(2.27)

A MLP with ReLu activation and layer norm (Ba et al., 2016) computes the final output zi,
where γ1,2 ∈Rd and β1,2 ∈Rd are layer norm parameters, and W1 ∈Rd×m, W2 ∈Rm×d are MLP
weight matrices:

ui = LayerNorm(xi +u′
i;γ1,β1),

z′
i = W T

2 ReLU(W T
1 ui),

zi = LayerNorm(ui +z′
i;γ2,β2)

(2.28)

The computation of the zi output concludes a single Transformer layer. The input xi and
the output zi of a Transformer layer are both shaped equally. This allows the composition of L
Transformer layers, each with their own parameters fθ1 · ... · fθL(x)∈Rn×d , into a full Transformer
model. Depending on the use case, a Transformer model can be conceived as an encoder-only,
decoder-only, or encoder-decoder model. For example, the machine translation approach from
Vaswani et al. (2017) uses an encoder-decoder model with L = 6 encoder and L = 6 decoder
Transformer layers. Such a large number of layers (or even more layers) are possible since a
Transformer is essentially a series of matrix multiplication that can be performed in parallel.

2.3.7.2 BERT

The introduction of the Transformer model (Section 2.3.7.1) started a new paradigm for NLP:
The initial self-supervised pretraining of a Transformer-based language model with millions or
billions of parameters on large amounts of unstructured text is followed by fine-tuning the model
on a much smaller but supervised and task-specific dataset. Devlin et al. (2019) popularized
this paradigm with their Bidirectional Encoder Representations from Transformers (BERT). The
pretraining and fine-tuning approach from BERT builds upon ideas introduced by semi-supervised
sequence learning (Dai and Le, 2015), ELMo (Peters et al., 2018), ULMFiT (Howard and Ruder,
2018), GPT (Radford et al., 2019), and other work by the NLP community.

Model architecture. BERT is a multi-layer bidirectional encoder-only Transformer model.
Bidirectional refers to the model processing the input sequence in both directions, i.e., left-context
and right-context. As opposed to the original Transformer (Vaswani et al., 2017), which is an
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encoder-decoder model, BERT is conceived to only encode the input sequence and does not
generate (or decode) an output sequence, i.e., it is an encoder-only model. Devlin et al. provide
BERT models in various sizes (different number of attention heads, layers, etc.), whereby BASE
typically refers to 110M parameters and LARGE to 340M parameters.

Model inputs. BERT uses WordPiece (Wu et al., 2016) to convert an input text into tokens
of a fixed vocabulary. Similar to fastText Section 2.3.4.3, WordPiece splits text into sub-word
tokens and, therefore, does not suffer from the OOV problem. The first token of every sequence
is marked with the special [CLS] token and at the end or between two sequences the [SEP] token
is used. For example, the input text of I have a new GPU! would be converted into:

[CLS], i, have, a, new, gp, ##u, !, [SEP]

Each of the tokens is assigned to a token embedding xi ∈ Rd which is learned during training.
By itself, the Transformer has no notion of textual position, Devlin et al. address this by adding a
positional embedding pj to the token embedding before feeding it into the Transformer model.
They also include a segment embedding st to distinguish between two separated input sequences
(for the next sentence prediction task – see below). Hence, the model input x′

i is computed as:

x′
i = xi +pj +st (2.29)

Pretraining objectives. To pretrain BERT in a self-supervised manner, Devlin et al. introduce
two pretraining objectives: Mask language modeling (MLM) and next sentence prediction (NSP).
For MLM, a small ratio of the input tokens are randomly masked (Devlin et al. report 15% as the
best ratio) and the model is trained to recover the masked token, i.e, predict the original token.
For NSP, the model is fed with two sentences A and B and needs to predict whether B is the
actual next sentence of A. Specifically, the NSP task corresponds to a sequence pair classification
with the label classes “is next sentence” and “is not next sentence”. Both pretraining objectives
do not require any labeled data and can be automatically constructed from unstructured text.

2.3.7.3 Other Transformer language models.

Today’s NLP research is dominated by large language models based on the Transformer archi-
tecture. Various modifications and extensions to the Transformer have been proposed but also
discussed in recent surveys (Lin et al., 2021; Narang et al., 2021; Tay et al., 2022a). In this
section, we discuss approaches to Transformer language models relevant to this thesis:

Other pretraining objectives. Given that pretraining accounts for the majority of the training
costs, several studies have investigated other pretraining objectives as alternatives to MLM and
NSP. Joshi et al. (2020) mask a contiguous segment of the input sequence instead of only masking
each token independently. Lan et al. (2020) propose a sentence-order prediction task that focuses
on inter-sentence coherence. Aroca-Ouellette and Rudzicz (2020) combine various token- and
sentence-level pre-training objectives, e.g., sentence ordering or term-frequency prediction. Liu
et al. (2019) propose RoBERTa and an optimized BERT model that discards the NSP task
as a pretraining objective and also is trained with larger batch sizes and more data. With the
decoder-only language model XLNet, Yang et al. (2019) introduce a pretraining objective based
on token order permutations in which they mask out attention weights rather than tokens in the
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input sequence. ELECTRA (Clark et al., 2020) has in addition to MLM the pretraining objective
of detecting replaced tokens in the input sequence. For this objective, Clark et al. use a generator
that replaces tokens and a discriminator network that detects the replacements, whereby the
generator and discriminator are both Transformer models.

Scalability. One major drawback of the self-attention mechanisms in Transformers is that it has
a quadratic complexity with respect to the sequence length. Due to this reason, most Transformer-
based language models, like BERT, have a limited sequence length of 512 tokens. Longformer
(Beltagy et al., 2020) uses a sparse attention pattern that combines local and global information
and scales linearly with the sequence length. Linformer (Wang et al., 2020c) approximate self-
attention using a low-rank matrix and also achieve a linear complexity. Other work about scalable
Transformers is concerned with distributed model training (Narayanan et al., 2021; Shoeybi et al.,
2019) or faster inference (Kim and Awadalla, 2020).

Domain adaptations & pretraining corpora. Pretraining a language model on a domain-
specific text has been shown to improve the downstream task performance (Gururangan et al.,
2020). For example, BERT was pretrained on the English Wikipedia and the BooksCorpus (Zhu
et al., 2015). If a task is concerned with a domain different from these corpora, the performance
may be suboptimal. Thus, several domain-specific variations have been proposed.

SciBERT (Beltagy et al., 2019) is a variation of BERT tailored for scientific literature, which is
pretrained on computer science and biomedical research papers. Covid-BERT (Chan, 2020) is
the original BERT model but fine-tuned on the CORD-19 corpus. BioBERT (Lee et al., 2019)
is another BERT model specialized in the biomedical domain. Holzenberger et al. (2020) and
Chalkidis et al. (2020) present both LegalBERT, i.e., a BERT model pretrained on legal text.

This concludes the review of text-based representation methods. In the subsequent section, we
continue with the discussion of representation methods for graph information.
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2.4 Graph-based Representations

The documents that this thesis investigates do not only contain textual content but are also
interconnected with each other. More specifically, Web pages are connected through (hyper-)
links, and scientific or legal literature is connected through citations. On a technical level, Web
links and citations can be both considered as edges that connect individual documents in a graph
of documents, as illustrated in Figure 2.6. Viewing documents not just as pieces of textual content
but also as a graph has a long tradition in library science (Garfield, 1972; Garfield, 1955; Kessler,
1963; Marshakova, 1973; Price, 1965; Small, 1973) and has been shown to be beneficial in recent
deep learning-based approaches (Perozzi et al., 2017; Perozzi et al., 2014).

Since the thesis uses graph information, this section introduces general concepts of document
graphs and reviews graph-based methods for representing documents and their similarity.

Figure 2.6: Illustration of a graph of documents. Documents are nodes that are connected
through directed edges. An edge can be a citation or link. Its direction shows which document
cites/links or is being cited/linked.

Graph terminology. A graph is a data structure denoted as G = (V,E) that consists of a
collection of vertices V (also called nodes, in our context, the vertices are typically documents)
and a collection of edges E, represented as ordered pairs of vertices (u,v) (Cormen, 2009). As a
generic data structure, graphs can represent various types of data. Next, we introduce two specific
instances of graphs: citation graphs and Web link graphs.

Citation terminology. Citations are an essential part of research papers that reference prior
publications (Smith, 1981). Following the definition from Egghe and Rousseau (1990), a refer-
ence in document B is a bibliographic note that describes document A. If document B contains a
reference to document A, then A receives a citation from B. Stated otherwise, document B cites
A, and A is cited by B (Figure 2.7). Scientific authors use citations to acknowledge concepts or
methods that were used by the author (Smith, 1981), to express politeness and policy (Pasternack,
1969), and due to various other reasons (Teufel et al., 2006).

Link terminology. On the Web, links (or hyperlinks) are the equivalent of citations in the
academic literature that connect Web pages with each other. However, the motivation for making
a link on a Web page differs from the motivation behind citing a scientific article, even if their
concepts may seem very similar (Thelwall and Wilkinson, 2004). In general, links and citations
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serve the purpose of acknowledgment and are therefore analyzed for relevance judgments by many
algorithms, e.g., PageRank (Page et al., 1998). Moreover, Web links are used for advertisements,
navigational purposes, or in the context of link spam (Wu and Davison, 2005).

On a technical level, both citations and links represent edges in a graph. Hence, we refer in this
thesis to citations or links when we want to highlight the current use case. When the discussion
is use-case independent, e.g., in the context of a method, the terms citations and links are used
interchangeably, or we refer to the generic graph terms of edges and vertices.

2.4.1 Direct Citations

Citations are often used as an indicator of semantic similarity. When two documents A and B
(research papers or Web pages) are connected through a citation, A and B are generally assumed to
be more semantically similar than two documents B and C that do not cite each other. Figure 2.7
visualizes this direct citation relationship of the documents A, B, and C. Since the similarity
judgment depends on whether a citation exists or not, direct citations lead to a binary or discrete
notion of similarity (similar or not).

XA B C

Figure 2.7: Direct citations. Document A is cited by B, whereas B and C do not cite each other.

Despite the authors may cite without expressing similarity (Pasternack, 1969; Teufel et al., 2006),
direct citations are often utilized as ground truth or gold standard for the evaluation of literature
recommender systems. For example, the CiteSeer citation index3 has been frequently used by
researchers for evaluating research paper recommender systems (Caragea et al., 2013; Dong et al.,
2009; He et al., 2010). Also, contrastive learning approaches like Citeomatic (Bhagavatula et al.,
2018) or SPECTER (Cohan et al., 2020) rely on direct citations for the generation of positive and
negative samples.

2.4.2 Bibliographic Coupling

Bibliographic coupling, introduced by Kessler (1963), measures the similarity of two documents
as the number of their shared bibliographic items. Documents are bibliographically coupled
if they cite one or more documents in common. The underlying assumption is that documents
that cite the same literature are more likely to have the same subject. The degree of similarity
is measured by the bibliographic coupling strength. For example, the coupling strength of two
documents is three if they have three references in common. When documents do not share any
references, their coupling strength is zero.

Even though its popularity in scientometrics (Jarneving, 2007), the bibliographic coupling method
has been criticized in several ways. Martyn (1964) stated that bibliographic coupling indicates

3https://csxstatic.ist.psu.edu/, last accessed: 18/01/2023
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a relationship between two documents but not necessarily their similarity. Small (1973) and
Marshakova (1973) criticized as well the retrospective nature of bibliographic coupling. The
references of a document do not change. Therefore, novel documents in the corpus are not
reflected.

2.4.3 Co-Citations

The criticism of bibliographic coupling led Small (1973) and Marshakova (1973) to propose
the co-citation similarity measure. Instead of focusing on the bibliography of the documents
themselves, co-citations are concerned with the citations of two documents received by other
documents. The number of papers citing two documents together defines the co-citation strength,
i.e., the degree of similarity. Figure 2.8 illustrates one example in which the documents A and B
have the co-citation strength of 2 since they are co-cited by C and D. The co-citation strength is
influenced by how two documents are cited within the literature. Accordingly, co-citations are
prospective in contrast to the retrospective bibliographic coupling.

A B

C

D

co-citation strength = 2

Figure 2.8: Co-citations. Documents A and B are co-cited by two other documents C and D, thus,
A and B have the co-citation strength of 2. The co-citation strength is independent of whether A
and B cite each other and is only defined through the external citations of C and D.

Various studies have shown the strength of co-citations for detecting similarities between research
papers and other literature domains. For example, Chen (2017) conduct a systematic review of the
scientific literature with the help of co-citation networks. Ferreira et al. (2016) rely on co-citations
for clustering sub-fields of strategic management literature and for detecting emerging research
topics. Jeong et al. (2014) identify authors working on related research topics by evaluating
the co-citations of their publications. Woodruff et al. (2000) combine co-citations with textual
information for a book recommender system.

2.4.4 Co-Citation Proximity Analysis

With co-citation proximity analysis (CPA), Gipp and Beel (2009) introduced an improvement
over co-citations that utilizes the additional information provided by the citation marker and
its position within the citing document. CPA is based on the assumption that when citation
markers of co-cited documents are in close proximity, the documents are more likely to be similar
(Figure 2.9). Using the additional proximity information has been shown to outperform the
standard co-citation approach (Kim et al., 2016; Liu and Chen, 2011; Tran et al., 2009).
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Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis
quis felis dapibus, tristique metus vitae, placerat dolor. Aenean 

neque est, faucibus at 

ringilla efficitur, sollicitudin a tellus. Nulla ante felis, congue nec
nisi ac, tristique placerat arcu. Aenean hendrerit tincidunt ultrices. 

Proin orci lacus, pharetra non tortor a, tempor cursus leo. 
Sed vitae velit lorem. Ut lacinia iaculis orci et luctus. 

ellentesque ac elit gravida, porttitor tellus vitae, dapibus mi. 

Etiam fermentum pellentesque eros, eget euismod leo tempus non. Maecenas 

eu auctor nunc. Suspendisse potenti. Vivamus velit leo, mollis in elit vitae, 
dapibus dictum nunc. Donec at arcu maximus, molestie eros non, tincidunt eros. 
Phasellus et volutpat felis, eget dictum tellus. 

Donec a molestie nibh, quis bibendum sem. Quisque porta eu metus sit amet
consectetur. Nunc suscipit risus ligula. Quisque feugiat risus ut justo
ullamcorper accumsan. Morbi tempor luctus laoreet. Praesent euismod diam sed 
lacus convallis pharetra. Sed id eros et purus tristique suscipit ac vitae tellus. Sed 
ac dui vitae urna blandit condimentum sed id lacus. Sed pharetra sem felis, a 
lobortis

Pellentesque sed felis nisl. Quisque sollicitudin commodo nisi molestie
vestibulum. Sed finibus mi nec arcu egestas, id ultrices lorem commodo. 
Curabitur tempor, odio non tempus aliquet, nunc neque tempor ligula, vel 
luctus nisi tellus ac ligula. Nunc mauris ante, gravida et leo a, venenatis semper 
mauris. Phasellus sollicitudin molestie lectus, eu consectetur orci aliquet sed. 
Integer sed pharetra metus. Aliquam erat volutpat. Sed sit amet enim iaculis, 
rhoncus magna eu, faucibus purus. Donec et volutpat nisi. Ut sit amet tristique
turpis, volutpat sodales odio. Quisque faucibus,

dolor quis euismod egestas, nulla dui imperdiet massa, quis finibus nulla elit
nec neque. Vestibulum fermentum, velit id sagittis dignissim, nunc null. 

citing document

A
B

B C

more similarsimilar

Figure 2.9: Co-citation proximity analysis (CPA). Documents B and C are more similar than A
and B since their citation markers are located in close proximity.

CPA makes use of the increasing availability of full-text literature. Traditional citation indexes
like Garfield (1964) did not provide access to the full-text information which is required to
evaluate the proximity of citation markers.

To quantify the degree of similarity of co-cited documents, CPA assigns a numeric value, the
co-citation proximity index (CPI), to each pair of documents co-cited in one or more citing
documents. The CPI reflects the smallest distance between the citation markers of two co-cited
documents within a citing document. In their original publication, Gipp and Beel distinguished
five levels of co-citation proximity, each of which is assigned a static CPI: same sentence
(CPI=1), same paragraph (CPI= 1

2 ), same chapter (CPI= 1
4 ), same journal issue or book (CPI= 1

8 ),
same journal, but a different issue (CPI= 1

16 ). The CPA score is formed by summing up the
proximity-weighted co-citations over all co-citing documents.

The static CPI definition of Gipp and Beel prohibits the application of CPA outside of the context
of scientific literature. Therefore, our work on the similarity of Wikipedia articles (see Chapter 3)
proposes a generalization of the citation proximity levels. In Schwarzer et al. (2016b), we define
the link-position matrix vi, j of dimension m×m that stores the link position for all m documents.
Specifically, the column for document j,v∗, j holds the positions for links to other documents in
words counted from the beginning of the document. Thus, the generalized CPI is defined as:

CPI(a,b) =
m

∑
j=1

∆ j(a,b)−α (2.30)

with ∆ j(a,b)−α =

{
|va, j − vb, j|−α va, j > 0∧ vb, j > 0
0 otherwise

(2.31)

This definition states that for a document pair (a,b), the CPI is the sum of the proximity of
their co-citations ∆ j, where the proximity is the link distance damped by an exponential tuning
parameter α , which determines the influence of the distance. The hyperparameter α needs to be
defined depending on the document type, i.e., the model needs to be optimized. Note that negative
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values for α are counter-intuitive because a negative value of α would result in a weighting that
prefers co-citations with a greater distance. Furthermore, the case of α = 0 implies:

CPI(a,b) =

{
1 va, j > 0∧ vb, j > 0
0 otherwise

(2.32)

In this specific case, CPI is independent of link distance and equivalent to the standard co-
citation measure (Section 2.4.3) as only the number of co-citations is counted. Consequently, the
proximity has no effect.

In Schwarzer et al. (2017), we extend the generalized CPI from Equation 2.30 with the inverse
citation frequency:

CPIICF(a,b) =
|D|
∑
j=1

δ j(a,b)−α ∗ log
( |D|−na +0.5

na +0.5

)
(2.33)

The first component is defined as in Equation 2.30. The second component is a factor that
defines the specificity of article a based on the number of its received citations na. This factor is
inspired by the Inverse Document Frequency of TF-IDF (Section 2.3.2), whereby we adapted the
weighting schema from Okapi BM25 (Sparck Jones et al., 2000). Hence, we refer to the factor as
inverse citation frequency that counteracts CPA’s tendency to favor highly cited documents.

2.4.5 DeepWalk

The previously discussed methods, such as bibliographic coupling or CPA, are count-based
methods that measure the pairwise similarity of documents. However, recent neural network-
based approaches (Section 2.3.3) expect vector representations as their inputs, and, therefore, the
count-based methods are suboptimal in the context of neural information processing. Moreover,
vector representations have the advantage of being useful for applications other than similarity
search, e.g., classification or clustering. This motivates graph-based representation learning that
aims to derive a numerical vector representation x ∈ Rd with d dimensions for each vertex v
given the graph data G = (V,E).

With DeepWalk, Perozzi et al. (2014) were the first to borrow word2vec’s idea of learning word
representations based on unstructured text (Section 2.3.4.1) and applying it to graph embeddings.
DeepWalk utilizes truncated random walks on a graph to convert its graph data G into a sequence
of vertices v1,v2, ...vc that can be modeled analog to word sequences in word2vec’s Skip-gram
approach. A random walk of length c and rooted at vertex vi is a stochastic process that selects at
random the next vertex vi+1 from the neighbors of vertex vi. The random walk yields a sequence
of vertices that can be thought of as short sentences generated by the context sliding window
in word2vec. The representations for all vertices V , which corresponds to the vocabulary, can
be learned with the objective of the Skip-gram model, which is to maximize the average log
probability:

1
T

T

∑
t=1

∑
−c≤ j≤c, j ̸=0

logp(vt+ j|vt) (2.34)
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where vt is the target vertex, wt+ j is a vertex t walks apart from j, c is the length of the random
walk. The training can then be efficiently performed analog to Mikolov et al. (2013b) with
hierarchical softmax.

Perozzi et al. (2014) demonstrate DeepWalk’s capabilities for classification tasks on several
types of graph data, e.g., blogs, Flickr and YouTube. Other related studies rely also on DeepWalk.
For instance, Chen et al. (2019b) and Guo et al. (2019) use random walks on the citation
graph for citation recommendations. Li et al. (2017) use DeepWalk in a biomedical context
to determine the similarity of diseases. Berahmand et al. (2021) extend DeepWalk with vertex
attribute information for link prediction in social networks.

2.4.6 Walklets

Many real-world graphs are inherently hierarchical. For example, social networks reflect different
scales from small (e.g., families) to medium (e.g., schools or companies) to large (e.g., nations).
Similar hierarchical structures can be found in literature, e.g., research papers about a specific
problem (small), papers from a field of study (medium), and a literature genre (large). Graph
representations like DeepWalk neglect these multiple scales of relationships between vertices.
Instead, they provide a “one-size fits all” approach where representations are independent of the
hierarchy.

Walklets (Perozzi et al., 2017) explicitly encodes these multi-scale node relationships to capture
hierarchical structures with the graph. Walklets learns a family of k successively coarser vertex
representations x1,x2, ...xk ∈ Rd with d dimensions, where each xk captures the view of the
vertex at scale k. Perozzi et al. achieve the different scales by building upon DeepWalk but
changing the sampling procedure of the random walks. Specifically, they choose to skip some of
the vertices in the random walk, whereby the number of skipped vertices reflects the scale k. At
inference time, the multi-scale representations can be leveraged (individually or combined) to
provide a more comprehensive representation of the graph.

2.4.7 Other Graph Embeddings

Asides from DeepWalk and Walkets, many other techniques for graph embeddings have been
proposed. For a comprehensive overview, we refer to the surveys from Cai et al. (2018), Goyal
and Ferrara (2018), and Rahman and Azad (2021). Additional surveys from related topics are
Wu et al. (2022), which reviews graph neural networks in the context of recommender systems,
and Ji et al. (2022), which provides an overview of knowledge graphs and their representations.

Other prominent examples from graph embeddings are LINE (Tang et al., 2015), struc2vec
(Ribeiro et al., 2017), and Node2Vec (Grover and Leskovec, 2016), which both improve upon
DeepWalk (Perozzi et al., 2014). BoostNE (Li et al., 2019) is another technique to learn multi-
scale vertex embeddings similar to Walklets (Perozzi et al., 2017) but it extends the matrix
factorization approach with gradient boosting (Friedman, 2001).
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2.5 Aspects in Information Processing

The term aspect originates from the Latin word aspectus that means “looking at” (Lewis, 1891).
Thus, an aspect of something is the direction or perspective from which it is looked at. Following
this meaning, the Merriam Webster dictionary defines an aspect as “a particular status or phase
in which something appears or may be regarded”.4 Transferred to the context of this thesis, an
aspect of a document is the perspective from which a user may look at the document’s content.

In linguistics, the lexical aspect of a verb conveys information in which that verb is structured
concerning time, and the grammatical aspect is an inherent feature of verbs or verb phrases,
which is determined by the nature of the situation that the verb describes (Rothstein, 2016).
In information processing research, the term “aspect” is less well-defined, leading to various
alternative terms being interchangeably used in the literature. For example, aspects are also
referred to as multi-senses (Mancini et al., 2017; Nguyen et al., 2017), multi-perspectives (He
et al., 2015), facets (Mysore et al., 2021; Risch et al., 2021), or contexts (Hofmann et al., 2010).
Depending on the research, these terms can have slightly different connotations and nuanced
meanings while referring essentially to the same concept. For consistency reasons, we settle on
the term of aspects throughout this thesis.

Table 2.1: Overview of literature concerned with aspects grouped by research task.

Task References

Expert matching Hofmann et al. (2010), Karimzadehgan and Zhai (2009), Karimzade-
hgan et al. (2008), Mirzaei et al. (2019), Pradhan and Pal (2020),
Tang et al. (2010), and Zhang et al. (2020a)

Sentiment analysis Alam et al. (2016), Basile et al. (2018), Chen et al. (2020), Ding et al.
(2017), Do et al. (2019), Feng et al. (2019a), Hu and Liu (2004), Liu
(2012), Liu et al. (2020), Nazir et al. (2022), Piryani et al. (2017),
Pontiki et al. (2016), Pontiki et al. (2015), Pontiki et al. (2014), Poria
et al. (2015), Poria et al. (2016), Rietzler et al. (2020), Ruder et al.
(2016), Schouten and Frasincar (2016), Sun et al. (2019), Wang et al.
(2016b), Xu et al. (2019), Yan et al. (2021), Zhang et al. (2021b),
Zhang et al. (2022), and Zhang et al. (2021c)

Similarity Bär et al. (2011), Bowman et al. (2015), Chen et al. (2018), Dagan
et al. (2013), He et al. (2015), Nguyen et al. (2014a), Nguyen et al.
(2018), and Saldias and Roy (2020)

Summarization Amplayo et al. (2021), Angelidis et al. (2021), Cao and Wang (2021),
Dang (2006), Fan et al. (2018), Frermann and Klementiev (2019),
Kikuchi et al. (2016), Krishna and Srinivasan (2018), Maddela et al.
(2022), and See et al. (2017)

Representation learning Alshaikh et al. (2019), Camacho-Collados and Pilehvar (2018), Chan
et al. (2018), Chen et al. (2019a), Jain et al. (2018), Kohlmeyer
et al. (2021), Liao et al. (2020b), Mancini et al. (2017), Mysore et al.
(2022), Nguyen et al. (2017), Risch et al. (2021), Schwarzenberg
et al. (2019), and Zhang et al. (2021d)

4https://www.merriam-webster.com/dictionary/aspect, last accessed: 18/01/2023
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This thesis’s central topic, aspect-based document similarity, can be considered a niche task in the
broader information processing literature. However, other related tasks also involve aspects. In
the following section, we review these related tasks and how they consider aspects. An overview
of the tasks and their corresponding literature is presented in Table 2.1.

2.5.1 Aspect-based Expert Matching

Finding the right expert is a problem that often occurs in the context of automatic peer reviewer
matching (Wang et al., 2010). Given an item, which can be, for example, a submission to a
publication venue and which is supposed to be reviewed by an expert, the objective is to assign
the item to a reviewer with the best matching expertise. In this context, aspects play a crucial
role since a single reviewer is potentially an expert in many topics and research areas. Also, the
reviewed items can cover multiple aspects of a topic.

Karimzadehgan et al. (2008) were one of the first to criticize that most work on expert matching
neglects “the multiple aspects of topics or expertise and all match the entire document to be
reviewed with the overall expertise of a reviewer”. The novel approach proposed by Karimzade-
hgan et al. accounts for aspects by modeling the sub-topics in the reviewer’s documents and to
be reviewed documents with probabilistic latent semantic analysis (Hofmann, 1999, PSLA) and
matching both based on the latent sub-topic representations. Accordingly, this work considers
aspects in the sense of sub-topics. Karimzadehgan and Zhai (2009) extend this multi-aspect
approach with the constraint of review quota, making the approach more applicable to real-world
scenarios. The constraint is enforced by casting the task as a linear programming problem that
assigns reviewers based on the required expertise to review a document but also based on the
coverage of the aspects of a document in a complementary manner subject to their review quota
constraints. Tang et al. (2010) also work on constrained expert matching but include the authority
of the reviewers in addition to topic and quota constraints. Technically, Tang et al. cast the
problem to a convex cost flow problem.

Hofmann et al. (2010) relate aspects to users, i.e., they refer to the aspects as contextual factors
about the experts and the expert-seeking users. For example, they find that important contextual
factors are the topic of knowledge (working in the same area), organizational structure (position
within the faculty), or familiarity (personal connection). The experiments from Hofmann et al.
suggest combining user-related and content-based aspects yields the best results.

More recently, Mirzaei et al. (2019) introduced the idea of latent research areas for expert match-
ing. Mirzaei et al. obtain latent research areas by clustering the term-based topic representations
derived from the documents. Afterward, the matching is performed greedily based on the cosine
distance between the latent research areas and the to-be-reviewed document. Zhang et al. (2020a)
also treat research areas as the aspects of the expert matching task. However, they formulate the
task differently, i.e., Zhang et al. perform a multi-label classification on the reviewer documents
and the to-be-reviewed item, whereby the research areas act as label classes. The matching is
then performed based on the similarity of the predicted labels. On the technical level, Zhang et al.
rely on a recurrent neural network (Section 2.3.6) to encode documents. Instead of matching
papers to reviewers, Pradhan and Pal (2020) match authors to potential collaborators. Their
expert-to-expert matching approach accounts for a considerably larger number of aspects. For
example, the matching from Pradhan and Pal is time-aware, authority-aware through H-Index, or
considers prior collaborations.
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In summary, the reviewed studies highlight the need to reflect the multi-aspect nature of doc-
uments and experts. All of the studies have found that combing multiple aspects is generally
beneficial for task performance. However, the proposed approaches incorporate aspects only
implicitly. For example, Mirzaei et al. (2019) cannot determine what exact research area is
responsible for a match since they work with latent representations.

2.5.2 Aspect-based Sentiment Analysis

Aspect-based sentiment analysis is an extensively studied NLP task as several surveys show (Do
et al., 2019; Liu et al., 2020; Nazir et al., 2022; Schouten and Frasincar, 2016; Zhang et al., 2022).
In particular, a set of shared tasks contribute to the popularity of aspect-based sentiment analysis
(Basile et al., 2018; Chen et al., 2020; Pontiki et al., 2016; Pontiki et al., 2015; Pontiki et al.,
2014). Early work in sentiment analysis mainly focused on classifying the overall polarity of a
written text. However, various applications require a more fine-grained approach. Specifically, the
sentiment classification concerning a particular aspect (Liu, 2012). Given an example restaurant
review “The pizza is delicious, but the service is terrible”, it does not express an overall polarity
but instead a positive sentiment towards the aspect pizza and negative sentiment towards service.
In this example, the task would be to extract the aspect terms (pizza and service), the aspect
category (e.g., food and people), and the corresponding sentiment polarities (delicious is positive,
terrible is negative).

In early works on aspect-based sentiment analysis, noun phrase frequency-based approaches were
used to extract aspect terms (Hu and Liu, 2004), where the assumption is that aspect terms are
more likely to be repeated. This approach has the drawback that aspect terms may be implicitly
stated as Hu and Liu find. Other approaches rely on rule-based methods (Piryani et al., 2017;
Poria et al., 2016). But also topic modeling such as Latent Dirichlet Allocation (Blei et al., 2003,
LDA) have been widely used (Alam et al., 2016; Poria et al., 2015). While the topic models are
appropriated to detect aspects at the document level, the resulting topics are often too broad to
reflect fine-grained aspects (Schouten and Frasincar, 2016).

Recently, deep learning-based token classification or sequence labeling approaches (similar to
named entity recognition) have been the de facto standard for sentiment analysis. Feng et al.
(2019a) and Ruder et al. (2016) utilize convolution neural networks, while Ding et al. (2017) and
Wang et al. (2016b) apply LSTMs. Transformer language models are used in their vanilla form
(Rietzler et al., 2020; Xu et al., 2019) and with task-specific modifications. For example, Sun et al.
(2019) adopt BERT’s sequence pair classification task for aspect-based sentiment classification,
and Yan et al. (2021), Zhang et al. (2021b), and Zhang et al. (2021c) reformulate the task as a
sequence-to-sequence generation task.

Even though the task of aspect-based sentiment analysis is conceptionally different from docu-
menting similarity since only a single piece of text is considered, we still can borrow from the
research findings of this task. Specifically, aspect terms may be implicitly stated (Hu and Liu,
2004), and topic models often do not reflect fine-grained aspects (Schouten and Frasincar, 2016).
Moreover, Transformer language models can incorporate aspect information, e.g., through the
sequence pair classification task as Sun et al. (2019) have shown (see Chapter 6 and 7).
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2.5.3 Aspect-based Summarization

Text summarization approaches, both extractive (Ruan et al., 2022; Zheng and Lapata, 2019)
and abstractive (Cachola et al., 2020; Calizzano et al., 2022), follow the assumption that salient
content from single or multiple input documents is relevant (Erkan and Radev, 2004) and should
be part of the generated summary. However, the notion of salience largely depends on user
interest. For example, a user might only care about the food aspect in the summarization of
restaurant reviews (Section 2.5.2). Consequently, summarization approaches have been proposed
that control the summarization output such that the aspects a user is interested in are reflected.
The literature also refers to these approaches as controllable summarization.

What is considered as an aspect is inconsistent in the summarization literature. There is ap-
proaches focussing on the output length (Kikuchi et al., 2016), textual style (Cao and Wang,
2021), or entities (Fan et al., 2018; Maddela et al., 2022). However, more relevant in the context
of this thesis are studies about semantic aspects. The shared task from Dang (2006) aims to
generate summaries that answer a complex question. Moreover, Dang distinguish between the
granularity of the summary, e.g., general background information or specific details. Frermann
and Klementiev (2019) propose an approach in which the input documents are segmented into
aspect-specific parts, whereby aspects are perspectives in product reviews (e.g., product features)
or topics in news articles (e.g., sports and politics). Technically, Frermann and Klementiev repre-
sent aspects as one-hot vectors and treat them as part of the vocabulary. The abstract summaries
are then generated with sequence-to-sequence Pointer Generator network (See et al., 2017). Kr-
ishna and Srinivasan (2018) follow a similar approach but concatenate the one-hot aspect vectors
to the word embeddings before feeding them into their model.

The abstractive approach from Amplayo et al. (2021) lets users provide one or more query aspects
that control the output summary. The aspects are represented as a small set of words, e.g., for
hotel reviews, the words could be food, location, or cleanliness. Amplayo et al. incorporate the
aspects as special tokens in the input of a sequence-to-sequence language model. Angelidis et al.
(2021) propose an extractive approach based on clustering. Based on individual sentences of
the input documents, Angelidis et al. construct aspect-specific clusters, whereby the aspects are
defined by query terms (similar to Amplayo et al.). To obtain the output summaries, the summary
sentences are extracted only from those aspect-specific clusters.

The discussed aspect-based summarization approaches commonly rely on a fixed set of aspects
that typically present a topic or question and correspond to a set of words. Having this word-based
aspect definition requires the aspects to be explicitly mentioned in the input documents. As Hu
and Liu (2004) already suggested, this can lead to suboptimal results.

2.5.4 Aspect-based Representations

In traditional representation learning (see Section 2.3 and 2.4), an item is commonly represented
as a single point in the embedding space, i.e., a monolithic vector. Having a single point follows
the geometric understanding of similarity (see Section 2.2.2). But this entangles the many aspects
or meanings that an item can represent and makes them indiscriminative (Camacho-Collados and
Pilehvar, 2018).

In contrast to this, alternative representation learning approaches incorporate aspect information.
These aspect-based or multi-sense representations align with the similarity model of conceptual
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spaces from Gardenfors (2004); see Section 2.2.2. Since these approaches disentangle mono-
lithic vectors into aspect-specific subvectors, the literature also refers to them as disentangled
representation learning. According to Higgins et al. (2018), disentangled representations are
characterized by “the decomposition of a vector space into independent subspaces”.

Even at the word level, vector representations should account for the different aspects, meanings,
or senses a word can represent. Mancini et al. (2017) embed words and their senses in a joint
vector space. Given a semantic network like BableNet (Navigli and Ponzetto, 2012), they connect
each word in the corpus with zero, one, or more senses. Then, Mancini et al. extends the CBOW
model (Section 2.3.4.1). In addition to the input of the word context window, they also have the
sequence for the associated senses as input, which are then learned in the same ways as the word
embeddings. Nguyen et al. (2017) propose to learn word embeddings as a weighted mixture of
their sense embeddings. Their mixture model derives senses from the topics of an LDA topic
model and adapts the Skip-gram model (Section 2.3.4.1). Alshaikh et al. (2019) learn conceptual
spaces of word embeddings through clustering. Schwarzenberg et al. (2019) project word vectors
into a concept space in which the dimensions correspond to predefined concepts. Liao et al.
(2020b) formulate disentangled representations as a feature selection problem, whereby they
transform the original word embeddings into six sub-spaces (the aspects are artifact, location,
animal, adjective, adverb, and unseen). The underlying aspect labels are taken from WordStat5.
Furthermore, Liao et al. emphasize two general advantages of aspect-based representations: First,
the separate encoding of aspects intuitively allows manual examination. Second, each sub-space
provides informative features, which one can select or discard specific sub-spaces depending
on the downstream task. The survey from Camacho-Collados and Pilehvar (2018) summarizes
additional aspect-based word embedding techniques.

In this thesis, the sentence- or document-level representations are of more relevance. Jain et
al. (2018) were one of the first to introduce disentangled representations to documents. In
their work about biomedical abstracts, they learn disentangled embeddings for the aspects of
populations, interventions, and outcomes for clinical trials. For each aspect, Jain et al. train
an aspect-specific encoder (CNN with gated token activations) on maximizing the similarity of
documents, which are similar in the given aspect, and minimizing the similarity of dissimilar
documents. The aspect-based similarity of documents is given as triplets (query, positive, and
negative sample). The triplets are derived from an annotated aspect-based sentiment dataset
(Section 2.5.2) or from aspect-based summarizations (Section 2.5.3). The results from Jain
et al. suggest that their approach induces aspect-specific document representations, which are
qualitatively interpretable and outperform the baselines in information retrieval tasks. Risch et al.
(2021) present a similar approach, also focussed on the biomedical domain but relying on entity
categories from a knowledge graph as aspect labels and an RNN encoder. Chen et al. (2019a)
disentangle the syntax and the semantics within sentence representations by designing separate
loss functions that address either syntax (paraphrases) or semantics (word positions). Zhang et al.
(2021d) apply aspect-specific masking on weights and hidden activations of a BERT language
model (Section 2.3.7.2) to obtain aspect-based representations. Zhang et al. show that their
approach can disentangle aspects such as syntax from semantics and sentiment from genre.

Another line of work follows the principle of dividing a document first into aspect-specific
segments and then computing the representation separately on a segment level. Chan et al.
(2018) annotate the aspects of research papers in their abstracts, whereby background, purpose,

5https://provalisresearch.com/, last accessed: 18/01/2023
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mechanism, and findings are considered as the aspects. Based on these annotations, Chan et
al. found in a user study that the segment-level representations helped their participants in
finding analogies between research papers more efficiently. Huang et al. (2020) apply the same
segmentation approach as Chan et al. but to biomedical research papers. Kobayashi et al. (2018)
classify sections into discourse facets and build document vectors for each facet. Mysore et al.
(2022) address the problem of obtaining labels for aspect-based similarity by considering the
context in which papers are co-cited as a supervised learning signal. Kohlmeyer et al. (2021)
extract aspect words in books (each representing one or more of the aspects location, time, style,
atmosphere, or plot) and then construct aspect embeddings with Paragraph Vectors.

But also aspect-based representations for other data structures or modalities are subject to research,
e.g., knowledge graphs (Zhang et al., 2021a), audio (Luo et al., 2019) or images (Kulkarni et al.,
2015; Locatello et al., 2019).

As the discussed literature suggests, a key challenge of aspect-based representation learning is
the dependency on aspect information. The aspect information is either provided in the form of
annotated data, which is costly to collect or is constructed with the help of silver standards (e.g.,
citations or data from unrelated tasks). Both sources provide a noisy learning signal. While for
words various resources exist, such data is scarce for documents. Moreover, we see two major
competing approaches, aspect-specific encoding and segmentation. Aspect-specific encoding
is prefereable over segmentation, since splitting documents into segments breaks the document
coherence and can hurt the performance of NLP models as Gong et al. (2020) showed.

2.5.5 Aspect-based Text Similarity

Aspect-based text similarity is the task of determining the similarity of two texts concerning one
or multiple aspects. More formally, the task is about finding a function δ (da,db,ai) = s that
assigns for the texts da and db and the aspect ai a similarity value s ∈ R. We define aspect-based
similarity as a general pairwise text comparison task without further restriction on what can be
considered an aspect.

One example of a common NLP task that falls into this definition is the task of textual entailment
or natural language inference (Bowman et al., 2015; Dagan et al., 2013). Textual entailment
recognition involves assessing whether a given textual premise entails or implies a given hypoth-
esis, i.e., while da and db are the premise and hypothesis respectively, the aspects are entailment,
contradiction, and neutral. State-of-the-art approaches for textual entailment rely on large lan-
guage models (Wang et al., 2021) and incorporate external knowledge such as lexical information
(Chen et al., 2018).

Aside from textual entailment, aspect information is often neglected in NLP studies about text
similarity. Bär et al. (2011) find that similarity is often ill-defined and just used as an “umbrella
term covering quite different phenomena”. Bär et al. suggest considering content, structure,
and style as are the major aspects of textual similarity. The need for a more nuanced view of
similarity is highlighted by the study of Nguyen et al. (2014a). In their study about narrative
similarity, Nguyen et al. find that the different user groups differently perceive the similarity.
Specifically, experts focus on the similarity of the plot, characters, and themes of narratives,
whereas non-experts tend to perceive similarity instead in the context of genre and style. In a
related study, Saldias and Roy (2020) also found that narrative similarity is perceived differently.
One of the few NLP papers addressing a more nuanced view of similarity is the work from He
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et al. (2015) in which sentence similarity is modeled from multiple perspectives. He et al. apply
convolution filters with multiple granularities and window sizes to extract intermediate features,
each representing one perspective. However, He et al. do not express aspects explicitly since the
final sentence representations are pooled over individual aspect representations. Nguyen et al.
(2018) provide an overview of additional methods for aspect-based text similarity.

Generally, the approaches discussed under Section 2.5.4 also apply to aspect-based text similarity.
To be more precise, one can construct aspect-specific embeddings and then simply compute their
vector similarity (Section 2.2.4).

2.6 Summary of the Chapter

This chapter introduced background knowledge and related work relevant to this thesis. We
discussed recommender systems as the central application of this thesis and reviewed relevant
recommender approaches including their strengths and weaknesses. In particular, we focussed on
the two categories of user-based and content-based recommender systems. User-based approaches
such as collaborative filtering face problems like the cold start problem or filter bubbles. To
mitigate these problems or to circumvent the lack of user data, content-based approaches are
applied. Especially in the context of digital libraries and literature recommendations, content-
based approaches are commonly used as our review of related work showed. To reflect the diverse
types of literature available in digital libraries, we reviewed existing works for recommending
research papers, citations, legal documents, and books. We found that most works rely on aspect-
free similarity and apply similarity measures without further specifications or detailed discussion
about the meaning of similarity.

This chapter also reviewed similarity as a concept including theories and models of similarity from
philosophy, psychology, and information theory. We found competing concepts and definitions of
similarity and that there is no consensus on a single unified definition of similarity. Moreover, our
review showed that the idea of aspect-based similarity is already integrated with philosophical
concepts of similarity, e.g., the feature similarity model from Tversky (1977).

To determine document similarity, document semantics must be represented meaningfully. In
particular, we reviewed machine learning-based representation methods distinguishing between
text-based and graph-based representations. Our review of the methods has been conducted to
support the analysis of our experimental results in the subsequent chapters. Throughout the review,
we found that the recent methodological progress enables increasingly complex downstream tasks
making aspect-based document similarity feasible in terms of the underlying methods.

To get inspired about approaches to integrate aspect information, we also reviewed related
work about other aspect-based NLP tasks. In particular, aspect-based sentiment analysis is an
extensively studied NLP task from which we can borrow methods like Sun et al.’s sequence pair
classification approach. Similarly, we saw challenges like the lack of publically available gold
standards and the need for constructing silver standards being recognized by the related work.

With the presentation of background knowledge and the discussion of related work, this chapter
laid the foundation for the research of this thesis. The subsequent chapters revisit these founda-
tions, e.g., Chapter 3 evaluates classical text-based and graph-based representations, Chapter 4
focusses on neural representations, or Chapter 8 implements aspect-based representations.
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Chapter 3

Wikipedia Article Recommendations

The previous chapter introduced and reviewed existing document representations and similarity
measures. Based on these insights, this chapter contributes to Research Task I with an empir-
ical evaluation of document similarity measures for Wikipedia article recommendations. This
chapter’s content is based on three publications (Ostendorff et al., 2021b; Schwarzer et al., 2017;
Schwarzer et al., 2016b).

_ “Evaluating Link-based Recommendations for Wikipedia” by Malte Schwarzer,
Moritz Schubotz, Norman Meuschke, Corinna Breitinger, Volker Markl, and Bela
Gipp. In: Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital
Libraries (JCDL), 2016.

_ “Citolytics: A Link-based Recommender System for Wikipedia” by Malte Schwarzer,
Corinna Breitinger, Moritz Schubotz, Norman Meuschke, and Bela Gipp. In: Pro-
ceedings of the Eleventh ACM Conference on Recommender Systems (RecSys),
2017.

_ “A Qualitative Evaluation of User Preference for Link-Based vs. Text-Based Recom-
mendations of Wikipedia Articles” by Malte Ostendorff, Corinna Breitinger, and
Bela Gipp. In: Towards Open and Trustworthy Digital Societies: 23rd International
Conference on Asia-Pacific Digital Libraries (ICADL), 2021.

We select Wikipedia as our research subject and the generation of Wikipedia article recommen-
dations as the task we want to evaluate. Wikipedia is a large and rapidly growing digital library.
As of August 2022, all language-specific versions of Wikipedia combined contain approximately
59 million articles, of which six million are in English.1 Wikipedia has grown by approximately
17,000 articles per month. On average, all Wikimedia projects received 22 billion page views
(crawlers excluded) per month in 2022.2 Despite Wikipedia’s size, popularity, and rapid growth,
little research has addressed the issue of improving information search in Wikipedia through an
automated generation of article recommendations. When conducting the following experiments,
Wikipedia relied entirely on manually created and curated links to related articles.

Our study compares co-citations (Section 2.4.3) to its proximity-weighted enhancement CPA
(Section 2.4.4). We modify both approaches such that they use the internal Wikipedia links
instead of citations to measure the similarity of Wikipedia articles. To complement the two
graph-based methods, we also include the text-based MoreLikeThis (MLT) from the Apache
Lucene framework, which is a widespread implementation of the vector space model and TF-IDF
(Section 2.3.2). MLT or generally TF-IDF are commonly used by related work, e.g., Collins and
Beel (2019), Ollivier and Senellart (2007), and Tran et al. (2009).

1http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia, last accessed: 18/01/2023
2https://stats.wikimedia.org, last accessed: 18/01/2023
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The study is conducted in two parts: (1) An offline evaluation based on click stream data and “See
also” links as silver standards that enable a large-scale quantitative comparison of the methods.
(2) A user study on a smaller subset of articles and their recommendations.

In the first part, we compare the three methods regarding the general ability to produce meaningful
Wikipedia article recommendations. The offline evaluation aims to test whether co-citations and
CPA can be transferred to links in Wikipedia articles despite being originally developed for
citations. Moreover, the offline evaluation acts as a filter to select the two best methods that we
will evaluate in the subsequent user study.

The second part’s purpose is to answer a question that remains largely unexplored in today’s
literature: Are fundamentally different classes of recommendation algorithms, e.g., text- and
graph-based methods, also perceived differently by users? If a noticeable difference can be
observed among users, across what dimensions do the end-users of such recommendation algo-
rithms perceive that the approaches differ for a given recommendation use case? Most studies
dedicated to evaluating recommender systems use offline evaluations using statistical accuracy
metrics or error metrics without gathering any qualitative data from users in the wild (Beel et al.,
2016b). More recently, additional metrics have been proposed to measure more dimensions of
user-perceived quality for recommendations, e.g., novelty (Gravino et al., 2019; Mendoza and
Torres, 2020), diversity (Kunaver and Požrl, 2017; Yu et al., 2009), serendipity (De Gemmis
et al., 2015; Ge et al., 2010; Kaminskas and Bridge, 2017; Kaminskas and Bridge, 2014), and
overall satisfaction (Joachims et al., 2005; Maksai et al., 2015; Zhao et al., 2018). However,
empirical user studies examining the perceived satisfaction with recommendations generated by
different approaches remain rare. Given the emerging consensus on the importance of evalu-
ating recommender systems from a user-centric perspective beyond accuracy alone (Ge et al.,
2010), we identify a need for research to examine the user perception of fundamentally different
recommendation classes.

Therefore, we perform a qualitative study to examine user-perceived differences and thus highlight
the benefits and drawbacks of two contrasting recommendation approaches for Wikipedia articles.
Specifically, the user study seeks to answer the following three research questions:

e Research questions

RQ1: Is there a measurable difference in users’ perception of the graph-based approach
compared to the text-based approach? If so, what difference do users perceive?

RQ2: Do the approaches address different user information needs? If so, which user needs
are best addressed by which approach?

RQ3: Does one approach show better performance for certain topical categories or article
characteristics?

The remainder of this chapter is structured as follows: First, we introduce the general experimen-
tal methodology, i.e., the datasets, the evaluated methods, and the user study design. Subsequently,
we present the results of offline evaluation in Section 3.2 and the results of user study in Sec-
tion 3.3. Finally, we summarize the main findings of this chapter.
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3.1 Methodology

The following section describes the methodology used for evaluating Wikipedia article recom-
mendations with text-based and graph-based document similarity measures.

3.1.1 Dataset

Our dataset is a data dump of the English version of Wikipedia. The data dump was created in
September 2014, consists of 4.6 million Wikipedia articles in XML (Wiki markup), and has a
size of 99 GB. To get an overview of the dataset’s composition and to enable a comparison with
other collections, we present information on article length and the number of in-links. Figure 3.1
shows the distribution of words and in-links among articles.
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Figure 3.1: Distribution of word frequency (red), in-links (blue), and out-links (orange) of
articles in our Wikipedia dataset.

On average, an article contains 740.54 words. The longest article contains 75,178 words. There
is a consistently strong correlation between the number of out-links and the number of words
for all article lengths. However, the distribution of in-links is heavily skewed. About 1.7 million
of the 4.6 million articles have less than three in-links. On average, an article has 20.5 in-links.
The most-linked article is “United States”, which receives 392,494 in-links. As reported by
Bellomi and Bonato (2005), Wikipedia articles with a high number of in-links are mainly about
geopolitical topics, famous people, abstract nouns, or common words.

Our goal is a large-scale evaluation of the performance of similarity measures in recommend-
ing semantically similar Wikipedia articles. Instead of selecting several topics and defining
topic-specific information needs, we want to understand how well the methods perform for the
entire Wikipedia with its vast range of topics. Therefore, we define for our study a generalized
information need: Recommend Wikipedia articles that interest a reader of the source article.

3.1.1.1 Silver Standards

Given the scope of our study, we require judgments for relevance that suit our information need,
are available for large parts of the dataset and a broad range of topics, and are publicly accessible.
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We derive two silver standards satisfying these requirements from analyzing (a) “See also” links
and (b) clickstream data.

Unlike user studies, which are typically limited to a few hundred articles at most, these data
sources allow an evaluation for 779,716 articles using “See also” links and 2.57 million articles
using the clickstream dataset. Nonetheless, this evaluation approach has its shortcomings. “See
also” links and clickstream data are only approximated relevance judgments. Therefore, we
refer to them as silver standards, not gold standards. A silver standard is an approximation of a
‘perfect’ reference model. We are the first to apply both silver standards in the context of such
evaluation.

“See also” links. A unique characteristic of Wikipedia articles is not only that they contain
links to additional information in the form of internal references or external links but also that
they contain so-called “See also” sections. The purpose of these sections is to provide links
to other relevant Wikipedia articles, which results in these links acting as literature recommen-
dations for readers.3 Correspondingly, “See also” links are equivalent to a silver standard that
allows a performance evaluation of a recommendation system. Therefore, we classify articles as
relevant if the recommended article is listed in the “See also” section and as irrelevant otherwise.
However, it is in this second assumption that we see a problem: We expect the “See also” links
to be an incomplete reference model created by a few Wikipedia editors. We assume that the
main objective of Wikipedia editors lies in creating textual content rather than providing useful
literature recommendations, which means that if a recommended document is not included in
the “See also” links, it can still be semantically similar and relevant to the readers. Therefore,
we can only decide if a result is relevant but not if it is irrelevant. A true binary classification is
not possible. Hence, we expect a precise true positive classification for articles that exist as “See
also” links. However, many results could be classified as false negatives, even if a result is truly
relevant because the recommendation is missing in the “See also” links.
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Figure 3.2: Number of links per “See also” section in Wikipedia articles.

3https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout, last accessed: 18/01/2023
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We automatically extract the “See also” section and its links. Figure 3.2 shows the distribution of
the number of “See also” links in our Wikipedia dataset. The dataset contains 779,716 Wikipedia
articles with “See also” sections (17% of all articles), where each section contains 2.6 links on
average. This low number of links per section additionally contributes to the incompleteness of
relevance judgments, since the number of relevant recommendations that could be made from
the Wikipedia corpus is likely greater than the number of available “See also” links.

Clickstreams. The publication of Wikipedia clickstreams by WikiResearch (Wulczyn and
Taraborelli, 2015) allows us to use a second silver standard. The dataset contains clickstreams
for 2,572,063 articles (56% of all articles) in the form of aggregated HTTP referrer information
during the month of February 2015. The HTTP referrer indicates the page from which a user
clicked to the article in question. Using this data, we can determine the number of clicks on
out-links for articles. For outgoing links, which occur multiple times in an article, only the
total number of clicks is provided. WikiResearch cleaned the dataset from computer-generated
clicks (bot activity). However, Wulczyn and Taraborelli have noted that the filtering of bots
chould be improved.We assume that the dataset contains some noise from bot activity, but we
cannot quantify or reduce the noise level, since only aggregated clickstream data is available to
us. In the future, WikiResearch plans to release more datasets, which would increase the value
of clickstreams as a reference model. We consider the number of clicks on a link as a cardinal
relevance classification regarding the linked article. The more often a link is clicked, the more
relevant we assume the article to be. Whether this assumption holds true for all articles, and
whether it is a major force driving clicks, has not been proven. Other factors can also affect the
number of clicks, such as the descriptiveness value of the link, or the link’s position within the
article. A recently published study showed that the Click-Through-Rate decreases in proportion
to the link’s position from the top.4

The two silver standards differ in their conceptual properties: While the “See also” silver standard
is created by Wikipedia editors; clicks are judgments for relevance by all readers. Moreover, clicks
can only occur on links that exist in the article content. Such in-content links are also included for
navigational purposes, while “See also” links are exclusively literature recommendations. The
Wikipedia manual states to only add links in “See also” sections that do not exist in other parts
of the article.

3.1.2 Evaluated Methods

We evaluate three methods: MoreLikeThis (MLT), Co-Citations (CoCit), and Co-Citation Prox-
imity Analysis (CPA). CoCit can be considered as a special case of CPA (Section 3.2.1) and is
only used in the offline evaluation. For the sake of transparency and reproducibility, we publish
the source code used in our study on GitHub.5

MoreLikeThis. MoreLikeThis (MLT) is an implementation of TF-IDF (Section 2.3.2). To gen-
erate the MLT result sets, we use a Java application and an Elasticsearch cluster. The application
consists of four sub-tasks: extracting articles from the Wikipedia XML dump, indexing them to
Elasticsearch, performing the MLT queries, and storing all results as a CSV file.

4http://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream, last accessed: 18/01/2023
5https://github.com/wikimedia/citolytics, last accessed: 18/01/2023
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Co-Citation Proximity Analysis. We implement the CPA algorithm with the Apache Flink
framework (Alexandrov et al., 2014) using the Java programming language. In contrast to MLT,
CPA does not require an indexing process. Instead, the CPA results are directly generated from
the Wikipedia XML dump. This requires extraction of the full link graph and performing CPI
computation. These operations are expressed in the MapReduce programming model (Dean and
Ghemawat, 2008). For completeness, we also resolve redirections for Wikipedia links that do
not point directly to their destination.

The static classification of CPI values originally proposed by Gipp and Beel (2009) is unapplicable
to our dataset. Wikipedia articles are not organized in journals, nor do they follow the structure
of scientific documents. Thus, we introduce a new dynamic model of CPI that can be adjusted
depending on the requirements of the test collection. Specifically, we redefine CPI as described
in Equation 2.30 and use this CPI implementation in the offline evaluation. However, for the
user study, we further modified the CPI to reflect the findings of the offline evaluation. The
offline results revealed a tendency towards frequently linked Wikipedia articles. To account
for that, we extend the generalized CPI with the inverse citation frequency, as described in
Equation 2.33. The inverse citation frequency is inspired by the Inverse Document Frequency of
TF-IDF (Section 2.3.2), whereby we adapted the weighting schema from Okapi BM25 (Sparck
Jones et al., 2000). Section 2.4.4 presents details about the formal definitions of the CPI.

3.1.3 Evaluation Methdology

Each silver standard is evaluated separately to ensure that all Wikipedia articles contribute equally
to the results, independent of an article’s number of “See also” links or its popularity.

3.1.3.1 Evaluation Metrics

In the “See also” evaluation, we use the rank-based Mean Average Precision (MAP) score to
quantify recommendation quality (Section 2.1.3). We calculate MAP for the 10 top-ranked
results, i.e. k = 10. All articles are weighted equally in the final MAP score regardless of the
article’s number of “See also” links.

We also performed experiments that calculated the performance measure Mean Reciprocal Rank
(MRR) in addition to MAP during the “See also” evaluation. Evaluating the approaches according
to MAP or MRR yielded no significant differences in the performance relation of the approaches.
Therefore, we chose to only report MAP results in this chapter, since we consider MAP as more
representative of the performance of an approach with regard to all results.

In the clickstream evaluation, we measure recommendation performance using the Click-Through-
Rate measure (CTR) for the top-k-results with k set to 1, 5, and 10 respectively (Section 2.1.3).
Popular Wikipedia articles can generate more clicks than niche articles. Nevertheless, we fol-
lowed the approach of equally weighting each article independent of its popularity.

“See also” Evaluation. We collect the data for the “See also” silver standard from the Wikipe-
dia dump by filtering for sections titled “See also” and extracting the sections’ links. We map the
resulting dataset with the MLT and CPA results based on the article name. Lastly, we ensure that
a “See also” link exists for each seed article.
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Clickstream Evaluation. The data required for the clickstream evaluation is obtained from
Wikiresearch as a CSV file. Therefore, no pre-processing is required. We assign the clickstream
data to CPA and MLT results, i.e., we assign each article recommendation to the respective
number of clicks on the link and its CTR. In the final evaluation process, we combine all result
sets with the corresponding silver standards.

3.1.3.2 Computing Infrastructure and Runtime

The experiment is performed on a cluster of 10 IBM Power 730 (8231-E2B) servers. Each
machine had two 3.7 GHz POWER7 processors with 6 cores (12 cores in total), 2 x 73.4 GB 15K
RPM SAS SFF Disk Drive, 4 x 600 GB 10K RPM SAS SFF Disk Drive and 64 GB of RAM.

Table 3.1: Approximated runtimes for each task.

Task Runtime

MoreLikeThis (Elasticsearch)

· Indexing 7:30 hrs

· Retrieval 53:45 hrs

Co-Citation Proximity Analysis (Apache Flink)

· Computing Results 7:45 hrs

Evaluation (Apache Flink)

· See also links 0:45 hrs

· Clickstream 0:50 hrs

We rely on Apache Flink v0.8 and Hadoop v2.4.1. MLT is implemented using Elasticsearch
v1.4.2. All versions were the latest stable releases at the time of the experiment. We use the
software’s default settings, i.e., neither Apache Flink nor Elasticsearch are optimized for runtime
performance. Although we did not focus on runtime performance and none of the tested document
similarity measures had been optimized, the difference in runtime between CPA and MLT, as
listed in Table 3.1 shows that MLT involves a more extensive computation than CPA. This
is conceptually obvious since the data volume for the recommendations based on words vs.
links differs significantly. Also, MLT requires additional cleaning techniques such as stop word
removal and TF-IDF weighting.

3.1.4 User Study Design

This section describes our user study methodology and the criteria for selecting the Wikipedia
articles used in the study.

3.1.4.1 Study Design

Figure 3.3 shows the study design, including the seed articles used for recommendation genera-
tion, and the resulting data collected during the study.

Prior to our study, we create a sample of 40 seed articles covering a diverse spectrum of article
types in Wikipedia. When selecting these seed articles, our aim was to cover diverse topics

Chapter 3
Wikipedia Article Recommendations

59



Section 3.1. Methodology

Wikipedia

CPAMLT
Seed articles

MLT’s
Recommendations

CPA’s
Recommendations

Recommender
Systems

Researcher

Participant

Reviews recommendations 
in blind study

Written questionnaire Audio interview

Selects for diversity and 
comprehensibility

Reads seed article

Figure 3.3: Overview of study design.

that nonetheless remain comprehensible to a general audience. To ensure comprehensibility, we
exclude topics that would require expert knowledge to judge the relevance of recommendations,
e.g., articles on mathematical theorems or regional historical events. Moreover, the seed articles
featured diverse article characteristics, such as article length and article quality.6 Annual page view
statistics are measured with Wikipedia’s page view tool7 provided by the Wikimedia Foundation
and are for the date range November 2016 - October 2017 (aligned with the dataset).

We distinguish the seed articles into four categories. First, according to their popularity (measured
by page views) into either niche or popular articles, and second, according to the content of the
article into either generic, i.e., reference articles typical of encyclopedias, or named entities, i.e.,
politicians, celebrities, or locations. We choose popularity as a criterion because, on average,
popular articles receive more in-links from other articles. The results of the offline evaluation
suggest that the number of in-links affected the performance of the graph-based CPA approach
(Section 3.2). Moreover, we expect study participants to be more familiar with popular topics
compared to niche articles. Therefore, users will be better able to verbalize their spontaneous
information needs when examining a topic.

The ‘article type’ categories are chosen to study the effect that articles about named entities may
have on MLT. Names of entities tend to be more unique than terms in articles on generic topics.
Therefore, we expect that specific names may affect MLT’s performance. Likewise, due to the
nature of Wikipedia articles linking to generic topics, they may appear in a broader context than
links to named entities. Thus, CPA’s performance may also be affected. These considerations
resulted in four article categories: (A) niche generic articles, (B) popular generic articles, (C)

6We judge the article quality using Wikipedia’s vital article policy. https://en.wikipedia.org/wiki/
Wikipedia:Vital_articles, last accessed: 18/01/2023

7Wikipedia Pageviews Analysis. https://pageviews.toolforge.org/, last accessed: 18/01/2023
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niche named entities, and (D) popular named entities. Table 3.2 shows these four categories and
the 40 seed articles selected for recommendation generation.

To perform our qualitative evaluation of user-perceived recommendation effectiveness, we recruit
20 participants. Participants are students and doctoral researchers from several universities in
Berlin and the University of Konstanz. The average age of participants is 29 years. 65% of our
participants say they spend more than an hour per month on Wikipedia, with the average being
4.6 hours spent on Wikipedia.

Our study contains both qualitative and quantitative data collection components. The quantitative
component is in the form of a written questionnaire. This questionnaire asks participants about
each recommendation set separately and elicited responses on a 5-point Likert scale. Some
questions are tailored to gain insights into our research questions. The remainder of the questions
adheres to the ResQue framework for user-centric evaluation (Pu et al., 2011). The qualitative
data component is designed as a semi-structured interview. The interview contains open-ended
questions that encourage participants to verbally compare and contrast the two recommendation
sets. The participants are also asked to describe their perceived satisfaction. Resulting from this
mixed methods study design, we could use the findings from the qualitative interviews to interpret
and validate the results from the quantitative questionnaires. All interviews are audio-recorded
with the permission of our participants.

3.1.4.2 Seed Articles

In this user study, each participant is shown four Wikipedia articles, one at a time. For each
article, two recommendation sets, each containing five recommended articles, are displayed. One
set is generated using CPA, while the other is generated using the MLT algorithm.

Each set of four Wikipedia articles is shown to a total of two participants to enable checking
for the presence of inter-rater agreement. Participants are aware that recommendation sets are
generated using different approaches, but they do not know the names of the approaches or the
method behind the recommendations. We alternate the placement of the recommendation sets
to avoid the recognition of one approach over the other and forming a potential bias based on
placement. The seed Wikipedia articles are shown to participants via a tablet or a laptop. The
participants are asked to read and scroll through the full article so that the exploration of the
article’s content is as natural as possible. We make the complete questionnaire and the collected
data publicly available on GitHub.8

3.2 Offline Evaluation

In the following, we present the results of the offline evaluation. Before presenting the overall
results, we report on the optimization of the CPI model. We conclude the offline evaluation with
a manual evaluation that verifies the offline findings.

3.2.1 Optimizing the CPI Model

We employ a dynamic CPI model instead of the static CPI values proposed by Gipp and Beel
(2009). Thus, we need to adjust the CPI for Wikipedia articles before comparing the approaches

8https://github.com/malteos/wikipedia-article-recommendations, last accessed: 18/01/2023
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Table 3.2: Overview of seed articles selected for the study.

# Article (Quality6) Words # Article (Quality6) Words
A Niche generic topics C Niche named entities

1 Babylonian mathematics (B) 3,825 21 Mainau (S) 567
2 Water pollution in India (S) 1,697 22 Lake Constance (C) 7,079
3 Transport in Greater Tokyo (C) 3,046 23 Spandau (C) 599
4 History of United States cricket (S) 3,610 24 Appenzell (C) 2,667
5 Firefox for Android (C) 4,821 25 Michael Müller (politician) (Stub) 602
6 Chocolate syrup (Stub) 391 26 Olympiastadion (Berlin) (C) 3,360
7 Freshwater snail (C) 1757 27 Theo Albrecht (S) 929
8 Touring car racing (S) 2550 28 ARD (broadcaster) (S) 2,397
9 Mudflat (C) 787 29 Kaufland (Stub) 680
10 Philosophy of healthcare (B) 3,804 30 Sylt Air (Stub) 110

B Popular generic topics D Popular named entities

11 Fire (C) 4,297 31 Albert Einstein (GA) 15,071
12 Basketball (C) 11,172 32 Hillary Clinton (FA) 28,645
13 Mandarin Chinese (C) 698 33 Brad Pitt (FA) 9,955
14 Cancer (B) 16,300 34 New York City (B) 30,167
15 Vietnam War (C) 32,847 35 India (FA) 16,861
16 Cat (GA) 17,009 36 Elon Musk (C) 11,529
17 Earthquake (C) 7,541 37 Google (C) 16,216
18 Submarine (C) 11,968 38 Star Wars (B) 16,046
19 Rock music (C) 19,833 39 AC/DC (FA) 10,442
20 Wind power (GA) 15,761 40 FIFA World Cup (FA) 7,699

with each other. We need to find a value for the α hyperparameter that achieves the best MAP
score for the “See also” evaluation and the best CTR score for the clickstream evaluation.

To find the value for α that performs best for our dataset, we generate recommendations with
CPA with α values ranging from -1 to 5 in 0.01 increments. Then, we evaluate the recommended
top-k results with k = 10 of each batch by calculating the MAP and CTR scores (Figure 3.4).
We find that CPA performs best in terms of MAP with α set to 0.81 and in terms of CTR with
α set to 0.90 (see vertical lines in Figure 3.4). Thus, we use these optimized α values in the
corresponding CPI models during the “See also” and clickstream evaluation.

The graph in Figure 3.4 also depicts the consistently lower performance of CoCit compared to
CPA. CoCit is a special case of CPA with α set to zero (left line in the graph). Only for negative
α values, CoCit performs better than CPA. Using negative α values would make CPA assign
higher scores to more distant co-citations, effectively reversing the proximity notion of the CPA
measure, and reducing its performance. As a result, the graph emphasizes the benefit of assigning
higher scores to co-citations in closer proximity.

3.2.2 Overall Results

In the following, we present the offline evaluation results for the two silver standards discussed
in Section 3.1.1.1. To be part of the “See also” evaluation, a Wikipedia article must contain a
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Figure 3.4: Optimization of the α parameter of CPA’s CPI model. Performance measured in CTR
and MAP w.r.t. α values. The maximum scores are achieved at α = 0.81 (MAP) and α = 0.90
(CTR), both represented with the two right vertical lines. The left vertical line represents the
special case of α = 0 that corresponds to the CoCit method.

“See also” section, which is true for 779,716 articles. To be part of the clickstream evaluation,
clickstream data has to be available for the article in question, which is true for 2,572,063 articles.

To enable comparability of the evaluated similarity measures, the following sections report results
for a “unified dataset”, i.e., those articles for which all three evaluated measures recommended
the same number of articles. For example, CoCit and CPA cannot generate recommendations for
articles without in-links. Hence, we exclude articles without in-links from the unified dataset.
This procedure reduces the dataset for the “See also” evaluation from 779,716 articles to 659,642
articles (-120,074 articles) and the dataset for the clickstream evaluation from 2,572,063 articles
to 2,535,987 articles (-36,076 articles). To ensure that unifying the datasets does not skew the
evaluation, we calculate all performance scores for CoCit, CPA, and MLT based on the sets of all
related articles that the measures could identify. The maximum difference in any score was 1.3%
(average number of clicks for CPA), and for most scores, less than 1% compared to the results of
the unified dataset. For the interested reader, our GitHub repository includes the results for the
unified dataset and the results for the set of all related articles.

3.2.2.1 “See also” Links

Table 3.3 shows that MLT performed better than CPA in terms of MAP and the average number
of recommended relevant documents, while CoCit performed worst. The MAP score of CPA is
less than half of MLT’s score; CoCit’s score is less than a quarter of MLT’s score. The average
number of relevant documents of MLT and CPA tripled from k = 1 to k = 5 and nearly quadrupled
from k = 1 to k = 10. We expected significant performance differences between CoCit and CPA
since the CPI optimization already showed that CoCit is an under-performing variation of CPA.
On the other hand, we see an advantage of text-based MLT over the citation-based similarity
measures when judging recommendation relevance using “See also” links.
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Table 3.3: Results of the offline evaluation based “See also” links and clickstreams.

Metrics CoCit CPA MLT

“See also” links

Avg. relevant docs. (k = 10) 0.20 0.39 0.59

Avg. relevant docs. (k = 5) 0.12 0.27 0.43

Avg. relevant docs. (k = 1) 0.03 0.08 0.14

MAP (k = 10) 0.03 0.07 0.13

Clickstreams

Avg. clicks (k = 10) 38.34 83.87 80.64

Avg. clicks (k = 5) 23.52 59.50 58.00

Avg. clicks (k = 1) 6.39 19.61 19.08

CTR (k = 10) 0.16 0.35 0.40

3.2.2.2 Clickstreams

Table 3.3 shows the CTR ranking of the clickstream evaluation. CPA accounts for more absolute
clicks than MLT for any value of k, whereas MLT achieves the highest CTR. However, the ratio
of the CTR scores of MLT and CPA (1.13) was significantly lower than that of the MAP scores
of the two approaches (1.92). CoCit again performs worst concerning both scores.

The improved performance of CPA in this evaluation compared to the “See also” evaluation
indicates that CPA performs better than MLT for popular articles, while MLT is more effective
for niche articles. In the following, we present possible interpretations for this observation, which
need further investigation.

Popular articles typically attract many visitors and thus impact the total click count more than
niche articles. However, CTR values every article equally. Thus CTR does not reflect the
comparably better performance of CPA for popular articles as strongly as the average number
of clicks. Popular articles also tend to have more co-authors. Therefore, the collaboratively
generated ‘link set’ contained within popular articles might be of higher relevance, thus generating
higher numbers of clicks and CTRs. To be able to support this hypothesis, we would need to
evaluate the performance with respect to indicators of article quality (Hu et al., 2007).

Additionally, popular articles likely receive more in-links affecting CPA performance. We further
investigate this property in Section 3.2.3.2. Another cause for CPA performing better for popular
articles might be that bots, i.e., computer-generated clicks, have a proportionally more significant
impact on niche articles. Consequently, the quality of the silver standard for these articles might
be lower than for articles of average popularity. As we explain in Section 3.1.1.1, we cannot
quantify this effect since the data we used had been aggregated, thus preventing us from filtering
bots on our own.

64 Chapter 3
Wikipedia Article Recommendations



Section 3.2. Offline Evaluation

3.2.3 Impact of Article Properties

In this subsection, we provide details on evaluating CPA and MLT depending on article properties,
such as the number of words and in-links. We omit CoCit in this evaluation since the “See also”
and clickstream evaluations already showed inferior performance compared to CPA.

Figure 3.5 and 3.6 show the performance in terms of MAP and CTR for words and in-links. The
graphs do not cover the full corpora: For the sake of visibility, we do not plot results for articles
with more than 3,000 words (9.07% of the articles in the “See also” dataset, 5.90% of the articles
in the clickstream dataset) or 400 in-links (2.66% of the articles in the “See also” dataset, 1.22%
of the articles in the clickstream dataset).

3.2.3.1 Words

The performance plot for article length, see Figure 3.5, reveals some interesting results. First,
we see that MLT consistently performs better than CPA when using MAP, but when using CTR,
the performance ranking varies depending on the number of words. For articles with less than
around 1,400 words, MLT is superior. Otherwise, CPA performs slightly better.

Second, MLT’s and CPA’s MAP and CTR graphs show similar tendencies, but with one exception:
MLT’s MAP scores for very short articles (30-50 words) are exceptionally high but drop sharply
for slightly longer articles (60-150 words). For articles with more than approximately 150 words,
MLT’s MAP and CTR scores increase steadily and peak at article lengths of approximately 250
words. For articles longer than 250 words, MLT’s MAP and CTR scores steadily decline. On
the contrary, CPA’s MAP and CTR scores increase until approximately 400 words. Beyond this
word count, the CPA’s MAP and CTR scores remain relatively stable.
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Figure 3.5: Offline evaluation results for CPA (blue) and MLT (red) for the number of words per
article and measured as MAP (solid line) and as CTR (dashed line).

MLT’s performance is more strongly affected by article length than CPA’s. Short articles simply
offer less data for both a text-based and graph-based similarity assessment. If an article contains
few words, it is challenging to determine topic-defining keywords and find other articles with
matching topics. Short articles also typically have fewer in-links, e.g., because they are stubs.
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Therefore, MLT and CPA require an article length of approximately 250 or more words to perform
well. MLT’s MAP peaks for articles with around 50 words is an outlier phenomenon. Such very
short articles typically contain only a single sentence on one topic, a list, a table, or specific
vocabulary. Therefore, such articles often allow an accurate text-based similarity assessment.

While CPA reaches a relatively stable performance in MAP and CTR, MLT’s MAP and CTR
scores decline steadily for articles with 450 words or more. Long articles often cover several
subtopics, which decrease the performance of text-based similarity approaches like MLT. The
vocabulary of subtopics can vary, thus making it difficult to determine a set of words representing
the breadth of topics present in the article. CPA’s performance is hardly affected by article
length, given a critical mass of in-links has been reached. This result is intuitive given that CPA’s
performance exclusively depends on in-links.

3.2.3.2 In-Links

Figure 3.6 shows the plot of MAP and CTR scores depending on the number of in-links. Both
MLT and CPA performed best for approximately 20 in-links. For more in-links, the performance
declines steadily as the number of in-links increases. This plot also shows a change in the CTR
performance ranking of CPA and MLT. For less than 50 in-links, MLT performs better; for more
than 50 in-links, CPA performs better. Compared to the CTR ranking, the ranking according to
MAP does not change.

In-links as a data source are essential for graph-based similarity measures but do not directly
affect text-based similarity measures. Seeing MLT perform better than CPA in terms of CTR for
articles with less than 20 in-links is therefore intuitive. It is also intuitive that CPA’s CTR scores
increase as the number of in-links increases in the range of 0 to 20 in-links.
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Figure 3.6: Offline evaluation results for CPA (blue) and MLT (red) for the number of in-links
per article and measured as MAP (solid line) and as CTR (dashed line).

The reason that CPA’s CTR scores peak at 20 in-links and decline thereafter and MLT’s CTR
scores decline steadily as the number of in-links increases may not be as intuitive. We attribute this
behavior to the nature of articles that receive many in-links. Such articles typically cover broad
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topics, e.g., countries, as Bellomi and Bonato (2005) also reported. We explain in Section 3.2.3.1
that text-based similarity measures like MLT perform worse for such articles than for articles
with narrowly similar topics. Figure 3.6 also demonstrates that graph-based measures like CPA
perform worse for broad-topic articles because such articles receive in-links from many topically
diverse articles. This diversity of in-links reduces the likelihood that the article in question is
frequently co-cited in closer proximity with other articles, reducing CPA’s performance.

3.2.4 Manual Sample Analysis

To test the validity of “See also” links and clickstreams as reference datasets, we manually evalu-
ate a small and random subset of Wikipedia articles. From these articles, we present and discuss
three exemplary articles: Technical University of Berlin (Table 3.4), Newspaper (Table 3.6), and
Elvis Presley (Table 3.5). We chose the articles for their diversity and comprehensibility. Tables
3.4-3.6 list the recommendations of CoCit, CPA, and MLT with the corresponding rank and click
counts. Recommendations that are part of the “See also” links are bold.

3.2.4.1 Technical University of Berlin

The article about the Technical University of Berlin (TUB) includes information about the
university’s history, campus, organization, and a list of notable alumni and professors. Both
graph-based measures, CoCit and CPA, recommend two articles, which are included in the “See
also” links and received clicks (Humboldt University of Berlin and Free University of Berlin,
bold in Table 3.4). The MLT results have a clear focus on the term “University” as the central
topic since all recommended articles are about universities but from other cities and countries.

Table 3.4: Recommendations for “Technical University of Berlin” with total of 596 clicks and
with the “See also” links: Hertie School of Governance, Berlin University of the Arts, Free
University of Berlin, Humboldt University of Berlin, Berlin School of Economics and Law,
Beuth University of Applied Sciences Berlin

Rank CoCit (clicks) CPA (clicks) MLT (clicks)

1 Germany (0) Germany (0) Technical Uni. of Sofia (0)

2 Berlin (20) Berlin (20) University of Economics Varna (0)

3 Humboldt Uni. of Berlin (42) Humboldt Uni. of Berlin (42) Vilnius College of Tech. and
Design (0)

4 Ludwig Maximilian Uni. of
Munich (0)

RWTH Aachen Uni. (0) Braunschweig Uni. of
Technology (0)

5 World War II (0) Technische Uni. München (0) Technical Uni. of Gabrovo (0)

6 United States (0) Charlottenburg (0) Chemnitz Uni. of Technology (0)

7 RWTH Aachen University (0) Mathematics (0) Technische Uni. Ilmenau (0)

8 Free Uni. of Berlin (0) Free Uni. of Berlin (0) Technical Uni. of Dortmund (0)

9 Heidelberg Uni. (0) Habilitation (0) Dresden Uni. of Technology (0)

10 Mathematics (0) Ludwig Maximilian Uni. of
Munich (0)

Technological Uni. Hpa-An (0)
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In this case, it can be said that the best results are produced by the CPA algorithm, followed
by CoCit and MLT. While the CPA results can all be considered relevant, the MLT approach
produces a list of irrelevant institutions. For example, the University of Economics Varna in
Bulgaria or the Technological University Hpa-An in Myanmar. Opposed to that, the universities
considered relevant by the CPA approach are all well-known Universities in the region with a
strong technical focus, similar to the Technical University of Berlin.

In this example, the poor performance of MLT can be explained by the weakness of text-based
approaches where a strong emphasis lies on overlapping terms in the documents. Text describing
a university is usually similar, given those generic characteristics such as the number of students,
etc. are described, automatically leading to a “high” text-based similarity. Possibly, Wikipedia
authors reused text when writing the article about the university in Burma. Citation-based
approaches are not affected by this text reuse issue.

Table 3.5: Recommendations for “Elvis Presley” with total 92,379 clicks and with the “See also”
links: Honorific nicknames in popular music, Elvis Presley Enterprises, List of best-selling music
artists, Personal relationships of Elvis Presley, List of artists by number of UK Albums Chart
number ones, List of artists by the total number of UK number one singles

Rank CoCit (clicks) CPA (clicks) MLT (clicks)

1 AllMusic (0) The Beatles (247) Sun Studio (0)

2 The Beatles (247) Frank Sinatra (139) From Elvis in Memphis (516)

3 Billboard magazine (0) Johnny Cash (140) List of songs recorded by Elvis
Presley on the Sun label (240)

4 United States (52) Jerry Lee Lewis (73) Peter Guralnick (0)

5 Frank Sinatra (139) RCA Records (175) Colonel Tom Parker (1175)

6 The Rolling Stones (0) Rock and roll (306) The Blue Moon Boys (100)

7 Billboard Hot 100 (12) Heartbreak Hotel (720) Elvis Presley’s Army career (619)

8 Johnny Cash (140) Jailhouse Rock song (260) Jailhouse Rock film (1132)

9 Cliff Richard (0) Roy Orbison (96) I Want You, I Need You, I Love
You (83)

10 Bob Dylan (77) United States (52) Elvis Presley albums
discography (6084)

3.2.4.2 Elvis Presley

The biographical Wikipedia article about the American singer and actor Elvis Presley is relatively
long. The article contains 24,298 words, received 5,834 in-links, and provided 92,379 out-clicks.

None of the articles recommended by any approach were part of the “See also” links, but most
recommendations are related to the topic. The topics CoCit and CPA recommended are broader
than MLT’s results. Furthermore, CoCit’s recommendations for the articles “AllMusic”, an online
music database, and “Billboard magazine” are notable: Even though both articles are music-
related, they lack a direct connection to Elvis Presley. These recommendations were caused by
links not belonging to the actual article text, e.g., info boxes or the article footer.
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Table 3.6: Recommendations for “Newspaper” with total of 4,516 clicks and with the “See also”
links: List of newspaper comic strips, Lists of newspapers

Rank CoCit (clicks) CPA (clicks) MLT (clicks)

1 United States (0) Broadsheet (59) The Daily Courier Arizona (0)

2 Broadsheet (59) Magazine (119) Online newspaper (142)

3 English language (0) Tabloid newspaper format (35) History of British
newspapers (168)

4 Tabloid newspaper format (35) United States (0) List of newspapers in the United
States by circulation (0)

5 Race and ethnicity in the United
States Census (0)

Publishing (0) Newspaper circulation (23)

6 The New York Times (118) English language (0) Midland Daily News (0)

7 New York City (0) Journalist (32) The Huntsville Times (0)

8 World War II (0) Book (11) Decline of newspapers (0)

9 Magazine (119) Comic strip (37) The Leaf-Chronicle (0)

10 United Kingdom (0) Radio (0) The Ann Arbor News (0)

3.2.4.3 Newspaper

The “Newspaper” article contains general information on newspapers as periodical publications,
historical development, categories, formats, and other newspaper-related topics. The article
consists of 6,313 words and is linked to 7,611 other articles. The “See also” section includes two
links to newspaper-related lists: “List of newspaper comic strips” and “Lists of newspapers”.

MLT, CPA, and CoCit all fail to recommend any of the “See also” links, which is not surpris-
ing since the two “See also” links point to another list. Despite all articles recommended by
MLT being newspaper-related, they were also overly narrow and irrelevant for the broad and
internationally-oriented “Newspaper” article. MLT recommends articles on actual newspaper
publications, e.g., “The Daily Courier Arizona”, or “Midland Daily News”; However, these
publications are so provincial that they will be irrelevant to most readers. In contrast to MLT,
CPA recommends a broader range of related topics, for instance, newspaper formats (“Tabloid”,
“Magazine”, “Broadsheet”) or other media types (“Book”, “Comic strip”, “Radio”). Two of
the CPA recommendations (“United States” and “English language”) are not topically relevant.
CoCit recommended many irrelevant articles from the geopolitical category (“United States”,
“New York City”, etc.)

3.2.4.4 Summary of Manual Evaluation

The results presented for these three examples were typical of other articles examined. MLT
tended to recommend topically more narrow articles compared to the graph-based approaches.
CPA usually produced more relevant recommendations than CoCit. We observed that the re-
commendations were of a different nature for each approach. While CPA’s recommendations
were consistently plausible, MLT tended to recommend obscure articles. For example, MLT
recommended a University in Myanmar (Technological University Hpa-An) for the article ‘Tech-
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nical University Berlin’ or an internationally virtually unknown newspaper (‘The Daily Courier
Arizona’) at rank 1.

The result of the manual evaluation showed that CPA recommends topically broader articles but
with consistent relevance compared to the often niche results of MLT. However, because this
evaluation approach is highly subjective and dependent on a user’s specific information need, we
invite the reader to examine the examples as well as additional results available in the repository
to make a judgment.

3.2.5 Discussion of Offline Evaluation

We derive the following findings from the offline evaluation. In the “See also” evaluation, the
text-based MLT measure recommended more relevant articles and achieved higher MAP than
both graph-based measures. CPA followed at second rank and clearly outperformed the third-
ranked CoCit in this evaluation. Links outside of the article text, e.g., in information boxes or
article footers, were a source of irrelevant CoCit and CPA results since such links are commonly
less related to the article’s topic.

For example, CoCit recommended the “AllMusic” article at the top rank in the article about Elvis
Presley (Table 3.5). Downranking or ignoring these links in future studies should improve the
performance of the graph-based similarity measures. Such a procedure would correspond to the
stop word removal in MLT. For the CPA approach, adjusting the CPI weighting scheme could
reduce the effect of such Wikipedia-specific unrelated results. For instance, the quantification
of citation proximity should be adjusted for article length or the number of in-links an article
receives. Such normalization can downrank links to general articles that are frequently co-cited
but have no topical relevance, e.g., geopolitical articles such as “United States”.

Recommendations by CPA consistently achieved the highest number of clicks in the clickstream
evaluation. MLT followed at the second rank and CoCit at the third rank in this regard. Yet, MLT
achieved slightly higher CTR scores than CPA in this evaluation, with CoCit again following
at rank three. These results indicate that traditional text-based methods are a well-performing
“general purpose” approach for recommending semantically similar Wikipedia articles regardless
of specific article properties. CPA is better suited to recommending popular articles. Due to
Wikipedia’s collaborative approach to article curation, popular articles are typically longer and
of higher quality.

Our manual evaluation of samples also indicated that CPA and MLT have different strengths
that are not adequately reflected by the “See also” silver standard. The graph-based approaches,
especially CPA, tended to recommend articles from a broader range of related topics compared
to MLT. For instance, for the seed article “Newspaper” MLT mostly recommended actual
newspapers, e.g., “The Daily Courier Arizona” (Table 3.6). On the other hand, CPA recommended
more generally related topics, e.g., newspaper formats such as “Tabloid” or “Broadsheet”. In our
perception, CPA and MLT performed similarly well in identifying semantically similar articles,
yet the type of similarity differs.

Two advantages of the graph-based measures over the text-based measure are their significantly
lower run time requirement (Table 3.1) and their language independence. Citation or link analysis
can be performed for texts in any language and can also be employed for retrieving texts across
languages (when links are used across languages). Text-based measures like MLT are language-
dependent.
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Summarizing our findings, we conclude that text-based and graph-based approaches address
different aspects of the content of Wikipedia articles. The advantage of one source of information
over the other depends on the information need of the user. If a user is interested in articles
that address a specific topic in a single language and from a relatively narrow perspective, the
text-based recommendations from MLT likely suit the user’s information need better than graph-
based recommendations. If the user desires a broader overview of a topic and wants to see
articles in different languages, or if the user values factors like article popularity and quality, then
graph-based recommendations fulfill these requirements better than text-based recommendations.

Ultimately, a combined approach that includes graph-based, text-based, and potentially other
document similarity measures is likely to achieve the best recommendation quality.

3.3 User Study Evaluation

In this section, we summarize and discuss the results of our user study on Wikipedia articles. At
first, we present the primary findings, which provide answers to our three research questions,
before illustrating them with participants’ quotes. Subsequently, we discuss secondary findings
that arose from coding the participants’ responses and go beyond the research questions we
initially set out to answer.

3.3.1 Primary Results

Our user study finds several differences in the reader’s perception of the graph-based approach
compared to the text-based approach. A notable difference could be identified especially in the
perceived degree of ‘similarity’ of the recommendations. Participants are significantly more
likely to agree with the statement ‘the recommendations are more similar to each other’ (see 1.6
in Figure 3.7) for the MLT approach. 73% of responses ‘agree’ or ‘strongly agree’ (58 out of 80
responses) with this statement, compared to only 36% of the responses for the CPA approach
(29 out of 80). Keep in mind that each of the 40 seed articles is examined by two participants,
resulting in 80 responses. A question about whether the articles being recommended ‘matched
with the content’ of the source article (see 1.1) is answered with a similar preference, with a
significantly higher portion of the responses indicating ‘strongly agree’ or ‘agree’ for the MLT
approach (73%) and only 38% of responses choosing the same response for the CPA approach.

Overall, users perceive recommendations of CPA as more familiar (see 1.3). They feel less
familiar (1.4) with the recommendations made by MLT. We find that this difference is observed
by nearly all participants and can be attributed to how MLT considers textual similarity. MLT
generally focuses on overlapping terms, while CPA utilizes the co-occurrence of links. The offline
evaluation results already suggested that this leads to diverging recommendations (Section 3.2).

3.3.1.1 Perceived Difference between CPA and MLT

The participants observed that the methodological difference between the approaches affects
their recommendations. In the questionnaire, participants express 48 times that the articles
recommended by CPA are more diverse, i.e., less similar, compared to the seed article (Figure 3.8).
MLT’s recommendations are found to be diverse only 13 times. Regarding the similarity of
recommendations, the outcome is the opposite.
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1.7 Overall, I am satis�ed with the recommendations.

1.6 �e articles recommended to me are similar to each other.

1.5 �e articles recommended to me are novel and interesting.

1.4 I am not familiar with the articles that were recommended to me.

1.3 Some of the recommended articles are familiar to me.

1.2 �e recommender made good suggestions.

1.1 �e articles recommended to me matched the content of the article.

Strongly disagree Disagree Undecided Agree Strongly agree

Figure 3.7: Responses for MLT (dashed) and CPA (solid) on a 5-point Likert scale.

The participants’ answers also indicate the difference between MLT’s and CPA’s recommen-
dations. Participant P20 explains that “approach A [CPA] is more an overview of things and
approach B [MLT] is focusing on concrete data or issues and regional areas”. CPA providing
an “overview of things” is not favorable for all participants as they describe different information
needs. For example, participant P20 prefers MLT’s recommendation since “it is better to focus
on the details”. Some participants attributed the recommendations’ similarity (or diversity) to
terms co-occurring in the seed title and recommended articles. For instance, participant P15 finds
MLT’s recommendations for Star Wars to be more similar because “Star Wars is always in the
title [of MLT’s recommendations]”. Participant P17 also assumes a direct connection between
the seed and MLT’s recommendations “I’d guess recommendations of A [MLT] are already
contained as a link in the source article”.
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Figure 3.8: Diversity or similarity.

Nonetheless, participants struggle to put the observed difference between MLT and CPA in words,
although they notice categorical differences in the recommendation sets. Participant P19 said “I
can see a difference, but I don’t know what the difference is”. Similarly, participant P20 finds
that “they [MLT and CPA] are both diverse to the same extent but within a different scope”.

Concerning the overall relevancy of the recommendations, MLT outperforms CPA. In total,
the participants agree or strongly agree 45 times that MLT made ‘good suggestions’ (see 1.2),
whereas only 37 times the same is stated for CPA. Similarly, MLT’s overall satisfaction is slightly
higher (46 times agree or strongly agree) than CPA (40 times; see 1.7).

3.3.1.2 Information Need

The participants are also aware of relevancy depending on their individual information needs.
When asked about the ‘most relevant recommendation’, the participants’ answers contain the
words ‘depends’ or ‘depending’ ten times. Participant P15 states that “if I want a broader research
I’d take B [CPA] but if I’d decide for more punctual research I would take A [MLT] because
it is more likely to be around the submarine and because in B [CPA] I also get background
information”. Similarly, participant P13 would click on a recommendation as follows: “if you’re
looking for a specific class/type of snails, then this [MLT] could be one, but if you’re just looking
to get an overview of aquatic animals, then probably you would click on the other approach
[CPA]”. In summary, the participants agree that CPA provides ‘background information’ that
is useful to ‘get an overview of a topic’, while MLT’s recommendations are perceived as ‘more
specific’ and having a ‘direct connection’ to the seed article.

The most commonly expressed information needs for articles on science and technology are un-
derstanding how technology works or looking up a definition. For individual articles, participants
express the need to find dates relating to an individual and understand their contributions to soci-
ety. For ‘niche’ topics, users are slightly more likely to state the desire to discover sub-categories
on a topic, which implies wishing to move from a broader overview to a more fine-grained and
in-depth examination of the topic.

The subjectiveness in the perception of recommendations is reflected in the inter-rater agreement.
On average, the participants who review the same articles have a Cohen’s kappa of κ = 0.14,
which corresponds to a slight agreement. The inter-rater agreement increases to a “fair agreement”
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(Landis and Koch, 1977) when we move from a 5-point to a 3-point Likert scale, i.e., possible
answers are ‘agree’, ‘undecided’, or ‘disagree’. A low agreement indicates that the perception of
recommendation highly depends on the individual’s prior knowledge and information needs.

3.3.1.3 Article Characteristics

In the methodology section, we define article ‘types’ according to article popularity, length, and
breadth into the four categories ‘popular generic’, ‘niche generic’, ‘popular named entities’, and
‘niche named entities’. These categories have no observable impact on user’s preference for one
recommendation approach over the other.

However, we find that the user-expressed information need, for example, the desire to identify
related articles that are either more broadly related or more specialized, has a measurable impact
on the user’s preference for the recommendation method. For popular generic articles on science
and technology, e.g., the article on wind power, the most frequently expressed information needs
are understanding how technology works or looking up definitions.

For articles in the categories ‘popular generic’ and ‘niche generic’, we could observe that the
information needs expressed by our readers are more broad. For example, they want to find
definitions for the topic at hand, more general information to understand a topic in its broader
context, or examples of sub-categories on a topic. There is no observable difference between the
specified categories of information need for ‘popular’ vs. ‘niche’ generic articles.
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How familiar were you with the topic of the article?

Niche generic topic
Niche named entites

Popular generic topics
Popular named entities

Figure 3.9: Familiarity with article topic.

Given our initial classification of the selected 40 Wikipedia articles, the empirical questionnaire
data shows that ‘niche’ entities are, on average, more familiar to the participants than we initially
expected (Section 3.1.4.1). This is especially the case for named entities from niche topics,
many of which are rated as familiar to the participants. This may be because our participants are
from Germany and are thus familiar with many of these articles, despite the articles reporting
on regional German topics, e.g., Spandau, Mainau. On the other hand, users rated niche generic
topics as less familiar, which is in line with what we expected.

Furthermore, both popular generic topics and popular named entities are less often classified
as ‘unfamiliar’ by the participants than they are classified as ‘neutral or familiar’. Lastly, one
notable finding is that Wikipedia listings, e.g., List of rock genres or List of supermarket chains
in Germany, are found to be the most relevant recommendations in some cases. Our CPA
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implementation intentionally excludes Wikipedia listings from its recommendation sets. Thus,
the implementation needs to be revised accordingly.

3.3.2 Secondary Results

The analysis of the participants’ interviews led us to the following secondary findings:
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Figure 3.10: User’s satisfaction depends on interest and familiarity, i.e., for all articles or only
the articles which are very interesting or familiar to the user.

3.3.2.1 Effect of User’s Interest on Recommendations

Figure 3.10 shows that MLT outperforms CPA in recommendation satisfaction if participants
‘strongly agree’ with the article topic being (a) interesting or (b) being at least ‘familiar’ to them.
This is likely the case because users are more versed in judging the relevance of the text-based
recommendations of the MLT approach if they already have more in-depth knowledge of a
topic. For example, one participant observes CPA’s recommendations of Renewable energy for
Wind power as the seed article: “Renewable energy is least relevant because everybody knows
something about it [Renewable energy]”. Sinha and Swearingen (2002) have already shown the
previous familiarity with an item as a confounding factor on a user ‘liking’ a recommendation.
Interestingly, this trend is no longer observable in cases when participants only ‘agree’ but without
strong conviction that the articles are interesting or familiar to them. In these cases, the MLT and
CPA approaches are seen as more equal, with the CPA approach taking a slight lead.

3.3.2.2 User-based Preferences

Our findings confirm the subjectiveness of recommendation performance since we observe user-
based preferences. For instance, participant P2 only agrees or strongly agrees with MC 1.2 ‘The
recommender made good suggestions’ and 1.7 ‘Overall, I am satisfied with the recommendations’
for CPA but never gives the same answers for MLT. However, participant P3 shows the opposite
preference, i.e., only MLT makes good suggestions according to P3. The remaining participants
have more balanced preferences. In terms of MC 1.2 and 1.7, nine participants have a tendency to
prefer MLT, while six participants preferred CPA, and five participants do not show any particular
preference for one of the two recommendation approaches.
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3.3.2.3 Perception of Novelty & Serendipity of Recommendations

To gain insights into the user-perceived novelty, we ask participants to rate the following state-
ments: ‘I am not familiar with the articles that were recommended to me’ and ‘The articles
recommended to me are novel and interesting’. While novelty determines how unknown recom-
mended items are to a user, serendipity is a measure of the extent to which recommendations
positively surprise their users (Ge et al., 2010; Kaminskas and Bridge, 2017). For instance,
participant P19 answers “approach A [MLT] shows me some topics connected with the article I
read but with more special interest - they are about “Healthcare”, and B [CPA] actually changes
the whole topic. B [CPA] offers totally different topics.” CPA’s recommendations are generally
found to be more serendipitous. For the question regarding an ‘unexpected recommendation
among the recommendation set’ CPA receives a positive answer 41 times, compared to only 23
times for MLT. The perceived novelty also makes participants click on recommendations. Among
others, participant P1 explains that “there are more [MLT] articles that I would personally click
on because they are new to me.” Similarly, participant P16 states that they would “click first on
Star Wars canon, because I don’t know what it is”.

3.3.2.4 Trust & (Missing) Explanations

Although the questionnaire is not designed to investigate the participants’ trust in the recom-
mendations, many answers relate to this topic. When users were asked about the relevance of
recommendations, some participants expressed that there “must be a connection” between the
article at hand and a recommendation and that they just “do not know what is has to do with it”.
Others are even interested in topically irrelevant recommendations. For example, they express

“it interests me why this is important to the article I am reading”. Similarly, a participant says
that they might click on a recommendation “because I do not know what it has to do with [the
seed article]”. Such answers are more frequent for CPA recommendations since they are more
broadly related than MLT’s more narrow topical similarity. In some cases, there is no semantic
similarity. Yet, participants often do not recognize a recommendation as irrelevant. Instead, they
say it is their fault for not knowing how the recommendation is relevant to the seed article. This
behavior indicates a high level of trust from the participants in the recommender system.

3.3.3 Discussion of User Study

The user study demonstrates that MLT and CPA differ in their ability to satisfy specific user
information needs. Furthermore, our study’s participants are capable of perceiving a systematic
difference between the two approaches.

CPA is found to provide an ‘overview of things’ with recommendations more likely to be un-
familiar to the participants and less likely to match the content of the seed article. In contrast,
MLT is found to ‘focus on the details’. Participants also feel that MLT’s recommendations
matched the content of the seed article more often. At the same time, participants perceive CPA’s
recommendations as more diverse, while MLT’s recommendations are more similar to each other.
So CPA and MLT, being conceptually different approaches and relying on different data sources,
lead to unique differences in how their recommendations are perceived. In terms of overall
satisfaction with recommendations, most participants expressed a preference for MLT over CPA.
MLT is based on TF-IDF and, therefore, its recommendations are centered around specific terms
(e.g., P15: “Star Wars is always in the title”). In contrast, CPA relies on the co-occurrence of
links. According to CPA, two articles are considered related when they are mentioned in the
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same context. Our results show that this leads to more distantly related recommendations, which
do not necessarily share the same terminology. Given that the participants experience the two
recommendation approaches differently, a hybrid combination of text and graph information is
preferable depending on the context.

Moreover, the differently perceived recommendations show the shortcoming of the notion of simi-
larity. Both approaches, CPA and MLT, are developed to retrieve semantically similar documents,
which they indeed do (Gipp and Beel, 2009; Jones, 1973). However, their recommendations
address different aspects of the article content. Both approaches convey a different notion of
similarity. A recommended article that provides an ‘overview’ can be considered similar to the
seed article. Equivalently, a ‘detailed’ recommendation can also be similar to the seed but in a
different context. Our qualitative interview data shows how users perceive these two similarity
measures differently. These findings align with the work from Bär et al. (2011), which finds that
text similarity inherits different dimensions.

We also find that either CPA’s or MLT’s recommendations are liked or disliked depending on
the individual participant’s preferences. Some participants even express a consistent preference
for one method over the other. However, a strict preference was the exception. We could also
not identify any direct relation between the user or article characteristics and the preference for
one method. At this point, more user data as in a user-based recommender system would be
needed to tailor the recommendations to the user’s profile. Purely content-based approaches
such as CPA and MLT lack this ability (Beel et al., 2016b; Jannach et al., 2010; Lenhart and
Herzog, 2016). The only option would be to allow users to select their preferred recommendation
approach through the user interface depending on their information needs.

The participants’ answers also reveal trust in the quality of the recommendations, although the
trust was not always justified. Participants would assume a connection between the seed article
and the recommended article just because it is recommended by the system. Instead of holding the
recommender system accountable for non-relevant recommendations, participants find themselves
responsible for not understanding a recommendation’s relevance. To not disappoint this trust,
recommender systems should provide explanations that help users understand why a particular
item is recommended. Also, explanations would help users to understand the connections
between seed and recommendations. Explainable recommendations are a subject of active
research (Kunkel et al., 2019; Zhang and Chen, 2020). However, most research focuses on
user-based approaches. Explainable content-based approaches are an unexplored research area,
although methods such as CPA or MLT would also benefit from explanations.

Despite the insights of our user study to elicit users’ perceived differences in recommendation
approach performance, the nature of our evaluation has several shortcomings. With 20 partici-
pants, the study is limited in size. Consequently, our quantitative data points suggest a difference
that is not statistically significant. When consulting only our offline evaluation and quantitative
questionnaire data, one could assume that MLT and CPA are comparable in some aspects since
their average scores are similarly high. The discrepancies between CPA and MLT only become
evident when analyzing the written and oral explanations of live users. This highlights that
recommender system research should not purely rely on offline evaluations (Beel et al., 2016b).
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3.4 Summary of the Chapter

In this chapter, we focussed on Research Task I and compared existing document similarity
measures. In particular, this chapter investigated classical similarity measures, the text-based MLT
(a TF-IDF implementation; Section 2.3.2) and the graph-based CPA (and CoCit; Section 2.4.4).
The similarity measures are evaluated for the task of recommending Wikipedia articles. We
conducted a large-scale offline evaluation (Section 3.2) and a user study (Section 3.3) to compare
MLT and CPA in a quantitative and qualitative manner.

The offline evaluation found that the graph-based and text-based methods have complementary
strengths. While the text-based MLT method performed well in identifying closely related articles,
the graph-based CPA, which consistently outperformed CoCit, was better suited for identifying
a broader spectrum of related articles and popular articles that typically exhibit a higher quality.
In terms of evaluation metrics, MLT achieved better MAP and CTR scores, whereas CPA’s
recommendations led to the highest number of absolute clicks. Consequently, both evaluation
revealed no significant difference in recommendation accuracy of MLT and CPA.

Our user study with 20 participants confirmed these findings. The users were generally more sat-
isfied with the recommendations generated by text-based MLT, whereas CPA’s recommendations
were perceived as more novel and diverse. The methodological difference between CPA and
MLT, i.e., based on either text or links, was reflected in their recommendations and noticed by
the participants. Depending on information needs or user-based preferences, one recommender
approach was preferred over the other. Thus, we suggest combining both approaches in a hybrid
system since both address different information needs. However, the challenge for such a hybrid
approach would be making different notions of MLT’s and CPA’s semantic similarity accessible to
the users of a recommender system. Moreover, their notions of similarity lack a proper definition;
hence, their similarity cannot be explicitly stated. Does MLT yield a topic-specific similarity? Or
are CPA’s recommendations concept-similar? In the words of Goodman (1972), to what aspects
does the similarity of MLT or CPA relate? We will investigate these questions in the subsequent
chapters of this thesis.

Aside from comparing MLT and CPA, this chapter made additional contributions. We introduced
the first implementation of CPA for a hyperlink use case. We adopted CPA’s CPI model from
the academic literature to analyze links. To conduct the large-scale offline evaluation, we pro-
posed two novel silver standards based on Wikipedia’s “See also” sections and a comprehensive
clickstream dataset as estimators of the relevance of Wikipedia articles.
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Chapter 4

Legal Literature Recommendations

This chapter continues the work on Research Task I from the previous chapter. But in contrast to
Chapter 3, which focuses on rather traditional methods, this chapter investigates a large variety
of state-of-the-art document representation techniques for the task of finding semantically similar
court decisions. The content of this chapter is published in Ostendorff et al. (2021a).

_ “Evaluating Document Representations for Content-Based Legal Literature Recom-
mendations” by Malte Ostendorff, Elliott Ash, Terry Ruas, Bela Gipp, Julian
Moreno-Schneider, and Georg Rehm. In: Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Law (ICAIL), 2021.

Legal professionals, e.g., lawyers and judges, frequently invest considerable time in finding
relevant literature (Lastres, 2013). More so than most other domains, in law, there are high stakes
for finding the most relevant information (documents) as that can drastically affect the outcome
of a dispute. A case can be won or lost depending on whether or not a supporting decision
can be found. Recommender systems assist in the search for relevant information. However,
research and development of recommender systems for legal corpora pose several challenges.
Recommender system research is known to be domain-specific, i.e., minor changes may lead
to unpredictable variations in the recommendation effectiveness (Beel et al., 2016a). Likewise,
legal English is a peculiarly obscure and convoluted variety of English with the widespread
use of common words with uncommon meanings (Mellinkoff, 1963). Recent language models
may not be equipped to handle legal English since they are pretrained on generic corpora like
Wikipedia or cannot process lengthy legal documents due to their limited input length. This
raises the question of whether the recent advances in recommender systems and NLP research
and underlying techniques also apply to the legal domain.

In this chapter, we empirically evaluate 25 document representation methods, analyze the results
for the aforementioned possible issues, and answer the following research questions:

e Research questions

RQ1: What document representation method performs best on the task of finding semanti-
cally similar court decisions?

RQ2: Can individual methods be combined in a hybrid manner to improve the overall
performance?

RQ3: How do document properties such as length or citations affect the performance?

To answer these research questions, we evaluate state-of-the-art document representations in
a literature recommender use case for each method. The methods are distinguished into three
categories: (1) word vector-based, (2) Transformer-based, and (3) graph-based methods. Further-
more, we evaluate additional hybrid variations of individual methods. Our primary evaluation
metric comes from two silver standards on United States case law that we extract from Open
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Case Book and Wikisource. The relevance annotations from the silver standards are provided for
2,964 documents.

In this chapter, we present the following main contributions:

1. We propose and make available two silver standards as benchmarks for legal recommender
system research.

2. We conduct a quantitative evaluation of 25 methods, the majority of which have not been
previously investigated for legal literature, and validate our results qualitatively.

3. We demonstrate that a simple hybrid combination of text-based and graph-based methods
can further improve the recommendation performance.

The remainder of this chapter is structured as follows: First, we introduce the general exper-
imental methodology, i.e., the datasets and the evaluated methods. Subsequently, we present
the evaluation based the two silver standards, starting with the overall results in Section 4.2.1,
impact of document properties in Section 4.2.2, coverage and similarity of recommendations in
Section 4.2.3, and manual analysis in Section 4.2.4. In Section 4.3, we discuss the results of all
evaluations. Finally, we summarize the main findings of this chapter.

4.1 Methodology

This section describes our quantitative evaluation of 25 methods for legal document recommen-
dations. The methods are evaluated with a specific recommendation scenario in mind.

Recommendation scenario. The recommendations are consumed in the following context:
The user, a legal professional, needs to research a particular decision, e.g., to prepare a litigation
strategy. Based on the decision at hand, the system recommends other decisions to its users such
that the research task is easy to accomplish. The recommendation is relevant when it covers
the same topic or provides essential background information, e.g., it overruled the seed decision
(Opijnen and Santos, 2017).

4.1.1 Datasets

Most of the related works (Section 2.1.1) evaluate recommendation relevance by asking domain
experts to provide subjective annotations (Boer and Winkels, 2016; Kumar et al., 2011; Mandal
et al., 2017; Winkels et al., 2014). Especially in the legal domain, these expert annotations are
costly to collect and, therefore, their quantity is limited. For the same reason, expert annotations
are rarely published. Consequently, the research is difficult to reproduce (Beel et al., 2016a). In
the case of United States court decisions, such expert annotations between documents are also
not publicly available. We construct two ground truth datasets from publicly available resources
allowing the evaluation of more recommendations to mitigate the mentioned problems of cost,
quantity, and reproducibility.

Open Case Book. With Open Case Book, the Harvard Law School Library offers a platform
for making and sharing open-licensed casebooks.1 The corpus consists of 222 casebooks con-
taining 3,023 cases from 87 authors. Each casebook contains a manually curated set of topically

1https://opencasebook.org, last accessed: 18/01/2023
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Table 4.1: Distribution of relevance annotations for Open Case Book and Wikisource.

Relevance annotations per document

Datasets ↓ Mean Std. Min. 25% 50% 75% Max.

Open Case Book 86.42 65.18 2 48 83 111 1590

Wikisource 130.01 82.46 1 88 113 194 616

related court decisions, which we use as relevance annotations. The casebooks cover a range
from broad topics (e.g., Constitutional law) to specific ones (e.g., Intermediary Liability and
Platforms’ Regulation). The decisions are mapped to full-texts and citations are retrieved from the
Caselaw Access Project (CAP).2 After duplicate removal and the mapping procedure, relevance
annotations for 1,601 decisions remain.

Wikisource. We use a collection of 2,939 United States Supreme Court decisions from Wiki-
source as ground truth (Wikisource, 2020). The collection is categorized in 67 topics like antitrust,
civil rights, and amendments. We map the decisions listed in Wikisource to the corpus from
CourtListener.3 The discrepancy between the two corpora decreases the number of relevance
annotations to 1,363 court decisions.

Relevance classification. We derive a binary relevance classification from Open Case Book
and Wikisource. When decisions A and B are in the same casebook or category, A is relevant
for B and vice versa. Conversely, A and B are irrelevant recommendations for each other when
they do not share the same casebook or category. Table 4.1 presents the distribution of relevance
annotations. This relevance classification is limited since a recommendation might still be relevant
despite not being assigned to the same topic as the seed decision. Thus, we consider the Open
Case Book and Wikisource annotations as a silver standard rather than a gold standard.

4.1.2 Evaluation Methdology

The evaluation is conducted with a k nearest neighbor search in the embedding space of each
method. We evaluate each method for its ability to represent any legal document d in our
corpus as a numerical vector d ∈ Rs with s denoting the vector size. First we obtain the vector
representations (or document embeddings) for all documents in our corpus. To retrieve the
recommendations for a seed or query document dq, we compute the cosine similarities of the
vectors of dq and all other documents in the corpus. Finally, we select the top k = 5 documents
with the highest similarity through a k nearest neighbor search of dq. We set k = 5 due to the
user interface (Ostendorff et al., 2020a) into which the recommendations will be integrated.

Mean Average Precision (MAP) is the primary, and Mean Reciprocal Rank (MRR) is the second
evaluation metric (Section 2.1.3). We compute MAP and MRR over a set of queries Q, whereby Q
is equivalent to the seed decisions with |QWS|= 1363 available in Wikisource and |QOCB|= 1601
for Open Case Book.

2https://case.law, last accessed: 18/01/2023
3https://courtlistener.com, last accessed: 18/01/2023
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In addition to the accuracy-oriented metrics, we evaluate the recommendations’ coverage and
Jaccard set similarity. The coverage is defined as in Equation 2.5 and the Jaccard similarity in
Equation 2.13. Coverage and Jaccard similarity are computed for two methods a and b over their
recommendation sets Ra and Rb.

4.1.3 Evaluated Methods

In the experiments, we evaluate 25 methods that we devide into three categories: Word vector-,
Transformer-, and graph-based methods.

4.1.3.1 TF-IDF Baseline

As a baseline method, we use the sparse document vectors from TF-IDF4 (Section 2.3.2) with
d ∈R500,000, which are commonly used in related works (Kumar et al., 2011; Nanda et al., 2019)
and performed well in our experiments with Wikipedia articles (Chapter 3).

4.1.3.2 Word Vector-based Methods

We evaluate the word vector-based methods GloVe (Pennington et al., 2014), fastText (Bo-
janowski et al., 2017; Joulin et al., 2017), and Paragraph Vectors (Le and Mikolov, 2014) (see
Section 2.3.4 for details on these methods).

• Paragraph Vectors: A distributed bag-of-words model jointly trained on Open Case Book
and Wikisource with d ∈ R300 using a window size of 5, and the default hyperparameters
from the Gensim framework (Rehurek and Sojka, 2010).

• GloVe: Pretrained GloVe word vectors w ∈ R300 as provided by Pennington et al.; trained
on Wikipedia and Gigaword.

• fastText: Pretrained fastText word vectors w ∈ R300 as provided by Bojanowski et al.;
trained on Wikipedia, UMBC webbase corpus and statmt.org news dataset.

• fastTextLegal and GloVeLegal: Custom legal word vectors based on GloVe and fastText but
trained on the joint court decision corpus extracted from Open Case Book and Wikisource.5

To obtain a document vector d with GloVe and fastText, we compute the weighted average over
its word vectors, wi, whereby the number of occurrences of the word i in d defines the weight ci.
Having word vectors from a generic corpus and our own legal corpus allows the investigation of
the cross-domain applicability of the methods.

4.1.3.3 Transformer-based Methods

In the second method category, we employ language models from deep contextual text represen-
tations based on the Transformer architecture (Section 2.3.7.1):

• BERT (Devlin et al., 2019): The original model provided by Devlin et al. that was
pretrained on Wikipedia and BookCorpus.

4We use the TF-IDF implementation from the scikit-learn framework (Pedregosa et al., 2011).
5The legal word vectors can be downloaded from our GitHub repository.
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• Legal-JHU-BERT-base (Holzenberger et al., 2020): A BERT base model but fine-tuned on
legal text from the CAP corpus.

• Legal-AUEB-BERT-base (Chalkidis et al., 2020): Another legal BERT model fine-tuned
on the CAP corpus but also on other corpora (court cases and legislation from United States
and European Union, and contracts).

• RoBERTa (Liu et al., 2019): An improved BERT variation trained on more data and with
larger batches, and without the next sentence prediction task for pretraining.

• Sentence-BERT and Sentence RoBERTa (Reimers and Gurevych, 2019): Sentence Trans-
formers are fine-tuned BERT and RoBERTa models in a Siamese setting (Bromley et al.,
1993) to derive semantically meaningful sentence embeddings that can be compared using
cosine similarity. The evaluated Sentence Transformers variations are nli- or stsb-version
that are either fine-tuned on the SNLI and MNLI dataset (Bowman et al., 2015; Williams
et al., 2018) or fine-tuned on the STS benchmark (Cer et al., 2017).

• Longformer (Beltagy et al., 2020): A Transformer with an attention mechanism that scales
linearly with sequence length, allowing longer documents to be processed. We use the
pretrained Longformer models as provided by Beltagy et al., which are limited to 4096
tokens (as opposed to the 512 tokens from the other Transformer models).

All Transformer models apply mean-pooling to derive document vectors. We experimented with
other pooling strategies, but they yield significantly lower results. These findings agree with
Reimers and Gurevych (2019). We investigate each Transformer in two variations depending on
their availability and with respect to model size and document vector size (base with d ∈ R768

and large with d ∈ R1024).

4.1.3.4 Graph-based Methods

We explore graph-based methods utilizing the legal citation graph in which documents are nodes
and edges correspond to citations to generate document vectors (see Section 2.4 for details
on graph-based methods). The citation graph embeddings have the same vector size as the
word-based methods with d ∈ R300.

• DeepWalk (Perozzi et al., 2014): One of the first methods that borrowed word2vec’s idea
and applied it to graph embeddings.

• Walklets (Perozzi et al., 2017): Extends DeepWalk but explicitly encodes multi-scale node
relationships to capture community structures with the graph.

• BoostNE (Li et al., 2019): A matrix factorization-based embedding technique combined
with gradient boosting. Li et al. have shown that BoostNE performs well with citation
graphs.

• Poincaré (Nickel and Kiela, 2017): An embedding method that is based on the hyperbolic
space of the Poincaré ball model rather than the Euclidean space as in the aforementioned
methods. Embeddings produced in hyperbolic space are naturally equipped to model
hierarchical structures (Krioukov et al., 2010). Poincaré seems in particular promising
since such hierarchical structures can also be found in the legal citation graph in the form
of different topics or jurisdictions,
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DeepWalk, Walklets, and BoostNe are implemented with the Karate Club framework (Rozem-
berczki et al., 2020)

4.1.3.5 Variations & Hybrid Methods

Given the conceptional differences in the evaluated methods, each method has its strength and
weakness. The performance of a method may vary when document characteristics change.
For further insights into these differences, we evaluate all methods with limited text, vector
concatenation, and score summation:

Limited token count. Unlike the Transformers, the word vector-based methods have no
maximum number of input tokens. Whether an artificial limitation of the document length
improves or decreases the results is unclear. Longer documents might add additional noise to the
representation and could lead to worse results (see Section 3.2.3.1). To make these two method
categories comparable, we include additional variations of the word vector-based methods that
are limited to the first 512 or 4096 tokens of the document. For instance, the method fastTextLegal

(512) is artificially limited to only the first 512 tokens.

Vector concatenation. Aside from the text length constraints, we explore hybrid methods
that utilize text and citation information. Each of the single methods above yields a vector
representation d for a given document d. We combine methods by concatenating their vectors.
For example, the vectors from fastText dfastText and Poincaré dPoincaré can be concatenated as in
Equation 4.1:

d = dfastText||dPoincaré (4.1)

The resulting vector size is the sum of the concatenated vector sizes, e.g., s = 300+300 = 600.
Recommendations based on the concatenated methods are retrieved in the same fashion as the
other methods, with cosine similarity.

Score summation. Moreover, we combine methods by adding up their cosine similarities as
already done by Wang et al. (2016a). The combined score of two methods is the sum of the
individual scores, e.g., for method x and method y the similarity of two documents da and db
is computed as in Equation 4.2. Methods with score summation are denoted with x+ y, e.g.,
Poincaré + fastTextLegal.

sim(da,db) = sim(dxa ,dxb)+ sim(dya
,dyb

) (4.2)

Lastly, we integrate citation information into Sentence Transformers analog to the fine-tuning
procedure proposed by Reimers and Gurevych (2019). Based on the citation graph, we construct
a dataset of positive and negative document pairs. Two documents da,db are considered positive
samples when they are connected through a citation. Negative pairs are randomly sampled and do
not share any citations. Sentence-Legal-AUEB-BERT-base is the Sentence Transformer model
with Legal-AUEB-BERT-base as the base model and trained with citation information.

To summarize, we selected 25 methods ranging from traditional TF-IDF over Transformer models
to citation graph embeddings. The selection represents a set of popular techniques that are
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successfully applied for other NLP tasks (Sun et al., 2019; Yan et al., 2021) or other application
domains like research papers (Ali et al., 2020; Mohamed Hassan et al., 2019) but so far had little
impact on legal applications.

4.2 Evaluation

The results of the comparison of the 25 methods are shown in this section. We start by presenting
the overall results of the offline evaluation based on Wikisource and Open Case Book. To
obtain further insights, we also analyze the results concerning document length and citation
count, compare the coverage and similarity of the recommendations, and validate our quantitative
findings with a manual analysis of a randomly sampled recommendation set. For the offline
evaluation, we obtain a list of recommendations for each input document and each method and
then compute precision, recall, MRR, MAP, and coverage accordingly.

Table 4.2: Overall scores for top k = 5 recommendations from Open Case Book and Wikisource
as precision, recall, MRR, MAP and coverage for the 25 methods. The methods are divided into
baseline, word vector-based, Transformer-based, graph-based, and hybrid. High scores according
to the exact values are underlined (or bold for category-wise).

Datasets → Open Case Book Wikisource

Methods ↓ Prec. Rec. MRR MAP Cov. Prec. Rec. MRR MAP Cov.
TF-IDF 0.320 0.032 0.363 0.020 0.487 0.318 0.026 0.389 0.015 0.446

Paragraph Vectors 0.555 0.056 0.729 0.049 0.892 0.477 0.036 0.629 0.030 0.841
fastText 0.532 0.053 0.713 0.045 0.811 0.422 0.031 0.581 0.025 0.772
fastTextLegal 0.574 0.059 0.739 0.050 0.851 0.478 0.037 0.631 0.031 0.815
fastTextLegal (512) 0.394 0.037 0.591 0.028 0.835 0.433 0.034 0.587 0.027 0.809
fastTextLegal (4096) 0.552 0.054 0.727 0.045 0.867 0.466 0.035 0.620 0.029 0.817
GloVe 0.536 0.054 0.702 0.046 0.814 0.412 0.033 0.577 0.026 0.789
GloVeLegal 0.564 0.057 0.724 0.048 0.834 0.461 0.037 0.621 0.030 0.804

BERT-base 0.253 0.021 0.428 0.015 0.815 0.323 0.021 0.485 0.015 0.784
BERT-large 0.270 0.022 0.443 0.016 0.841 0.364 0.023 0.530 0.018 0.794
Legal-JHU-BERT-base 0.295 0.025 0.482 0.018 0.848 0.371 0.027 0.537 0.020 0.796
Legal-AUEB-BERT-base 0.331 0.028 0.506 0.021 0.884 0.401 0.027 0.573 0.022 0.813
Longformer-base 0.382 0.033 0.572 0.026 0.892 0.329 0.020 0.514 0.016 0.841
Longformer-large 0.419 0.039 0.614 0.031 0.885 0.360 0.023 0.535 0.018 0.826
RoBERTa-large 0.305 0.026 0.481 0.019 0.843 0.387 0.026 0.553 0.020 0.782
Sentence-BERT-large-nli 0.206 0.018 0.352 0.013 0.872 0.273 0.017 0.443 0.012 0.782

BoostNE 0.258 0.022 0.442 0.016 0.800 0.248 0.016 0.398 0.013 0.832
DeepWalk 0.267 0.028 0.473 0.021 0.818 0.364 0.030 0.533 0.025 0.856
Poincaré 0.447 0.044 0.629 0.036 0.930 0.465 0.038 0.598 0.031 0.837
Walklets 0.448 0.043 0.636 0.035 0.816 0.470 0.038 0.611 0.031 0.826

Poincaré ∥ fastTextLegal 0.473 0.048 0.656 0.041 0.737 0.505 0.041 0.638 0.035 0.818
Longformer-large ∥ fastTextLegal 0.451 0.043 0.642 0.035 0.876 0.383 0.025 0.547 0.020 0.829
Poincaré + fastTextLegal 0.571 0.058 0.746 0.050 0.860 0.497 0.040 0.646 0.034 0.835
Poincaré + Longformer-large 0.419 0.039 0.630 0.033 0.885 0.360 0.023 0.548 0.019 0.826
Sent.-Legal-AUEB-BERT-base 0.438 0.039 0.603 0.031 0.917 0.471 0.038 0.602 0.032 0.849
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4.2.1 Overall Results

Table 4.2 presents the overall evaluation metrics for 25 methods and the two datasets. From
the non-hybrid methods, fastTextLegal yields the highest MAP score with 0.05 on Open Case
Book, whereas on Wikisource, fastTextLegal, Poincaré, and Walklets all achieve the highest MAP
score of 0.031. The hybrid method of Poincaré ∥ fastTextLegal outperforms the non-hybrids for
Wikisource with 0.035 MAP. For Open Case Book, the MAP of Poincaré + fastTextLegal and
fastTextLegal are equally high.

We compared in total 41 methods but we remove 16 less insightful methods from Table 4.2 for
better comprehensibility (the results for the excluded methods can be found in the supplementary
materials9). From the word vector-based methods, we discard the 512 and 4096 tokens variations
of Paragraph Vectors, GloVe and GloVeLegal, as they show a similar performance deterioration as
fastTextLegal. The base versions of some Transformers are also excluded in favor of the better-
performing large versions. Similarly, only the Sentence-BERT-large-nli version of the Sentence
Transformers is shown, since all other Sentence Transformers yielded a poor performance. For
the hybrid variations, we show only the best methods. We also tested Node2Vec (Grover and
Leskovec, 2016) but exclude it given its low MAP scores.

Regarding the word vector-based methods, we see that the methods which are trained on the
legal corpus (Paragraph Vectors, fastTextLegal, GloVeLegal) perform similarly well with a minor
advantage by fastTextLegal. Moreover, there is a margin between the generic and legal word
vectors even though the legal word vectors are trained on a small corpus compared to ones from
the generic vectors. The advantage of Paragraph Vectors over TF-IDF is consistent with the
results from related work, e.g., Mandal et al. (2017). Limiting the document length to 512
or 4096 decreases the effectiveness of fastTextLegal. A limit of 512 tokens decreases the MAP
score to 59% compared to all tokens on Open Case Book. With 4096 tokens, the performance
decline is only minor (90% compared to all tokens). The token limitation effect is also larger on
Open Case Book than Wikisource. The 4096 tokens version of fastTextLegal even outperforms all
Transformer methods.

Longformer-large is the best Transformer for Open Case Book with 0.031 MAP. For Wikisource,
Legal-AUEB-BERT achieves the highest MAP of 0.022, closely followed by Legal-JHU-BERT.
The Longformer’s theoretical advantage of processing 4096 instead of 512 tokens does not lead to
better results for Wikisource, for which even BERT scores the same MAP of 0.018. We generally
observe that large models outperform their base counterparts.6 Likewise, RoBERTa has higher
scores than BERT, as Liu et al. (2019) suggested. From the Transformers category, Sentence
Transformers yield the worst results. We assume that fine-tuning the models on datasets like
NLI or STSB does not increase the performance since the models do not generalize well to other
domains. However, the language model fine-tuning from Legal-JHU-BERT and Legal-AUEB-
BERT improves performance, whereby Legal-AUEB-BERT generally outperforms Legal-JHU-
BERT. For Open Case Book, Legal-AUEB-BERT is the best model in the Transformer category
in terms of MAP even though it is only used as the base version.

In the citation category, Poincaré and Walklets are the best methods by a large margin. For
Wikisource, the two graph-based methods achieve the same MAP of 0.031 as fastTextLegal.
Compared to the word vector-based methods, the citation methods generally perform better on
Wikisource than on Open Case Book.

6Legal-JHU-BERT and Legal-AUEB-BERT are only available as base versions.
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Combining text and citations improves the recommendation performance, as we can see in the
category of hybrid methods. For Open Case Book, the score summation Poincaré + fastTextLegal
has the same MAP of 0.05 as fastTextLegal but a higher MRR of 0.746. The MRR of Poincaré
+ fastTextLegal is even higher than the MRR of its sub-methods Poincaré (0.629) and fastText-
Legal (0.739) individually. The concatenation of Poincaré ∥ fastTextLegal is with 0.035 MAP the
best method on Wikisource. Using citation as a training signal as in Sentence-Legal-AUEB-
BERT also improves the performance but not as much as concatenation or summation. When
comparing the three hybrid variations, score summation achieves overall the best results. In the
case of Wikisource, the concatenation’s scores are below its sub-methods, while summation has
at least the best sub-methods score. Moreover, combining a pair of text-based methods such as
Longformer-large and fastTextLegal never improves its sub-methods.

4.2.2 Impact of Document Properties

To complement the overall results, we also evaluate the impact of document length and citation
count on the recommendation performance.
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Figure 4.1: MAP scores with respect to words in the seed document of Open Case Book (top)
and Wikisource (bottom). The more words, the better the results, no peak at medium length.
fastTextLegal outperforms both Legal-BERT and Longformer even for short documents.
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4.2.2.1 Document Length

The effect of the document length on the performance in terms of MAP is displayed in Figure 4.1.
We group the seed documents into eight equal-sized buckets (each bucket represents an equal
number of documents) depending on the word count in the document text to make the two datasets
comparable. The interval of each bucket is shown in the legend.

Both datasets (Open Case Book and Wikisource) present a similar outcome. The MAP increases
as the word count increases. Table 4.2 presents the average overall documents; therefore, the
overall best method is not equal to the best method in some subsets. For instance, Paragraph
Vectors achieve the best results for several buckets, e.g., 4772-6172 words in Open Case Book or
6083-8659 words in Wikisource (the results of Paragraph Vectors are not shown in the figure).
The text limitation of fastTextLegal (4096 tokens) in comparison to fastText is also clearly visible.
The performance difference between the two methods increases as the document length increases.
For the first buckets with less than 4096 words, e.g., 187-2327 words in Open Case Book, one
could expect no difference since the limitation does not affect the seed documents in these buckets.
However, we observe a difference since target documents are not grouped into the same buckets.
Remarkable is that the performance difference for very long documents is less substantial. When
comparing Longformer-large and Legal-AUEB-BERT, we also see an opposing performance shift
with changing word count. While Legal-AUEB-BERT’s scores are relatively stable throughout
all buckets, Longformer depends more on the document length. On the one hand, Longformer
performs worse than Legal-AUEB-BERT for short documents, i.e., 187-2327 words in Open
Case Book, and 31-1777 words in Wikisource. On the other hand, for documents with more
words, Longformer mostly outperforms Legal-AUEB-BERT by a large margin. The graph-based
method Poincaré is as well affected by the document length. However, this effect is due to a
positive correlation between word count and citation count.

4.2.2.2 Citation Count

Figure 4.2 shows the effect of the number of in- and out-citations (i.e., edges in the citation graph)
on the MAP score based on equal-sized buckets. The citation analysis for Wikisource confirms
the word count analysis. More data correlates with higher MAP scores. The only exception
can be found for Open Case Book, where the performance of the graph-based methods peaks at
31-51 citations and even decrease at 67-89 citations. When comparing Poincaré and Walklets, no
superior method and no dependency pattern are visible. The performance effect on DeepWalk is
more substantial. The number of citations must be above a certain threshold to allow DeepWalk
to achieve competitive results. For Open Case Book, the threshold is at 51-67 citations, and for
Wikisource, it is at 30-50 citations. Figure 4.2 also shows the on average higher MAP of Poincaré
+ fastTextLegal in comparison to the other approaches. Graph-based methods require citations to
work, whereas text methods do not have this limitation (see 0-14 citations for Open Case Book).
When no citations are available, citation graph-based methods cannot recommend documents,
whereas the text methods still work (see 0-14 citations for Open Case Book).

Our graph-based methods use only a fraction of the true citation data (70,865 citations in Open
Case Book and 331,498 citations in Wikisource), because of our limitations to the documents
available in the silver standards. For comparison, the most-cited decision7 from CourtListener

7https://www.courtlistener.com/opinion/111170/strickland- v- washington/, last accessed:
18/01/2023
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Figure 4.2: MAP scores with respect to citation count of seed documents for Open Case Book
(top) and Wikisource (bottom). Among graph-based methods, Poincaré and Walklets perform on
average the best, while DeepWalk outperforms them only for Wikisource and when more than
82 citations are available (rightmost bucket).

(the underlying corpus of Wikisource) has 88,940 citations, whereas in experimental data of
Wikisource the maximum number of in- and out-citations is 386. As a result, we expect the
graph-based methods, especially DeepWalk, to work even better when applied to the full corpus.

4.2.3 Coverage and Similarity of Recommendations

In addition to the accuracy-oriented metrics, Table 4.2 reports also the coverage of the recommen-
dation methods. Recommender systems for an expert audience should not focus on a small set of
the most popular items but rather provide high coverage of the whole item collection. However,
coverage alone does not account for relevancy; therefore, it must be contextualized with other
metrics, e.g., MAP.

Overall, two graph-based methods yield the highest coverage for both datasets, i.e., Poincaré
for Open Case Book and DeepWalk for Wikisource. In particular, Poincaré has not only a high
coverage but also high MAP scores. However, the numbers do not indicate that graph-based
methods have generally a higher coverage since the text-based Paragraph Vectors or Longformer-
base also achieve considerably high coverage. The lowest coverage has by far the TF-IDF
baseline. Notable, the hybrid methods with concatenation and summation have a different effect
on the coverage as on the accuracy metrics. While the hybrid methods generally yield a higher
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Figure 4.3: Jaccard index for similarity or diversity of two recommendation sets (average over all
seeds from the two datasets). Most overlap can be found among the word vector based methods.

MAP, their coverage is lower compared to their sub-methods. Only, the Sentence-Legal-AUEB-
BERT-base yields a higher coverage compared to Legal-AUEB-BERT-base.

Besides the coverage, we also analyze the similarity or diversity of the recommendations between
pairs of methods. Figure 4.3 shows the similarity measured as the Jaccard index for selected
methods. Method pairs with J(a,b) = 1 have identical recommendations, whereas J(a,b) = 0
means no common recommendations. Generally speaking, the similarity of all method pairs is
considerably low (J < 0.8). The highest similarity can be found between a hybrid method and one
of its sub-methods, e.g., Poincaré + fastTextLegal and fastTextLegal with J = 0.76. Apart from that,
substantial similarity can be only found between pairs from the same category. For example, the
pair of the two text-based methods of GloVeLegal and fastTextLegal yields J = 0.67. Graph-based
methods tend to have lower similarity compared to the text-based methods, whereby the highest
Jaccard index between two graph-based methods is achieved for Walklets and Poincaré with
J = 0.32. But also within the text-based category, we see little overlap when comparing for
example Legal-AUEB-BERT with fastTextLegal. Like the coverage metric, the Jaccard index
should be considered in relation to the accuracy results. GloVeLegal and fastTextLegal yield
equally high MAP scores, while having also a high recommendation set similarity. In contrast,
the MAP for Wikisource from fastTextLegal and Poincaré is equally high, too. However, their
recommendation’s similarity is low with J = 0.11. Consequently, fastTextLegal and Poincaré
provide relevant recommendations that are diverse from each other. This explains the good
performance of their hybrid combination.
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4.2.4 Manual Sample Analysis

Due to the lack of openly available gold standards, we rely only on silver standards. Thus, we
conduct an additional qualitative evaluation with domain experts to estimate the quality of our
silver standards.

Table 4.3: Open Case Book example recommendations from fastTextLegal and Poincaré for
Mugler v. Kansas with relevance annotations by the silver standard (S) and domain expert (D).

# Recommendations Year S D

1 Yick Wo v. Hopkins 1886 N N

2 Munn v. Illinois 1876 Y Y

3 LS. Dealers’ & Butchers’ v. Crescent City LS. 1870 N Y

4 Butchers’ Benevolent v. Crescent City LS. 1872 Y Yfa
st

Te
xt

L
eg

al

5 Lochner v. New York 1905 Y Y

1 Yick Wo v. Hopkins 1886 N N

2 Allgeyer v. Louisiana 1897 Y Y

3 Calder v. Wife 1798 N N

4 Davidson v. New Orleans 1877 Y YPo
in

ca
ré

5 Muller v. Oregon 1908 Y Y

Table 4.3 and 4.4 lists one of the randomly chosen seed decisions (Mugler vs. Kansas8), and
five recommended similar decisions, each from fastTextLegal and Poincaré. In Mugler vs. Kansas
(1887), the court held that Kansas could constitutionally outlaw liquor sales with constitutional
issues raised on substantive due process (Fourteenth Amendment) and takings (Fifth Amendment).
We provide a detailed description of the cases and their relevance annotations in the Appendix of
Ostendorff et al. (2021a).

The sample verification indicates the overall usefulness of both text-based and graph-based
methods and does not contradict our quantitative findings. Each of the identified cases has
a legally important connection to the seed case (either the Fourteenth Amendment or Fifth
Amendment), although it is difficult to say whether the higher-ranked cases are more similar
along an important topical dimension. The rankings do not appear to be driven by facts presented
in the case as most of them have not to do with alcohol bans. Only Kidd vs. Pearson (1888) is
about liquor sales as the seed decision.

Also, the samples do not reveal considerable differences between text- and graph-based similarity.
The lack of this difference contradicts the findings from the Wikipedia experiments in Chapter 3.
This could indicate that citations are differently used in the legal literature compared to Wikipedia,
which is most likely true, or that the manual analysis was performed on too few samples to produce
representative results. Regarding the silver standards, the domain expert annotations agree in 14
of 20 cases (70%). In only two cases, the domain expert classifies a recommendation as irrelevant
despite being classified as relevant in the silver standard.

8https://www.courtlistener.com/opinion/92076/mugler-v-kansas/, last accessed: 18/01/2023
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Table 4.4: Wikisource example recommendations from fastTextLegal and Poincaré for Mugler v.
Kansas with relevance annotations by the silver standard (S) and domain expert (D).

# Recommendations Year S D

1 Kidd v. Pearson 1888 N Y

2 Lawton v. Steele 1894 N Y

3 Yick Wo v. Hopkins 1886 N N

4 Geer v. Connecticut 1896 N Yfa
st

Te
xt

L
eg

al

5 Groves v. Slaughter 1841 Y N

1 Rast v. Van Deman & Lewis Co. 1916 Y N

2 County of Mobile v. Kimball 1881 N N

3 Brass v. North Dakota Ex Rel. Stoeser 1894 Y Y

4 Erie R. Co. v. Williams 1914 Y YPo
in

ca
ré

5 Hall v. Geiger-Jones Co. 1917 Y Y

4.3 Discussion

Our experiments explore the applicability of the latest advances in representation learning re-
search to the use case of legal literature recommendations. Existing studies on legal recom-
mendations typically rely on small-scale user studies and are therefore limited in the number of
approaches that they can evaluate (Section 2.1.1). For this study, we utilize relevance annotations
from two publicly available sources, i.e., Open Case Book and Wikisource. These annotations
not only enable us to evaluate the recommendations of 2,964 documents but also the comparison
of in total 41 methods and their variations of which 25 methods are presented in this chapter.

Our extensive evaluation shows a large variance in the recommendation performance. Such
a variance is known from other studies (Beel et al., 2016a). There is no single method that
yields the highest scores across all metrics and all datasets. Despite that, fastTextLegal is the best
single method on average. fastTextLegal yields the highest MAP for Open Case Book, while for
Wikisource only hybrid methods outperform fastTextLegal. Also, the coverage of fastTextLegal
is considerably high for both datasets. Simultaneously, fastTextLegal is robust to corner cases
since neither very short nor very long documents reduce fastTextLegal’s performance substantially.
These results confirm the findings from Arora et al. (2017) that average word vectors are “simple
but tough-to-beat baseline”. Regarding baselines, our TF-IDF baseline yields one of the worst
results. In terms of accuracy metrics, only some Transformers are worse than TF-IDF, but
especially TF-IDF’s coverage is the lowest by a large margin. With a coverage below 50%,
TF-IDF fails to provide diverse recommendations that are desirable for legal literature research.

The transfer of research advances to the legal domain is one facet of our experiments. Thus,
the performance of Transformers and citation embeddings is of particular interest. Despite the
success of Transformers for many NLP tasks, Transformers yield the worst results on average for
representing lengthy documents written in legal English. The other two method categories, word
vector-based and graph-based methods, surpass Transformers.

92 Chapter 4
Legal Literature Recommendations



Section 4.3. Discussion

The word vector-based methods achieve overall the best results among the non-hybrid methods.
All word vector-based methods with in-domain training, i.e., Paragraph Vectors, fastTextLegal,
and GloVeLegal, perform similarly well with a minor advantage by fastTextLegal. Their similar
performance aligns with the large overlap among their recommendations. Despite a small corpus
of 65,635 documents, the in-domain training generally improves the performance as the gap
between the out-of-domain fastText and fastTextLegal shows. Given that the training of custom
word vectors is feasible on commodity hardware, in-domain training is advised. More significant
than the gap between in- and out-of-domain word vectors is the effect of limited document lengths.
For Open Case Book, the fastTextLegal variation limited to the first 512 tokens has only 52% of
the MAP of the full-text method. For Wikisource, the performance decline also exists but is less
significant. This effect highlights the advantage of the word vector-based methods in that they
derive meaningful representations of documents with arbitrary lengths.

The evaluated Transformers cannot process documents of arbitrary length but are either limited to
512 or 4096 tokens. This limitation contributes to Transformers’ low performance. For instance,
Longformer-large’s MAP is almost twice as high as BERT-large’s MAP on Open Case Book.
However, for Wikisource, both models yield the same MAP scores. For Wikisource, the in-
domain pretraining has a larger effect than the token limit since Legal-AUEB-BERT achieves
the best results among the Transformers. Regarding the Transformer pretraining, the difference
between Legal-JHU-BERT and Legal-AUEB-BERT shows the effect of the two pretraining
approaches. The corpora and the hyperparameter settings used during pretraining are crucial.
Even though Legal-JHU-BERT was exclusively pretrained on the CAP corpus, which has a high
overlap with Open Case Book, Legal-AUEB-BERT still outperforms Legal-JHU-BERT on Open
Case Book.

Another reason for the poor performance of the Transformer models is that their embedding
space suffers from being anisotropic, as the work from Li et al. (2020) suggests. An anisotropic
embedding space is poorly defined in some areas making a similar search more error-prone. Given
these findings, we expect the performance of Transformers could be improved by increasing
the token limit beyond the 4096 tokens, by additional in-domain pretraining, and by addressing
anisotropic issues (e.g., through a contrastive learning objective as shown in Chapter 5). Such
improvements are technically possible but add significant computational effort. In contrast to
word vectors, Transformers are not trained on commodity hardware but on GPUs. Especially
long-sequence Transformers such as the Longformer require GPUs with large memory. Such
hardware may not be available in production deployments. Moreover, the computational effort
must be seen in relation to the other methods. Put differently, even fastTextLegal limited to 512
tokens outperforms all Transformers.

Concerning the citation embeddings, we consider Poincaré, closely followed by Walklets, as
the best method. In particular, the two methods outperform the other citation methods for
documents even when only a few citations are available, which makes them attractive for legal
research. Poincaré also provides the highest coverage for Open Case Book, emphasizing its
quality for literature recommendations. For Wikisource, DeepWalk has the highest coverage
despite yielding generally low accuracy scores. As Figure 4.2 shows, DeepWalk’s MAP score
improves substantially as the number of citations increases. Therefore, we expect that DeepWalk
and other citation methods would perform even better when applied to larger citation graphs.

While the sample analysis reveal no considerable difference between text-based and graph-based
similarity (Section 4.2.4), the overall recommendation set similarity between the graph-based
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methods and the text-based methods is remarkably low (Figure 4.3). This indicates that the
different method categories yield also a different notion of document similarity since they produce
fundamentally different recommendations. This finding aligns with our qualitative comparison
of TF-IDF and CPA in Chapter 3. Also, it motivates the hybrid combination of text-based and
graph-based methods.

Related work has already shown the benefit of hybrid methods for literature recommendations
(Bhattacharya et al., 2020a; Wiggers and Verberne, 2019). Our experiments confirm these find-
ings. The simple approaches of score summation or vector concatenation can improve the results.
In particular, Poincaré + fastTextLegal never deteriorates the performance. Instead, it improves the
performance for corner cases in which one of the sub-methods perform poorly. Vector concate-
nation has mixed effects on the performance, e.g., positive effect for Wikisource and negative
effect for Open Case Book. Using citations as training data in Sentence Transformers can also
be considered a hybrid method that improves the recommendation performance. However, this
requires additional effort to train a new Sentence Transformer model.

In general, our results highlight the benefit of combing text and graph information for legal
literature recommendations. Poincaré ∥ fastTextLegal achieves the best precision, recall, and MAP
on Wikisource. Poincaré + fastTextLegal is on par with fastTextLegal on Open Case Book in terms
of MAP (best MRR), when scores are rounded to three decimals. Coverage is also high for
both hybrid methods. These improvements can be achieved even with simple approaches like
score summation or vector concatenation, which come only with a small computational overhead
compared to the Transformer models. Thus, hybrid methods are generally advisable.

As we discuss in Section 4.1.1, we consider Open Case Book and Wikisource rather a silver
than a gold standard. With the qualitative evaluation, we mitigate the risk of misinterpreting the
quantitative results, whereby we acknowledge our small sample size. The overall agreement with
the domain expert is high. The expert tends to classify more recommendations as relevant than
the silver standards, i.e., relevant recommendations are missed. This explains the relatively low
recall from the quantitative evaluation. In a user study, we would expect only minor changes in
the ranking of methods with similar scores, e.g., fastTextLegal and GloVeLegal. The overall ranking
among the methods would remain the same. The benefit of our silver standards is the number
of available relevance annotations. The number of annotations in related user studies is up to
50 annotations rather low. Instead, our silver standards provide magnitude more annotations for
recommendation relevance. Almost 3,000 relevance annotations enable evaluations regarding
text length, citation count, or other properties that would be otherwise magnitudes more difficult.
Similarly, user studies are difficult to reproduce as their data is mostly unavailable (Beel et
al., 2016a). The open license of the silver standards allows sharing of all evaluation data and,
therefore, contributes to more reproducibility. In summary, the proposed datasets bring great
value to the field, overcoming eventual shortcomings.

4.4 Summary of the Chapter

This chapter empirically evaluated 25 document representation methods in the context of legal
literature recommendations. Following Chapter 3, this chapter continued comparing existing
aspect-free document similarity methods as formulated in Research Task I. As opposed to
Chapter 3 that studied primarily classical count-based approaches like CPA, this chapter focused
exclusively on evaluating vector representation techniques. We discarded CPA in favor of state-
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of-the-art graph embedding methods and also due to its lower performance compared to TF-IDF.
We conducted the study based on the common content-based recommendation approach of first
learning vector representations from text and graph information and then recommending the k
nearest neighbors based on the cosine similarity of their vector representations.

We evaluated the 25 methods over two document corpora containing 2,964 documents (1,601
from Open Case Book and 1,363 from Wikisource), which differentiates our study from the
small-scale studies previously conducted in the legal domain. We underpinned our findings with
a sample-based qualitative evaluation. Our analysis of the results revealed fastTextLegal (averaged
fastText word vectors trained on our in-domain corpora) as the best-performing single method.

In particular, the results also showed that graph-based and text-based recommendations have a
low overlap and that the individual methods are vulnerable to certain dataset characteristics like
text length and the number of available citations. To mitigate the weakness of single methods
and to increase recommendation diversity, we proposed simple hybrid methods like the score
summation of fastTextLegal and Poincaré that outperformed all individual methods. The hybrid
methods not only improved the accuracy-oriented evaluation metrics with little computational
overhead but also increased the coverage of the recommendations. Thus, hybrid methods are
generally advisable. Combining methods improves the recommendations since the individual
methods implicitly address different aspects of the document content. This outcomes confirms
the findings from Chapter 3 and shows that state-of-the-art document representations and legal
literature recommendations are also affected by the lack of aspect information.

Although there are limitations in the experimental evaluation due to the lack of openly available
ground truth data, we could draw meaningful conclusions about the behavior of text-based and
graph-based document embeddings in the context of legal document recommendation. The
chapter’s source code, models, and datasets are openly available.9

9https://github.com/malteos/legal-document-similarity, last accessed: 18/01/2023
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Chapter 5

Hybrid Research Paper Representations

The last two chapters have shown that text-based and graph-based methods address different
aspects of the document content and that a simple hybrid combination of text and graph infor-
mation, such as vector concatenation or score summation, already improves recommendation
performance. In this chapter, we focus on the Research Task II and design a method, which
combines text and graph information. To be precise, we will explore how citation information
can be incorporated into a text-based document encoder for research papers. Having an encoder,
which produces document representations from text input alone, has the advantage that it can also
be applied in use cases where no or only little graph information is available. The approaches
from Chapter 4 like vector concatenation would not work under these settings. This chapter’s
content is based on Ostendorff et al. (2022b).

_ “Neighborhood Contrastive Learning for Scientific Document Representations with
Citation Embeddings” by Malte Ostendorff, Nils Rethmeier, Isabelle Augenstein,
Bela Gipp, and Georg Rehm. In: The 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022.

Large pretrained language models achieve state-of-the-art results on many NLP tasks (Rogers
et al., 2020). However, the sentence or document embeddings derived from these language
models are of lesser quality compared to simple baselines like fastText (as shown in Chapter 4),
as their embedding space suffers from being anisotropic (Li et al., 2020). In other words, their
embedding space is poorly defined in some areas.

One approach that has recently gained attention is the combination of language models with
contrastive fine-tuning to improve the semantic similarity between document representations
(Gao et al., 2021; Wu et al., 2020). These contrastive methods learn to distinguish between pairs
of similar and dissimilar documents (positive and negative samples). Recent works showed that
the selection of these positive and negative samples is crucial for efficient contrastive learning of
document representations (Rethmeier and Augenstein, 2021a; Rethmeier and Augenstein, 2021b;
Shorten et al., 2021; Tian et al., 2020b).

Building upon these findings, this chapter focuses on learning hybrid document representations
from text and citations for research papers. The core distinguishing feature of the scientific
domain is the presence of citation information that complement the textual information. Existing
methods like SciBERT (Beltagy et al., 2019) pretrain a Transformer language model on domain-
specific text but neglect citations. The current state-of-the-art SPECTER by Cohan et al. (2020)
uses citation information to generate positive and negative samples for contrastive fine-tuning
of a SciBERT language model. SPECTER relies on ‘citations by the query paper’ as a discrete
signal for similarity, i.e., positive samples are cited by the query while negative ones are not cited.

However, SPECTER’s use of citations has its pitfalls. Considering only one citation direction may
cause positive and negative samples to collide since a paper pair could simultaneously be treated
as a positive and negative instance. Also, relying on a single citation as a discrete similarity
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signal is subject to noise, for example, when citations may reflect politeness and policy rather
than semantic similarity (Pasternack, 1969) or related papers lack a direct citation (Gipp and
Beel, 2009). This discrete cut-off to similarity is counter-intuitive to continuous similarity-based
learning. Instead, the generation of non-colliding contrastive samples should be based on a
continuous similarity function that allows us to find semantically similar papers, even without
direct citations. This chapter introduces the SciNCL approach (scientific document neighborhood
contrastive learning) that addresses the aforementioned issues by generating contrastive samples
based on citation embeddings. Citation embeddings incorporate the full citation graph and
provide a continuous, undirected, and less noisy similarity signal that generates arbitrary easy-to-
hard positive and negative samples. To validate these assumptions, this chapter seeks to answer
the following research questions.

e Research questions

RQ1: Are samples generated from neighboring citation embeddings more suitable than
samples from discrete citations for the contrastive learning of scientific document
representations?

RQ2: How does the difficulty of contrastive samples affect the quality of the learned
document representations and the training efficiency?

We conduct extensive experiments based on the SciDocs benchmark to provide answers to these
research questions. Specifically, we compare SciNCL against existing state-of-the-art document
representation methods and analyze the effect of its hyperparameters.

In summary, this chapter makes the following main contributions:

1. We propose neighborhood contrastive learning for scientific document representations with
citation graph embeddings (SciNCL) based on contrastive learning theory insights.

2. We sample positive (similar) and negative (dissimilar) papers from the k nearest neighbors
in the citation graph embedding space, such that positives and negatives do not collide but
are also hard to learn.

3. We compare against the state-of-the-art approach SPECTER (Cohan et al., 2020) and other
strong methods on the SciDocs benchmark and find that SciNCL outperforms SPECTER
on average and on 9 of 12 metrics.

4. Finally, we demonstrate that with SciNCL, using only 1% of the triplets for training,
starting with a general-domain language model, or training only the bias terms of the
model is sufficient to outperform the baselines.

This chapters’s code and models are publicly available.1

The remainder of this chapter is structured as follows: First, we introduce the general method-
ology, i.e., the concept of contrastive neighborhood learning, the datasets, and the evaluated
methods. Subsequently, we present the overall results in Section 5.2.1, the analysis of sample
difficulty in Section 5.2.2, and other ablations in Section 5.2.3. In Section 5.3, we discuss the
results of all evaluations. Finally, we summarize the main findings of this chapter.

1 https://github.com/malteos/scincl, last accessed: 18/01/2023
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Section 5.1. Methodology

5.1 Methodology

Our goal is to learn citation-informed representations for scientific documents. To do so, we
sample three document representation vectors and learn their similarity. For a given query paper
vector dQ, we sample a positive (similar) paper vector d+ and a negative (dissimilar) paper vector
d−. This produces a ‘query, positive, negative’ triplet (dQ,d+,d−) – represented by ( , , )
in Figure 5.1. To learn paper similarity, we need to define three components: how to calculate
document vectors d for the loss over triplets L (Section 5.1.1), how citations provide similarity
between papers (Section 5.1.2), and how negative and positive papers (d−,d+) are sampled as
(dis-)similar documents from the neighborhood of a query paper dQ (Section 5.1.2.1).

easy negatives

sample 
induced 
margin

Figure 5.1: Starting from a query paper in a citation graph embedding space. Hard positives
are citation graph embeddings that are sampled from a similar (close) context of but are

not so close that their gradients collapse easily. Hard (to classify) negatives (red band) are
close to positives (green band) up to a sampling induced margin. Easy negatives are very
dissimilar (distant) from the query paper .

5.1.1 Contrastive Learning

Before diving into the methodological details, we introduce essential background knowledge
about contrastive learning that was not covered in Chapter 2.

Contrastive learning pulls representations of similar data points (positives) closer together, while
representations of dissimilar documents (negatives) are pushed apart. A common contrastive
objective is the triplet loss (Schroff et al., 2015) that SPECTER used for scientific document
representation learning, as described below. However, as Musgrave et al. (2020) and Reth-
meier and Augenstein (2021a) point out, contrastive learning objectives work best when specific
requirements are respected:

1. Views of the same data should introduce new information, i.e., the mutual information
between views should be minimized (Tian et al., 2020b). We use citation graph embeddings
to generate contrast label information that supplement text-based similarity.
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2. For training time and sample efficiency, negative samples should be hard to classify but
should also not collide with positives (Saunshi et al., 2019).

3. Recent works like Khosla et al. (2020) and Musgrave et al. (2020) use multiple positives.
However, positives need to be consistently close to each other (Wang and Isola, 2020),
since positives and negatives may otherwise collide, e.g., Cohan et al. (2020) consider
only ‘citations by the query’ as similarity signal and not ‘citations to the query’. Such
unidirectional similarity does not guarantee that a negative paper (not cited by the query)
may cite the query paper and thus could cause collisions the more we sample. Papers cited
by the query are positives, and papers not cited by the query are negatives. When papers
citing the query are not considered as positives, collisions can occur.

Our method treats citing and being cited as positives (Requirement 2), while it also generates
hard negatives and hard positives (Requirement 2+3). Hard negatives are close but do not overlap
positives (red band in Figure 5.1). Hard positives are close, but not trivially close to the query
document (green band in Figure 5.1). The sample-induced margin (space between the red and
green band in Figure 5.1) ensures that contrastive samples do not collide.

Triplet mining. Triplet mining remains a challenge in NLP due to the discrete nature of lan-
guage, making data augmentation less trivial than computer vision (Gao et al., 2021). Examples
of augmentation strategies are translation (Fang et al., 2020), or word deletion and reordering
(Wu et al., 2020). Positives and negatives can be sampled based on the sentence position within
a document (Giorgi et al., 2021). Gao et al. (2021) utilize supervised entailment datasets for
the triplet generation. Language- and text-independent approaches are also applied. Kim et al.
(2021) use intermediate BERT hidden state for positive sampling, and Wu et al. (2021) add noise
to representations to obtain negative samples. Xiong et al. (2020) present an approach similar
to SciNCL where they sample hard negatives from the k nearest neighbors in the embedding
space derived from the previous model checkpoint. While Xiong et al. rely only on textual data,
SciNCL also integrates citation information which is especially valuable in the scientific context
as Cohan et al. (2020) has shown.

Scientific document representations. Scientific document representations based on Trans-
formers (Vaswani et al., 2017) and pretrained on domain-specific text dominate today’s scientific
document processing. There are SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2019) and
SciGPT2 (Luu et al., 2021), to name a few. Recent works modify these domain-specific language
models to support cite-worthiness detection (Wright and Augenstein, 2021) or fact-checking
(Wadden et al., 2020).

Aside from text, citations are a valuable signal for the similarity of research papers. Paper (node)
representations can be learned using the citation graph (Grover and Leskovec, 2016; Perozzi
et al., 2014; Wu et al., 2019). Especially for recommendations of papers or citations, hybrid
combinations of text and citation features are often employed (Brochier et al., 2019; Han et al.,
2018; Holm et al., 2022; Jeong et al., 2020; Yang et al., 2015). We discuss in Section 2.1.1
additional research paper and citation recommendation approaches.

Closest to SciNCL are Citeomatic (Bhagavatula et al., 2018) and SPECTER (Cohan et al., 2020).
While Citeomatic relies on bag-of-words for its textual features, SPECTER is based on SciBERT.
Both leverage citations to learn a triplet-based document embedding model, whereby positive
samples are papers cited in the query. Easy negatives are random papers not cited by the query.
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Hard negatives are citations of citations – papers referenced in positive citations of the query but
are not cited directly by it. Citeomatic also uses a second type of hard negatives, which are the
nearest neighbors of a query that are not cited by the query.

Unlike our approach, Citeomatic does not use the neighborhood of citation embeddings but
instead relies on the actual document embeddings from the previous epoch. Despite being related
to SciNCL, the sampling approaches employed in Citeomatic and SPECTER do not account for
the pitfalls of using discrete citations as a signal for paper similarity. The work presented in this
chapter addresses the aforementioned issue.

Cross-modal transfer. SciNCL transfers knowledge across modalities, i.e., from citations
into a language model. According to Cohan et al. (2020), SciNCL can be considered as a
“citation-informed Transformer”. In the literature, such a cross-modal transfer learning is applied
for various modalities (Kaur et al., 2021): text-to-image (Socher et al., 2013), RGB-to-depth
image (Tian et al., 2020a), or graph-to-image (Wang et al., 2018). While the aforementioned
methods incorporate cross-modal knowledge through joint loss functions or latent representations,
SciNCL transfers knowledge through the contrastive sample selection, which we found to be
superior to the direct transfer approach; see Appendix in Ostendorff et al. (2022b).

Learning objective. Given the textual content of a document d (a research paper), the goal
is to derive a dense vector representation d that best encodes the document information and can
be used in downstream tasks. A Transformer language model f (Beltagy et al., 2019, SciBERT)
encodes documents d into vector representations f (d) = d. The input to the language model is
the title and abstract separated by the [SEP] token.2 The final layer hidden state of the [CLS]
token is then used as a document representation f (d) = d.

Training with a masked language modeling objective alone has been shown to produce sub-
optimal document representations, as shown by related work (Gao et al., 2021; Li et al., 2020)
and by our study on legal recommendations (Chapter 4). Thus, similar to the state-of-the-art
method SPECTER (Cohan et al., 2020), we continue training the SciBERT model (Beltagy et al.,
2019) using a self-supervised triplet margin loss (Schroff et al., 2015):

L = max
{
∥dQ−d+∥2−∥dQ−d−∥2+ξ ,0

}
Here, ξ is a slack term (ξ = 1 as in SPECTER) and ∥∆d∥2 is the L2 norm, used as a distance
function. However, the SPECTER sampling method has significant drawbacks. We will de-
scribe these issues and our contrastive learning theory-guided improvements in detail below in
Section 5.1.2.

5.1.2 Citation Neighborhood Sampling

Compared to the textual content of a paper, citations provide an outside view of a paper and its
relation to the scientific literature (Elkiss et al., 2008), which is why citations are traditionally
used as a similarity measure in library science (Kessler, 1963; Small, 1973). Our experiments
in Chapter 3 also reveal that users perceive text-based and citation (graph-based) similarity
differently. However, using citations as a discrete similarity signal, as done in Cohan et al.

2Cohan et al. (2019) evaluated other inputs (venue or author) but found the title and abstract to perform best.
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(2020), has its pitfalls. Their method defines papers cited by the query as positives, while papers
citing the query could be treated as negatives. This means that positive and negative learning
information collides between citation directions, which Saunshi et al. (2019) have shown to
deteriorate performance. Furthermore, a cited paper can have low similarity with the citing paper
given the many motivations a citation can have (Teufel et al., 2006). Likewise, a similar paper
might not be cited.

To overcome these limitations, we learn citation embeddings first and then use the citation neigh-
borhood around a given query paper dQ to construct similar (positive) and dissimilar (negative)
samples by using the k nearest neighbors. This builds on the intuition that nodes connected
by edges should be close to each other in the embedding space (Perozzi et al., 2014). Using
citation embeddings allows us to (1) sample paper similarity on a continuous scale, which makes
it possible to (2) define hard-to-learn positives, as well as (3) hard or easy-to-learn negatives.
Points (2-3) are essential for efficient contrastive learning, as described below in Section 5.1.2.1.

5.1.2.1 Positives and Negatives Sampling

Positive samples. A positive sample d+ should be semantically similar to the query paper
dQ, i.e., sampled close to the query embedding dQ. Additionally, as Wang and Isola (2020) find,
positives should be sampled from comparable locations (distances from the query) in embedding
space and be dissimilar enough from the query embedding to avoid gradient collapse (zero
gradients). Therefore, we sample c+ positive (similar) papers from a close neighborhood around
query embedding dQ (k+− c+,k+], i.e. the green band in Figure 5.1. When sampling with k
nearest neighbors search, we use a small k+ to find positives and later analyze the impact of k+

in Figure 5.2.

Negative samples. Negative samples can be divided into easy and hard negative
samples (light and dark red in Figure 5.1). The sampling of hard negatives is known to improve
contrastive learning (Bucher et al., 2016; Wu et al., 2017). However, we make sure to sample
hard negatives (red band in Figure 5.1) such that they are close to potential positives but do not
collide with positives (green band) by using a tunable ‘sampling induced margin’. We do so since
Saunshi et al. (2019) showed that the sampling of hard negatives only improves performance if
the negatives do not collide with positive samples since collisions make the learning signal noisy.
That is, in the margin between hard negatives and positives, we expect positives and negatives to
collide. Thus we avoid sampling from this region. To generate a diverse self-supervised citation
similarity signal for contrastive document representation learning, we also sample easy negatives
that are farther from the query than hard negatives. For negatives, the k− should be large when
sampling via k nearest neighbors to ensure samples are dissimilar from the query paper.

5.1.2.2 Citation Graph Embeddings

We train a graph embedding model fc on citations extracted from the Semantic Scholar Open
Research Corpus (S2ORC; Lo et al., 2020) to get citation embeddings C. We utilize PyTorch
BigGraph (Lerer et al., 2019), which allows for training on large graphs with modest hardware
requirements. The resulting graph embeddings perform well using the default training settings
from Lerer et al. (2019), but given more computational resources, careful tuning may produce
even better-performing embeddings. Nonetheless, we conducted a narrow parameter search based
on link prediction, as reported in Ostendorff et al. (2022b).
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5.1.2.3 Sampling Strategies

As described in Section 5.1.2 and 5.1.2.1, our approach aims to improve upon the method by
Cohan et al. (2020). Therefore, we reuse their sampling parameters (5 triplets per query paper)
and then further optimize our method’s hyperparameters. Specifically, we generate the same
amount of (dQ,d+,d−) triplets per query paper as SPECTER to train the triplet loss (Cohan
et al., 2020). This means we generate c+=5 positives (as explained in Section 5.1.2.1). We
also generate five negatives, comprised of three easy negatives c−easy=3 and two hard negatives
c−hard=2, as described in Section 5.1.2.1.

Below, we describe three strategies (I-III) for sampling triplets. These either sample neighboring
papers from citation embeddings (I), by random sampling (II), or using a combination of both
strategies (III). For each strategy, let c′ be the number of samples for either positives c+, easy
negatives c−easy, or hard negatives c−hard.

(I) k nearest neighbors. Assuming a given citation embedding model fc and a search index
(e.g., FAISS Section 5.1.5), we run kNN( fc(dQ),C) and take c′ samples from a range of the
(k− c′,k] nearest neighbors around the query paper dQ with its neighbors N={n1,n2,n3, . . .},
whereby neighbor ni is the i-th nearest neighbor in the citation embedding space. For instance,
for c′=3 and k=10 the corresponding samples would be the three neighbors descending from
the tenth neighbor: n8, n9, and n10. To reduce computing effort, we sample the neighbors N
only once via [0;max(k+,k−hard)], and then generate triplets by range-selection in N; i.e. positives
= (k+− c+;k+], and hard negatives = (k−hard − c−hard;k−hard].

(II) Random sampling. Sample any c′ papers without replacement from the corpus.

(III) Filtered random. Like (II) but excluding the papers that are retrieved by k nearest
neighbors, i.e., all neighbors within the largest k are excluded.

The k nearest neighbors sampling introduces the hyperparameter k that allows for the controlled
sampling of positives or negatives with different difficulty (from easy to hard depending on
k). Specifically, in Figure 5.1 the hyperparameter k defines the tunable sample induced margin
between positives and negatives, as well as the width and position of the positive sample band
(green) and negative sample band (red) around the query sample.

5.1.3 Datasets

We train and evaluate SciNCL on the following datasets.

5.1.3.1 Evaluation Dataset

We evaluate on the SciDocs benchmark (Cohan et al., 2020). A key difference from other
benchmarks is that embeddings are the input to the individual tasks without explicit fine-tuning.
The SciDocs benchmark consists of the following four tasks:

• Document classification (CLS) with Medical Subject Headings (Lipscomb, 2000) and
Microsoft Academic Graph labels (Sinha et al., 2015) evaluated with the F1 metric.

Chapter 5
Hybrid Research Paper Representations

103



Section 5.1. Methodology

• Co-views and co-reads (USR) prediction based on the L2 distance between embeddings.
Co-views are papers viewed in a single browsing session. Co-read refers to a user accessing
the PDF of a paper. Both user activities are evaluated using Mean Average Precision (MAP)
and Normalized Discounted Cumulative Gain (nDCG).

• Direct and co-citation (CITE) prediction based on the L2 distance between the embed-
dings. MAP and nDCG are the evaluation metrics.

• Recommendations (REC) generation based on embeddings and paper metadata. An offline
evaluation with historical clickthrough data determines the performance using Precision@1
(P@1) and nDCG.

The final SciDocs score is computed as average overall metrics and all tasks.

5.1.3.2 Training Datasets

The experiments mainly compare SciNCL against SPECTER on the SciDocs benchmark. How-
ever, we found 40.5% of SciDocs’s papers leaking into SPECTER’s training data. The leakage
affects only the unsupervised paper data but not the gold labels – see Appendix in Ostendorff
et al. (2022b). To be transparent about this leakage, we train SciNCL on two datasets:

SPECTER replication (w/ leakage). We replicate SPECTER’s training data and its leakage.
Unfortunately, SPECTER provides neither citation data nor a mapping to S2ORC, on which our
citation embeddings are based. We successfully map 96.2% of SPECTER’s query papers and
83.3% of the corpus from which positives and negatives are sampled to S2ORC. To account for
the missing papers, we randomly sample papers from S2ORC (without the SciDocs papers) such
that the absolute number of papers is identical with SPECTER.

S2ORC subset (w/o leakage). We select a random subset from S2ORC that does not contain
any of the mapped SciDocs papers. This avoids SPECTER’s leakage but also makes the scores
reported in Cohan et al. (2020) less comparable. We successfully map 98.6% of the SciDocs
papers to S2ORC. Thus, only the remaining 1.4% of the SciDocs papers could leak into this
training set in the worst case.

The details of the dataset creation are described in Ostendorff et al. (2022b). Both training
sets yield 684K triplets (same count as SPECTER). Also, the ratio of training triplets per query
remains the same (Section 5.1.2.3). Our citation embedding model is trained on the S2ORC
citation graph. In w/ leakage, we include all SPECTER papers even if they are part of SciDocs,
the remaining SciDocs papers are excluded (52.5 nodes and 463M edges). In w/o leakage, all
mapped SciDocs papers are excluded such that we avoid leakage also for the citation embedding
model (52.4M nodes and 447M edges).

5.1.4 Evaluated Methods

We compare against the following baselines:

• Randomly initialized embeddings

• Paragraph Vectors / DBOW (Le and Mikolov, 2014)

• Universal Sentence Encoder (Cer et al., 2018, USE)
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• SIF / fastText (Arora et al., 2017) - document representations generated by removing the
first principal component of aggregated scientific fastText embeddings

• BERT (Devlin et al., 2019) - a state-of-the-art LLM pretrained on general-domain text

• BioBERT (Lee et al., 2019) - a BERT variation for biomedical text

• SciBERT (Beltagy et al., 2019) - a BERT variation for scientific text

• CiteBERT (Wright and Augenstein, 2021) - a SciBERT variation fine-tuned on cite-
worthiness detection

• Sentence-BERT (Reimers and Gurevych, 2019) - model that uses negative sampling based
on Wikipedia sections to tune BERT for document embeddings

• DeCLUTR (Giorgi et al., 2021) - scientific language with contrastive fine-tuning based on
sentence positions

• SGC (Wu et al., 2019) - the graph-convolution approach using the citation information

• Citeomatic (Bhagavatula et al., 2018)

• SPECTER (Cohan et al., 2020)

If not otherwise mentioned, all BERT variations are used in their base-uncased versions.

Furthermore, we compare against Oracle SciDocs which is identical to SciNCL except that
its triplets are generated based on SciDocs’s validation and test set using the gold labels. For
example, papers with the same MAG labels are positives, and papers with different labels are
negatives. Similarly, the ground truth for the other tasks is used, e.g., clicked recommendations
are considered as positives. In total, this procedure creates 106K training triplets for Oracle
SciDocs.3 Accordingly, Oracle SciDocs represents an estimate for the performance upper bound
that can be achieved with the current setting (triplet margin loss and SciBERT encoder).

5.1.5 Implementation Details

We replicate the training setup from SPECTER as close as possible. We implement SciNCL
using Huggingface Transformers (Wolf et al., 2020), initialize the model with SciBERT’s weights
(Beltagy et al., 2019), and train via the triplet loss as defined in Section 5.1.1. The optimizer
is Adam with weight decay (Kingma and Ba, 2015; Loshchilov and Hutter, 2019) and learning
rate λ=2−5. To explore the effect of computing efficient fine-tuning we also train a BitFit model
(Ben Zaken et al., 2022) with λ=1−4 (Section 5.2.3).

We train SciNCL on two NVIDIA GeForce RTX 6000 (24G) for 2 epochs (approx. 24 hours of
training time) with batch size 8 and gradient accumulation for an effective batch size of 32 (same
as SPECTER). The graph embedding training is performed on an Intel Xeon Gold 6230 CPU
with 60 cores and takes approx. 6 hours. The k nearest neighbors strategy is implemented with
FAISS (Johnson et al., 2021) using a flat index (exhaustive search) and takes less than 30min for
indexing and retrieval of the triplets.

3We under-sample triplets from the classification tasks to ensure a balanced triplet distribution over the tasks.

Chapter 5
Hybrid Research Paper Representations

105



Section 5.2. Evaluation

5.2 Evaluation

This section presents the evaluation of SciNCL and its hyperparameter optimization.

Table 5.1: Results on the SciDocs test set. With replicated SPECTER training data, SciNCL
surpasses the previous best avg. score by 1.8 points and outperforms the baselines in 9 of 12 task
metrics. Our scores are reported as mean and standard deviation σ over ten random seeds. With
training data randomly sampled from S2ORC, SciNCL outperforms SPECTER in terms of avg.
score with 1.7 points. The scores with * are from Cohan et al. (2020). Oracle SciDocs † is the
upper bound of the performance with triplets from SciDocs’s data.

Task → Classification User activity pred. Citation prediction
Recomm.

Avg.
Subtask → MAG MeSH Co-View Co-Read Cite Co-Cite

Model ↓ / Metric → F1 F1 MAP nDCG MAP nDCG MAP nDCG MAP nDCG nDCG P@1

Oracle SciDocs † 87.1 94.8 87.2 93.5 88.7 94.6 92.3 96.8 91.4 96.4 53.8 19.4 83.0

Random* 4.8 9.4 25.2 51.6 25.6 51.9 25.1 51.5 24.9 51.4 51.3 16.8 32.5

DBOW* (2014) 66.2 69.2 67.8 82.9 64.9 81.6 65.3 82.2 67.1 83.4 51.7 16.9 66.6

USE (2018) 80.0 83.9 77.2 88.1 76.5 88.1 76.6 89.0 78.3 89.8 53.7 19.6 75.1

SIF (2017) 78.4 81.4 79.4 89.4 78.2 88.9 79.4 90.5 80.8 90.9 53.4 19.5 75.9

Citeomatic* (2018) 67.1 75.7 81.1 90.2 80.5 90.2 86.3 94.1 84.4 92.8 52.5 17.3 76.0

SGC* (2019) 76.8 82.7 77.2 88.0 75.7 87.5 91.6 96.2 84.1 92.5 52.7 18.2 76.9

BERT (2019) 79.9 74.3 59.9 78.3 57.1 76.4 54.3 75.1 57.9 77.3 52.1 18.1 63.4

SciBERT* (2019) 79.7 80.7 50.7 73.1 47.7 71.1 48.3 71.7 49.7 72.6 52.1 17.9 59.6

BioBERT (2019) 77.2 73.0 53.3 74.0 50.6 72.2 45.5 69.0 49.4 71.8 52.0 17.9 58.8

CiteBERT (2021) 78.8 74.8 53.2 73.6 49.9 71.3 45.0 67.9 50.3 72.1 51.6 17.0 58.8

DeCLUTR (2021) 81.2 88.0 63.4 80.6 60.0 78.6 57.2 77.4 62.9 80.9 52.0 17.4 66.6

Sent.-BERT (2019) 80.5 69.1 68.2 83.3 64.8 81.3 63.5 81.6 66.4 82.8 51.6 17.1 67.5

SPECTER* (2020) 82.0 86.4 83.6 91.5 84.5 92.4 88.3 94.9 88.1 94.8 53.9 20.0 80.0

Replicated SPECTER training data (w/ leakage):

SciNCL (ours) 81.4 88.7 85.3 92.3 87.5 93.9 93.6 97.3 91.6 96.4 53.9 19.3 81.8

± σ w/ ten seeds .449 .422 .128 .08 .162 .118 .104 .054 .099 .066 .203 .356 .064

Random S2ORC training data (w/o leakage):

SPECTER 81.3 88.4 83.1 91.3 84.0 92.1 86.2 93.9 87.8 94.7 52.2 17.5 79.4

SciNCL (ours) 81.3 89.4 84.3 91.8 85.6 92.8 91.4 96.3 90.1 95.7 54.3 19.9 81.1

5.2.1 Overall Results

Table 5.1 shows the results, comparing SciNCL with the best validation performance against the
baselines. With replicated SPECTER training data (w/ leakage), SciNCL achieves an average
performance of 81.8 across all metrics, which is a 1.8 point absolute improvement over SPEC-
TER (the next-best baseline). When trained without leakage, the improvement of SciNCL over
SPECTER is consistent with 1.7 points but generally lower (79.4 avg. score). In the following,
we refer to the results obtained through training on the replicated SPECTER data (w/ leakage) if
not otherwise mentioned.

We find the best validation performance based on SPECTER’s data when positives and hard
negatives are sampled with k nearest neighbors, positives with k+=25, and hard negatives with
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k−hard=4000 (Section 5.2.2). Easy negatives are generated through filtered random sampling.
Since random sampling accounts for a large fraction of the triplets (in the form of easy negatives),
we report the mean scores and standard deviation based on ten random seeds (seed ∈ [0,9]).

For MAG classification, SPECTER achieves the best result with 82.0 F1 followed by SciNCL
with 81.4 F1 (-0.6 points). For MeSH classification, SciNCL yields the highest score with 88.7 F1
(+2.3 compared to SPECTER). Both classification tasks have in common that the chosen training
settings lead to over-fitting. Changing the training by using only 1% training data, SciNCL yields
82.2 F1@MAG (Table 5.2). In all user activity and citation tasks, SciNCL yields higher scores
than all baselines. Moreover, SciNCL outperforms SGC on direct citation prediction, where SGC
outperforms SPECTER in terms of nDCG. On the recommender task, SPECTER yields the best
P@1 with 20.0, whereas SciNCL achieves 19.3 P@1 (in terms of nDCG SciNCL and SPECTER
are on par). The recommendation task shows the strongest effect of random seeds (σ of 0.3
nDCG and 0.6 P@1). The performance difference between SciNCL and SPECTER is close to
or within the standard deviation. Hence, it remains unclear whether the difference is significant
since Cohan et al. (2019) did not report standard deviations. In contrast to the classification tasks,
training for more than two epochs leads to further improvement on the recommendation task
(currently under-fitting). As a result, one should adjust the training settings accordingly when
aiming only for this particular task.

When training SPECTER and SciNCL without leakage, SciNCL outperforms SPECTER even in
11 of 12 metrics and is on par in the other metric. This suggests that SciNCL’s hyperparameters
have a low corpus dependency since they were only optimized on the corpus with leakage.

Regarding the language model baselines, we observe that the general-domain BERT, with a score
of 63.4, outperforms the domain-specific BERT variants, namely SciBERT (59.6), BioBERT
(58.8), and CiteBERT (58.8) Language models without citations or contrastive objectives yield
generally poor results (even compared to Doc2Vec or fastText). This emphasizes the anisotropy
problem of embeddings directly extracted from current language models and highlights the
advantage of combining text and citation information.

In summary, we show that SciNCL’s triplet selection leads on average to a performance improve-
ment on SciDocs, with most gains being observed for user activity and citation tasks. The gain
from 80.0 to 81.8 is particularly notable given that even Oracle SciDocs yields with 83.0 an only
marginally higher avg. score despite using test and validation data from SciDocs for the triplet
selection.

5.2.2 Impact of Sample Difficulty

In this section, we present the optimization of SciNCL’s sampling strategy (Section 5.1.2.1). We
optimize the sampling for positives and hard or easy negatives with a partial grid search on a
random sample of 10% of the replicated SPECTER training data (sampling based on queries).
Our experiments show that optimizations on this subset correlate with the entire dataset. The
validation scores in Figure 5.2 and 5.3 are reported as the mean over three random seeds including
standard deviation.

Positive samples. Figure 5.2 shows the avg. scores on the SciDocs validation set depending
on the selection of positives with the k nearest neighbors strategy (error bars are the standard
deviations over three random seeds). We only modify k+, while negative sampling remains fixed
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Figure 5.2: Results on the validation set with respect to positive sampling with k nearest neigh-
bors when using 10% training data, hard negative samples are fixed to k−hard = 4000.

to its best setting (Section 5.2.2). The performance is relatively stable for k+<100 with the peak
at k+=25, for k+>100 the performance declines as k+ increases. Wang and Isola (2020) state
that positive samples should be semantically similar to each other, but not too similar to the
query. For example, positives with k+=5 might be “too easy” to learn, such that they produce
less informative gradients than the optimal setting k+=25. Similarly, making k+ too large leads
to the sampling induced margin being too small, such that positives collide with negative samples,
which creates contrastive label noise that degrades performance (Saunshi et al., 2019).

Another observation is the standard deviation σ : One would expect σ to be independent of k+

since random seeds affect only the negatives. However, positives and negatives interact with each
other through the triplet margin loss. Therefore, σ is also affected by k+. To account for the
interaction of positives and negatives, one could sample simultaneously based on the distance to
the query and the distance of positives and negatives to each other.
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Figure 5.3: Results on the validation set with respect to hard negative sampling with k nearest
neighbors using 10% training data, positive samples are fixed to k+ = 25.
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Hard negative samples. Figure 5.3 presents the validation results for different k−hard given the
best setting for positives (k+=25). The performance increases with increasing k−hard until a plateau
between 2000<k−hard<4000 with a peak at k−hard=4000. This plateau can also be observed in the
test set, where k−hard=3000 yields a marginally lower score of 81.7 (Table 5.2). For k−hard>4000,
the performance starts to decline again. This suggests that for large k−hard the samples are not
“hard enough” which confirms the findings of Cohan et al. (2020).

Intuitively, the k nearest neighbors strategy should suffer from a centrality or hubness problem.
How many neighbors are semantically similar strongly depends on the query paper itself. A
popular and frequently cited paper like BERT (Devlin et al., 2019) has many more similar
neighbors than a paper about a niche topic like citation recommendation (Jeong et al., 2020).
To test this assumption, we also evaluate a strategy with an absolute distance in the embedding
space. The absolute distance should account for the hubness problem. However, this strategy
underperforms with a score of 81.7 points.

Easy negative samples. The filtered random sampling of easy negatives yields the best vali-
dation performance compared to pure random sampling (Table 5.2). However, the performance
difference is marginal. When rounded to one decimal, their average test scores are identical.
The marginal difference is caused by the large corpus size and the resulting small probability
of randomly sampling one paper from the k nearest neighbors results. But without filtering, the
effect of random seeds increases, since we find a higher standard deviation compared to the
one with filtering. As a potential way to decrease randomness, we experimented with other
approaches like k means clustering but found that they decrease the performance.
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Figure 5.4: Number of collisions with respect to the size of the sample induced margin as defined
through k+ and k−hard. As the margin increases the collisions get less likely.

Collisions. Similar to SPECTER, SciNCL’s sampling based on graph embeddings could cause
collisions when selecting positives and negatives from regions close to each other. To avoid this,
we rely on a sample-induced margin that is defined by the hyperparameters k+ and k−hard (distance
between the red and green band in Figure 5.1). When the margin gets too small, positives and
negatives are more likely to collide. A collision occurs when the paper pair (dq,ds) is contained
in the training data as a positive and as a negative sample at the same time.
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Figure 5.4 demonstrates the relation between the number of collisions and the size of the sample-
induced margin. The number of collisions increases when the sample-induced margin gets smaller.
The opposite is the case when the margin is large enough (k−hard > 1000), i.e., then the number of
collisions goes to zero. This relation also affects the evaluation performance as Figure 5.2 and
5.3 show. Namely, for large k+ or small k−hard SciNCL’s performance declines and approaches
SPECTER’s performance.
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Figure 5.5: Validation performance for the recommendation task w.r.t. k+ and k−hard with k
nearest neighbors strategy using 10% data. The hyperparameters are task-specific. The selected
k values are suboptimal for the recommendation task (circled values).

Task-specific results. Figure 5.5 presents the validation performance for the recommendation
task and not as an average over all tasks. The plots show that the optimal k+ and k−hard values
are task-specific. This means that one could optimize the SciNCL representations for a specific
downstream task. For example, the recommendation task performance could be improved by
selecting k+ = 5 and k−hard = 3000 as the hyperparameters. The optimal hyperparameters for the
recommendation task are different from the ones for the average over all SciDocs tasks.

5.2.3 Ablation Analysis

In addition to sample difficulty, we also evaluate the performance impact of data quantity, train-
able parameters, and language model initialization.

Initial language models. Table 5.2 shows the effect of initializing the model weights not
with SciBERT but with general-domain language models (BERT-Base and BERT-Large) or with
BioBERT. The initialization with other pretrained language models decreases the performance.
However, the decline is marginal (BERT-Base -0.6, BERT-Large -0.4, BioBERT -0.4) and all
other initializations outperform the SPECTER baseline. For the recommendation task, in which
SPECTER is superior over SciNCL, BioBERT outperforms SPECTER. This indicates that the
improved triplet mining of SciNCL has a greater domain adaption effect than pretraining on
domain-specific literature. Given that model pretraining requires a magnitude more resources
than fine-tuning with SciNCL, our approach can be a solution for resource-limited use cases.
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Table 5.2: Ablations. Numbers are averages over tasks of the SciDocs test set, average score
over all metrics, and rounded absolute difference to SciNCL.

Ablations ↓ CLS USR CITE REC Avg. ∆

SciNCL 85.0 88.8 94.7 36.6 81.8 –

SPECTER 84.2 88.4 91.5 36.9 80.0 -1.8

k−hard=2000 84.9 88.8 94.7 36.1 81.6 -0.2

k−hard=3000 84.5 88.7 94.6 36.9 81.7 -0.1

easy neg. w/ random 85.1 88.8 94.7 36.6 81.8 0.0

undirected citations 84.6 88.8 94.7 36.6 81.7 -0.1

Init. w/ BERT-Base 83.4 88.4 93.8 37.5 81.2 -0.6

Init. w/ BERT-Large 84.6 88.7 94.1 36.4 81.4 -0.4

Init. w/ BioBERT 83.7 88.6 93.8 37.7 81.4 -0.4

1% training data 85.2 88.3 92.7 36.1 80.8 -1.0

10% training data 85.1 88.7 93.5 36.2 81.1 -0.6

BitFit training 85.8 88.6 93.7 35.3 81.2 -0.5

Data and computing efficiency. The last three rows of Table 5.2 show the results regarding
data and computing efficiency. When keeping the citation graph unchanged but training the
language model with only 10% of the original triplets, SciNCL still yields a score of 81.1 (-0.6).
Even with only 1% (6840 triplets), SciNCL achieves a score of 80.8 which is 1.0 points less
than with 100% but still 0.8 points more than the SPECTER baseline. With this textual sample
efficiency, one could manually create triplets or use existing supervised datasets as demonstrated
in Gao et al. (2021).

Lastly, we evaluate BitFit training (Ben Zaken et al., 2022), which only trains the bias terms of
the model while freezing all other parameters. This corresponds to training only 0.1% of the
original model parameters. With BitFit, SciNCL yields a considerable score of 81.2 (-0.5 points).
As a result, SciNCL could be trained on the same hardware with even larger (general-domain)
language models.

5.3 Discussion

Our experiments show that SciNCL achieves new state-of-the-art results on the SciDocs bench-
mark. Specifically, SciNCL outperforms the next-best baseline SPECTER with a 1.8 point
absolute improvement (+1.7 points when using the w/o leakage dataset).

The improvements can be exclusively attributed to SciNCL’s contrastive sample generation since
all other settings remain unchanged, i.e., SciNCL uses the same model architecture, pretrained
weights, and training settings as SPECTER. SciNCL’s sample generation is based on contrastive
learning theory insights provided by Musgrave et al. (2020) and Rethmeier and Augenstein
(2021a). Using the embedding space of a second modality, i.e., citations, introduces new infor-
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mation that complements the text information. The aggregation of the whole citation graph into
the citation embeddings makes the similarity signal less noisy compared to discrete citations.

As opposed to prior work, our neighborhood contrastive learning approach does not require
handcrafted rules for the sample generation, like SPECTER’s citations-of-citations strategy for
hard negatives. Instead, the hyperparameters k+ and k−hard allow the optimization of the model
without any explicit domain knowledge. This will become an even greater advantage in domains
or modalities where it is less trivial to derive a continuous similarity signal such as images or
other high-dimensional data.

With the hyperparameters, the document encoder model can be optimized for arbitrary goal
metrics. In this chapter, we optimized SciNCL for avg. validation score of the SciDocs benchmark
that includes a diverse set of downstream tasks. So the resulting document representations are
not tailored to any specific task but rather generic ones. On one hand, this optimization led to
suboptimal results on the recommendation subtask due to the selected hyperparameters. On the
other hand, this improved especially the results for user activity prediction and citation prediction
tasks since they account for the major of task metrics from SciDocs (8 of 12).

Overall, SciNCL’s approach invests additional (computational) resources to carefully select to
most informative positive and negative samples for contrastive learning. While the investment is
reasonable (approx. 20% of total training time), the training gets more sample-efficient. Already
1% of training triplets is sufficient to outperform SPECTER. This efficiency will be even more
valuable as the language model sizes are growing. Thus, one could train even larger language
models with SciNCL with a little increase in computational costs. Interestingly, even starting
with a general-domain language model like BERT is sufficient to outperform SPECTER. This
indicates that the improved triplet mining of SciNCL has a greater domain adaption effect than
pretraining on domain-specific literature. The sample efficiency is achieved by selecting the
positive and negative samples such that they are hard to learn without causing collisions.

5.4 Summary of the Chapter

Document similarity measures can be only as good as the methods that encode the underlying
document semantics into vector representations. From the previous experiments in Chapter 3 and
4, we have learned that text and graph information complement each other and that they should be
combined to achieve optimal results. From the review of related work, especially from classical
methods like co-citations (Section 2.4.3), we also know that citations are not a discrete signal
for semantic similarity making the generation of contrastive samples based on them suboptimal.
Motivated by these findings, this chapter worked on Research Task II and improved text-based
document representations by utilizing graph information.

This chapter presented the SciNCL approach for contrastive learning of scientific document
embeddings with a focus on the challenge of selecting informative positive and negative samples.
By leveraging citation graph embeddings for sample generation, SciNCL achieved a score of 81.8
on the SciDocs benchmark, a 1.8 point improvement over the previous best method SPECTER.
This was purely achieved by introducing tunable sample difficulty and avoiding collisions between
positive and negative samples while the existing language model and data setup can be reused.
This improvement over SPECTER can be also observed when excluding the SciDocs papers
during training (see w/o leakage in Table 5.1). It is remarkable that the improvement was
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consistent even though SciNCL hyperparameters are not optimized for this training corpus
indicating a low hyperparameter sensitivity of SciNCL. Furthermore, SciNCL’s improvement
from 80.0 to 81.8 was particularly notable given that even oracle triplets, which are generated
with SciDocs’s test and validation data, yielded with 83.0 only a marginally higher score (see
Oracle SciDocs in Table 5.1).

This chapter emphasized the importance of sample generation in a contrastive learning setting.
We showed that language model training with 1% of triplets was already sufficient to outperform
SPECTER, whereas the remaining 99% provided only 1.0 additional points (80.8 to 81.8). This
sample efficiency was achieved by adding reasonable effort for sample generation, i.e., graph em-
bedding training and k nearest neighbors search. We also demonstrated that in-domain language
model pretraining (like SciBERT) was beneficial, while general-domain language models could
achieve comparable performance and even outperform SPECTER. This indicates that controlling
sample difficulty and avoiding collisions is more effective than in-domain pretraining, especially
in scenarios where training a language model from scratch is infeasible.

Lastly, this chapter concludes the aspect-free part of the thesis, in which we have investigated
various document similarity measures that aim for a general similarity without accounting for the
aspects that documents may share. As SciNCL is a general document representation method, it
also does not directly account for aspect information. However, SciNCL can be used as a base
model for aspect-based similarity methods as we investigate in Chapter 7 and 8.
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Chapter 6

Pairwise Classification for Wikipedia Articles

In Chapters 3-5, we have explored various content-based recommendation approaches that deter-
mine the semantic similarity of documents through the textual content, citation or link graphs and
hybrid combinations of text and graph information. Our experiments have shown quantitatively
and qualitatively that the aspect-free document similarity measures implicitly address different
aspects of the document content. This chapter revisits the research subject of Wikipedia articles
from Chapter 3 but incorporates aspect information into the similarity assessment as defined by
Research Task III. The chapter proposes a pairwise multi-class document classification approach,
which classifies the explicit aspects that make Wikipedia articles alike. The content of this chapter
is based on Ostendorff et al. (2020c).

_ “Pairwise Multi-Class Document Classification for Semantic Relations between Wiki-
pedia Articles” by Malte Ostendorff, Terry Ruas, Moritz Schubotz, Georg Rehm,
and Bela Gipp. In: Proceedings of the 2020 ACM/IEEE Joint Conference on Digital
Libraries (JCDL), 2020.

The common approach of recommending semantically similar documents based on a similarity
measure is a simplification that neglects the many aspects of extensive documents typically found
in digital libraries. It remains unclear to which of the many aspects the similarity relates. In
philosophy (Goodman, 1972) and in natural language processing (Bär et al., 2011), the similarity
of A to B has been criticized as an ill-defined notion unless one can say to what the similarity
relates. For content-based literature recommendations, one would rather know what aspects of the
two documents are similar or how they relate to each other than just knowing that the documents
are similar or dissimilar. Identifying the aspects connecting different documents would allow
users to explore the document space by formulating complex queries in terms of documents and
their aspect-based similarity (e.g., find a document similar in aspect a1, but different in aspect
a2). These queries are generally referred to as analogical queries (Gick and Holyoak, 1983).
Especially for complex information needs, formulating analogical queries is more intuitive (Lofi
and Tintarev, 2017).

Nonetheless, today’s document similarity measures do not consider the aspect information that
would underpin such a system. While other NLP tasks, like aspect-based sentiment classification
(Section 2.5.2), deal with aspects, they are not concerned with aspects in the context of document
similarity. Likewise, the document classification task aims to categorize individual documents
but fails to address the relationship that binds two or more documents.

In this chapter, we combine the ideas of aspects, document classification, and document similarity
to classify the aspect-based similarity of document pairs. Given a seed document ds, we are
interested in finding a target document dt that shares the aspect ai with ds. We use the term
“aspect” to indicate a semantic connection between two documents above the syntax level (Khoo
and Na, 2007). We formulate the task of determining the aspect a in which a document pair
(ds,dt) is similar as a pairwise multi-class document classification problem. The classifier has a
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ds= Albert Einstein

a1 = Country of Citizenship

dt
(2) = ETH Zurich

a1

a2=Educated at

a2

Wilhelm Conrad Röntgen

Charles-Edouard 

Guillaume 

Otto Stern

…

dt
(1) = German Empire

Otto von Bismarck

Wilhelm I

Max von Baden

…

Other persons who were educated
at the same institutionOther persons who have

the same citizenship

Figure 6.1: Shared aspects between Wikipedia articles. Seed article Albert Einstein is connected
to other articles by the aspects a1 and a2 that are the two Wikidata property educated at and
citizenship. Considering articles only a single edge apart leads to diverse recommendations, while
two edges can be used for recommendations focused on a specific or an intersection of aspects.

document pair as input and predicts the corresponding aspect-based similarity. Accordingly, the
research questions of this chapter are as follows:

e Research questions

RQ1: What methods can measure the aspect-based similarity of Wikipedia articles?
RQ2: If one method performs significantly better than other methods, what methodological

differences cause the performance difference?
RQ3: Is there a measurable difference between the aspect classes?

To answer these research questions, we evaluate a diverse set of methods for aspect-based simi-
larity. For the experiments, we build a dataset using Wikipedia and Wikidata (Vrandecic and
Krötzsch, 2014) that is suitable to compare the methods. Wikipedia articles are the seed and
target documents, while Wikidata properties provide the aspect information that describes what
a document pair has in common. Figure 6.1 shows one example from our dataset. The articles
Albert Einstein and German Empire are the pair (ds,d

(1)
t ) and the aspect similarity is defined by

a1, which is the Wikidata property country of citizenship. The country of citizenship aspect could
then be used to tailor Wikipedia article recommendations to users who are interest in persons
with a similar citizenship.

This chapter makes the following three main contributions:

1. We formulate the problem of aspect-based document similarity as a pairwise multi-class
document classification task.

2. We implement six different models using word-based document embeddings from
GloVe (Pennington et al., 2014) and Paragraph Vectors (Le and Mikolov, 2014), and
Transformer language models from BERT (Devlin et al., 2019) and XLNet (Yang et al.,
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2019) in vanilla and Siamese architecture (Bromley et al., 1993). Each system is evaluated
under specific configurations regarding its concatenation method and sequence length.

3. We introduce a novel dataset composed of 32,168 Wikipedia article pairs and Wikidata
properties that define the aspect-based similarity of these articles.

All our datasets, trained models, and source code are publicly available to contribute to trans-
parency and reproducibility.1

The remainder of this chapter is structured as follows: First, we introduce the general method-
ology, i.e., the datasets and the evaluated methods. Subsequently, we present the overall results
in Section 6.2.1, the analysis of sequence length, concatenation, and aspects in Sections 6.2.2
to 6.2.4, and results of the manual sample analysis in Section 6.2.5. In Section 6.3, we discuss
the results of all evaluations. Finally, we summarize the main findings of this chapter.

6.1 Methodology

This section describes the dataset and implementation to facilitate the reproduction of our results.

6.1.1 Dataset

Existing datasets provide either class annotations of single documents, e.g., topic (Ostendorff
et al., 2019), relations between sentences or entities as in natural language inference (Wang et al.,
2019), word analogies (Mikolov et al., 2013b), entity relation extraction (Yao et al., 2019), or
similarity between text pairs formulated as binary classification (Dolan and Brockett, 2005). Our
task is defined as a multi-class classification of document pairs consisting of multiple sentences.

6.1.1.1 Training Dataset

One example of a digital library that employs a content-based recommender system is Wikipedia.
Recommendations for Wikipedia articles have been addressed in our experiments from Chapter 3
and the literature (Ollivier and Senellart, 2007). Wikipedia is closely connected with Wikidata.
Wikidata is an open knowledge graph in which nodes represent items (e.g., Wikipedia articles)
and edges represent properties of these items (e.g., aspects that connect two different articles).
The fact that Wikipedia articles are linked to their corresponding Wikidata items allows the
construction of a large dataset tailored to the problem of aspect-based similarity. The triple
(ds,dt ,ai) of two documents ds and dt , and the aspect ai describes an aspect-based document
similarity. In the Resource Description Framework (RDF) terminology, ds is the subject, dt the
object, and ai the predicate, whereas in the Wikidata terminology, an aspect corresponds to a
statement2. The aspect ai (predicate) is a Wikidata property that semantically relates a pair of
Wikipedia articles (ds,dt). For instance, the Wikipedia article of Albert Einstein3 and its Wikidata
item4 is connected to the article5 and item6 of the German Empire through the property country

1https://github.com/malteos/semantic-document-relations, last accessed: 18/01/2023
2https://www.wikidata.org/wiki/Help:Statements, last accessed: 18/01/2023
3https://en.wikipedia.org/wiki/Albert_Einstein, last accessed: 18/01/2023
4https://www.wikidata.org/wiki/Q937, last accessed: 18/01/2023
5https://en.wikipedia.org/wiki/German_Empire, last accessed: 18/01/2023
6https://www.wikidata.org/wiki/Q43287, last accessed: 18/01/2023
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of citizenship7. The Wikidata property acts as both the shared aspect of the Wikipedia article
pair and the class label in the training data for this same pair of documents. Table 6.1 lists other
examples to better illustrate this approach.

Given Wikipedia’s nature as an encyclopedia, its use as a dataset has some shortcomings. Ency-
clopedic documents tend to describe a single entity, and their semantics can be seen as relatively
homogeneous in comparison to other types of literature. Nonetheless, we consider Wikipedia
and Wikidata to be suitable corpora to demonstrate our approach. Wikidata properties range
from entity-specific aspects (e.g., educated at) to abstract ones (e.g., facet of ). Wikipedia articles
and their shared aspects are usually more comprehensible than those in the scientific literature
(Chapter 7) , which contributes to the analysis of our results. Another fact that supports our
choice of Wikipedia and Wikidata is their open license copyright.

6.1.1.2 Aspect Classes

At the time of writing, Wikidata contained 7,091 properties8 of which we selected the following
nine as aspect classes for this research:

• country of citizenship - seed is citizen of the target;

• different from - item that is different from another item, with which it is often confused;

• educated at - educational institution attended by seed;

• employer - seed works or worked for target;

• facet of - topic of which this item is an aspect, item that offers a broader perspective on
the same topic;

• has effect - the seed causes the target;

• has quality - the entity has an inherent or distinguishing non-material characteristic;

• opposite of - item that is the opposite of this item;

• symptoms - possible symptoms of a medical condition.

Table 6.1 lists the corresponding Wikidata PIDs, their quantity, and examples for each property.
Besides the number of available Wikipedia article pairs, diversity was also a criterion in our
selection. Diversity refers to the different semantic meanings of properties (e.g., country of
citizenship, opposite of ). Similarly, the requirements to predict an aspect similarity between
documents can also be diverse.

While some aspect classes are clearly expressed within the document text (e.g., for documents
referencing people, their citizenship is often put in the first sentences), others will require a more
comprehensive understanding of the article content. For instance, while floor being the opposite
of ceiling is evident, this fact will most likely not be explicitly mentioned in the article text. Also,
other aspects like has effect or symptoms can require unwritten domain knowledge.

The classification performance can also be affected by the type of the connected articles. For
example, the aspect class country of citizenship exclusively connects persons and countries. No

7https://www.wikidata.org/wiki/Property:P27, last accessed: 18/01/2023
8https://tools.wmflabs.org/hay/propbrowse/, last accessed: 18/01/2023
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other property uses such a combination. On the contrary, the aspect classes educated at and
employer, connect a person with an organization. Additionally, all aspect classes are unidirec-
tional, except for opposite of. Given the many semantic relations that the selected aspect classes
represent, we expect significant differences in the classification performance.

Table 6.1: The aspect classes with their Wikidata PIDs, three examples, and the number of
samples per aspect in our dataset. In total the dataset contains 16,084 samples.

Aspect class PID # Example articles

country of citizenship P27 3636 Torben Ulrich → Denmark, Neal Doughty → United States, Julian
Kenny → Trinidad and Tobago

different from P1889 4048 Computer file → File folder, Lee County, Alabama → Lee County,
Illinois, Karo → Karo (name)

educated at P69 1798 Hillar Eller → University of Tartu, Al Young → University of Michigan,
Heinrich Finkelstein → Leipzig University

employer P108 1557 Gary M. Mavko → Stanford University, Alexander Medvedev →
Gazprom, John Reif → Duke University

facet of P1269 1343 Reformation → Protestantism, 1974 in Portugal → Portugal, Sportsman-
ship → Sport

has effect P1542 698 Language attrition → Extinct language, Arsenic poisoning → Lung
cancer, Foul ball → Out (baseball)

has quality P1552 1022 Antisemitism → Nazism, Employment → Access badge, Human →
Gender

opposite of P461 929 Floor → Ceiling, Person → Society, Exponentiation → Logarithm

symptoms P780 1053 Myalgia → Influenza, Mercury poisoning → Cough, Death rattle →
Sound

6.1.1.3 Data Preprocessing

We sample 10,000 article pairs in total with a balanced class distribution over the nine aspect
classes. The aspect information was obtained through the Wikidata SPARQL interface in Decem-
ber 2019. For each Wikipedia article in the sample, we also check whether the article is connected
to any other article but is not part of the initial sample and retrieve the missing documents-aspect
triplets. We remove all duplicated article pairs and multi-label aspect classes.

The main goal of this chapter is to explore the multi-class classification problem, so we ensure that
the same pair of documents did not share different labels. Wikidata provides data for multi-label
aspects, especially for hierarchical properties. However, only less than 1% of our sample data
contain multi-label aspects. For the sake of simplicity, we decided to remove them (Chapter 7
also considers multi-label aspects).

The preprocessing procedure generates 16,084 Wikipedia article pairs with an imbalanced class
distribution (Table 6.1). The increase in samples is due to the retrieval of missing documents-
aspect triplets. The corresponding articles are converted to plain text from the English Wikipedia
dump of November 2019 using the Gensim API (Rehurek and Sojka, 2010).9

9https://radimrehurek.com/gensim/scripts/segment_wiki.html, last accessed: 18/01/2023
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6.1.1.4 Negative Sampling

In addition to the nine positive aspect classes from Wikidata, we introduce a class named None
that works as a negative class and generates negative samples in the same proportion as the
positive samples. The articles in the None category are randomly selected and do not share any
aspect with the positive ones, i.e., the articles are dissimilar. A more elaborated sampling strategy
similar to the one from Chapter 5 was omitted for simplicity. The resulting final dataset contains
32,168 samples in total.

6.1.2 Evaluated Methods

This chapter evaluates six classifiers under different configurations, 30 methods in total. Each
classifier takes two documents ds and dt as input and predicts the probability for ds and dt being
similar in aspect ai. The hyperparameters for the considered systems are described at the end of
this section.

We distinguish between three document encoding strategies: (i) document embeddings from
word embeddings using the full document text (GloVe and Paragraph Vectors), (ii) Vanilla
Transformers, and (iii) Siamese Transformers (each Transformer as BERT and XLNet).

Word-based methods. We use two word vector based methods that utilize the full article text
since they are not bound to any input token limit:

• Paragraph Vectors (Le and Mikolov, 2014): We obtained a document vector d ∈ R200

for each Wikipedia article using the DBOW model and the default settings in Gensim
(Section 2.3.5).10

• GloVe (Pennington et al., 2014): We use the w ∈ R200 pretrained word embeddings11 and
compute a Wikipedia article embedding d as the weighted average over its word vectors
wi, whereby the number of occurrences of the word i in d defines the weight ci.

For both methods, we encode each document from our document pair (ds,dt) independent of the
classification task and concatenate their resulting vectors. The different concatenation variants
tested in our experiments are discussed below. The resulting document pair vector is then used
as an input to a fully-connected multilayer perceptron (MLP), which predicts the aspect-based
similarity for the document pair. The MLP consists of two layers with 512 units and ReLU
activation. These hyperparameters are obtained through a grid search. The dimension of the
output of the last layer of all classifiers corresponds to the nine Wikidata properties (Table 6.1)
and one additional dimension for the None class of negative samples (Section 6.1.1.4). The
logistic sigmoid function generates the probabilities for the multi-class classification.

Vanilla Transformers. We employ two language models based on the Transformer architec-
ture (Vaswani et al., 2017), specifically BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019);
see Section 2.3.7.1 for more details. The two Transformer models support two text segments
as their input. BERT is even pretrained to solve a sequence pair classification (next sentence
prediction). The content of the document pair (i.e., title and text of ds and dt) is tokenized,
delimited with special tokens, i.e., [CLS] and [SEP] for BERT, <cls> and <sep> for XLNet,

10https://radimrehurek.com/gensim/models/doc2vec.html, last accessed: 18/01/2023
11https://nlp.stanford.edu/projects/glove/, last accessed: 18/01/2023
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Figure 6.2: Vanilla Transformer for sequence pair classification. [SEP]-token separates seed
and target document. The classification head predicts the aspect-based document similarity.

and then jointly fed trough the Transformer (Figure 6.2). The Transformer output is used as
the input to a single fully-connected linear layer with 512 units for the classification (prediction
head). Regarding terminology, we refer to the two models as vanilla Transformers since their
original architecture remains unchanged.

[CLS] [SEP]
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Seed Document

Aspect-based Similarity
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Concatenation

Shared Weights
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Figure 6.3: Siamese Transformer architecture. Both documents are fed separately through the
Transformer, the concatenated document vectors are input to the classification layer.

Siamese Transformer. We combine the two Transformers (BERT and XLNet) in a Siamese
network architecture (Bromley et al., 1993). In Siamese networks, two inputs are fed through
identical sub-networks with shared weights (in this case, the Transformers), and then passed to a
classifier or a similarity function. Reimers and Gurevych (2019) have shown that Siamese BERT
networks are suitable for text similarity tasks.

For our experiment, the documents ds and dt are individually fed into the Transformer sub-
networks to derive two independent contextual document vectors (Figure 6.3). Next, the doc-
ument vectors are concatenated and classified with a 2-layer MLP (2x512 units with ReLU
activation), which is the same method applied by GloVe and Paragraph Vectors. In contrast
to Paragraph Vectors and GloVe, the document representations are neither fixed nor frozen but
continually learned during the classifier’s training. In contrast to Reimers and Gurevych (2019),
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our implemented Siamese architecture is applied to a multi-class classification instead of a binary
classification.

The architectures of the underlying BERT and XLNet models are the corresponding BASE-CASED
versions of the pretrained models with 12 layers, 768 hidden size, 12 heads, and 110M parameters.
Even though the architectures of BERT and XLNet are comparable, the associated language
models are pretrained with different data. While BERT is trained on English Wikipedia and the
BooksCorpus (Zhu et al., 2015) alone, XLNet uses additional Web corpora for pretraining (Yang
et al., 2019).

Sequence length. The vanilla and Siamese Transformer models based on BERT have a
maximum sequence length of 512 tokens due to absolute positional embeddings. However,
XLNet integrates the relative positional encoding, as proposed in Transformer-XL (Dai et al.,
2019). Therefore, XLNet’s architecture is, in theory, not bound to a maximum sequence length.
However, custom pretraining is out of scope for this research, and the publicly available pretrained
models of XLNet have the same limit of 512 tokens as BERT. It remains unknown how the
length of the processed sequence affects the classification task. From Chapter 3, we know that
the performance of similarity measures peaks at 450 words since the introduction section in
Wikipedia articles presumably contains all essential information. Other sections might add only
noise and make it harder to encode relevant semantic information from the articles. Thus, we
evaluate the Transformers using 128, 256, and 512 tokens (Section 6.2.2).

Concatenation. Paragraph Vectors, GloVe, and the Siamese models concatenate the separately
encoded document vectors ds and dt. In the literature, there is no widely accepted concatenation
method. For instance, Conneau et al. (2017) use [u;v; |u−v|;u∗v] for sentence embedding, while
Reimers and Gurevych (2019) find [u;v; |u− v|] as the best method. In Section 6.2.3, we test the
following variations:

• [u;v] Concatenation of the two vectors u and v;

• [u;v; |u− v|] and absolute value of element-wise difference;

• [u;v; |u− v|;u∗ v] and element-wise product.

6.1.3 Implementation Details

All experiments with Paragraph Vectors and GloVe can be run on the CPU in less than 15 minutes
using the Gensim (Rehurek and Sojka, 2010) and Scikit-learn (Pedregosa et al., 2011) framework.
Before training the Paragraph Vectors model, Gensim preprocesses12 the plain-text from the
Wikipedia articles. For GloVe, the individual words occurring in the article text are extracted
with Scikit-learn’s CountVectorizer13 including English stop word removal. The Transformer
models require a GPU as hardware. We rely on HuggingFace’s PyTorch implementation (Wolf
et al., 2020) of BERT and XLNet. The training time for a single epoch on a GeForce GTX
1080 Ti (11 GB) ranged from less than 10 minutes for vanilla BERT-128 (simplest Transformer
architecture) to 55 minutes for Siamese XLNet-512 (most complex Transformer architecture).

12https://radimrehurek.com/gensim/utils.html#gensim.utils.simple_preprocess, last accessed:
18/01/2023

13https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
CountVectorizer.html, last accessed: 18/01/2023

124 Chapter 6
Pairwise Classification for Wikipedia Articles

https://radimrehurek.com/gensim/utils.html#gensim.utils.simple_preprocess
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html


Section 6.2. Evaluation

As suggested in Devlin et al. (2019), the Transformer training is performed with batch size b = 4,
dropout probability d = 0.1, learning rate η = 2−4 (Adam optimizer) and 4 training epochs. If
not otherwise stated, the default settings of the frameworks were used.

The evaluation is conducted as stratified k-fold cross-validation with k = 4 and 24,126 training,
and 8,041 test samples (the class distribution remains identical for each fold). The source code,
dataset, and trained models are publicly available on Zenodo14, GitHub15 and as a demo on
Google Colab16.

6.2 Evaluation

Our results are divided into overall results (Section 6.2.1), sequence length (Section 6.2.2),
concatenation (Section 6.2.3), aspect classes (Section 6.2.4), and manual sample examination
(Section 6.2.5). These five subsections move from a high-level perspective to a detailed investi-
gation of the results that most contributed to our findings.

Table 6.2: Results as micro avg. F1 score with standard deviation in 4-fold cross-validation for
the best configurations, i.e., full-text embeddings from GloVe and Paragraph Vectors and vanilla
and Siamese Transformers (BERT-base and XLNet-base). Vanilla BERT-512 performs best.

Model Seq. Concatenation F1 Std.
GloVe - u;v; |u− v|;u∗ v 0.875 ± 0.0036
Paragraph Vectors - u;v; |u− v|;u∗ v 0.845 ± 0.0019
Siamese BERT 512 u;v; |u− v|;u∗ v 0.870 ± 0.0067
Siamese XLNet 256 u;v; |u− v|;u∗ v 0.870 ± 0.0078
Vanilla BERT 512 - 0.933 ± 0.0039
Vanilla XLNet 512 - 0.926 ± 0.0016

6.2.1 Overall Results

The empirical results of the tested methods and hyperparameters are presented in Table 6.2.
Vanilla BERT-512 yields the best micro average F1-score with 0.933. The second-best model
is the vanilla XLNet-512 with 0.926 F1 and a statistically significant lower score compared to
vanilla BERT-512 (95% confidence interval). The vanilla Transformers generally outperform
their Siamese counterparts. Siamese BERT (0.870 F1) and Siamese XLNet (0.870 F1) do not
achieve the same performance as their vanilla architectures for the same 128 sequence length size,
with scores of 0.920 (BERT-128) and 0.914 (XLNet-128) respectively. The shared contextual
information during the encoding of document pairs most likely yields better performance of
vanilla Transformers. GloVe (0.875 F1) outperforms Siamese BERT and Siamese XLNet, which
makes GloVe preferable over Siamese Transformers since GloVe requires only a fraction of the
computing resources and runs on commodity hardware. With an F1 score of 0.845 at its best
configuration, Paragraph Vectors is the worst model.

14https://doi.org/10.5281/zenodo.3713183, last accessed: 18/01/2023
15https://github.com/malteos/semantic-document-relations, last accessed: 18/01/2023
16https://ostendorff.org/r/jcdl2020-colab, last accessed: 18/01/2023
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In summary, we consider the results of GloVe and vanilla BERT as the most promising for future
application scenarios. We hypothesize that an F1 score of above 0.90 is already suitable enough
for generating relevant content-based recommendations. Expert users especially would tolerate
some misclassifications in favor of otherwise undiscoverable information. This would be the case
for target documents that are considered to be dissimilar to the seed with existing methods but
are found to have a shared aspect with the help of our methods.

6.2.2 Impact of Sequence Length
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Figure 6.4: Results for vanilla and Siamese Transformers with respect to sequence length.
Siamese models use [u;v; |u− v|;u∗ v] as concatenation. Except for Siamese XLNet, 512 tokens
achieve the best F1 scores for all models.

As explained in Section 6.1.2, we are particularly interested in the effect of the sequence length
on the Transformer models. To illustrate this effect, Figure 6.4 shows the comparison of Siamese
BERT, Siamese XLNet, vanilla BERT, and vanilla XLNet with respect to their sequence length
(i.e., 128, 256, and 512). In this comparison, the Siamese models use the best-performing
concatenation method, which is [u;v; |u− v|;u∗ v].

Our findings reveal longer sequences correlate with better recommendation performance. For all
models, except Siamese XLNet, the highest F1 score is achieved with 512 tokens and the second-
highest with 256 tokens. One could think this outcome is to be expected. However, in Chapter 3,
the performance of text- and graph-based document similarity measures declines for Wikipedia
articles with more than 450 words. When comparing Siamese with vanilla Transformers, the
vanilla models work with only half of the sequence length to encode one document of the pair.
In vanilla Transformers, the document pairs share the sequence length, while in Siamese Trans-
formers each document has its own Transformer sub-network (sequence length). For example,
a vanilla 128-Transformer would use only 62 or 63 tokens of each document (three tokens are
reserved for special tokens as Figure 6.2 shows). Thus, the small performance difference within
vanilla BERT with 512 tokens (0.933 F1), 256 tokens (0.930 F1), and 128 tokens (0.920 F1) is
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remarkable. Moreover, the performance differences should be considered relative to the higher
computation expenses of longer sequences.

6.2.3 Impact of Concatenation
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Figure 6.5: Results for the full-text document embeddings and Siamese Transformer-512 models
with respect to concatenation.

Aside from the sequence length, we also analyze the different concatenation methods in GloVe,
Paragraph Vectors, and the Siamese models (Figure 6.5). All models achieve the highest F1-score
when the concatenation with an element-wise difference and product is used ([u;v; |u− v|;u∗ v]).
Furthermore, we confirmed the results of Reimers and Gurevych (2019), i.e., the most crucial
component is the element-wise difference |u− v|. Only for Paragraph Vectors the element-wise
difference decreases the performance in comparison to the simple concatenation. However, this
performance decrease is marginal and within the standard deviation. In general, the element-wise
difference measures the distance between the dimensions of the two document vectors and, thus,
ensures that similar pairs are closer to each other than dissimilar pairs. This effect is evident
for Siamese BERT and Siamese XLNet, for which the element-wise difference yields the most
substantial performance improvement. On the contrary, the element-wise product adds only a
small improvement to our models.

6.2.4 Impact of Aspect Classes

We selected nine diverse Wikidata properties (aspect classes) to explore how the methods would
respond to the individual challenges of each property. Table 6.3 presents precision, recall, and
F1-score of the best four methods for the different model categories. Each score is the mean
over the 4-fold cross-validation (cf. Table 6.2 for standard deviation). GloVe and Siamese BERT
use [u;v; |u− v|;u∗ v] as the concatenation method, and all Transformer models (Siamese BERT,
vanilla BERT, and vanilla XLNet) use the 512 sequence length. The best aspect classes in terms of
performance are country of citizenship, none (negative samples), and different from, whereas the
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Table 6.3: Results for precision, recall, and F1-score with respect to aspect classes and as
average over the aspect classes. The methods are GloVe, Siamese BERT, vanilla BERT, and
vanilla XLNet. The results of the remaining models are published along with the code.

Methods → GloVe Siamese
BERT

Vanilla
BERT

Vanilla
XLNet

Aspect class ↓ Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

country of citizenship 0.963 0.983 0.973 0.956 0.996 0.976 0.993 0.996 0.994 0.989 0.996 0.993

different from 0.856 0.843 0.849 0.872 0.899 0.885 0.971 0.931 0.950 0.969 0.933 0.950

educated at 0.683 0.729 0.703 0.730 0.740 0.734 0.759 0.900 0.817 0.774 0.759 0.763

employer 0.662 0.620 0.639 0.639 0.769 0.695 0.892 0.653 0.740 0.711 0.748 0.725

facet of 0.786 0.781 0.782 0.839 0.785 0.810 0.916 0.908 0.911 0.888 0.904 0.896

has effect 0.644 0.606 0.620 0.626 0.468 0.502 0.783 0.614 0.683 0.768 0.658 0.704

has quality 0.694 0.682 0.687 0.662 0.619 0.639 0.718 0.797 0.749 0.763 0.799 0.774

opposite of 0.672 0.666 0.667 0.540 0.791 0.640 0.761 0.763 0.756 0.773 0.835 0.795

symptoms 0.887 0.932 0.908 0.827 0.969 0.892 0.872 0.973 0.920 0.864 0.984 0.919

none 0.943 0.940 0.942 0.955 0.897 0.925 0.978 0.981 0.979 0.979 0.968 0.973

Micro Avg. 0.875 0.875 0.875 0.870 0.870 0.870 0.933 0.933 0.933 0.926 0.926 0.926

Macro Avg . 0.779 0.778 0.777 0.764 0.793 0.770 0.864 0.852 0.850 0.848 0.858 0.849

classes employer, has quality, has effect yield the lowest scores. Given that the best-performing
aspects are also over-represented in terms of sample count, the outcome suggests that other
classes could be improved by adding more training data. Still, the comparison of the employer
class (389 test samples, vanilla BERT 0.740 F1) and facet of (336 test samples, vanilla BERT
0.911) reveals that the performance difference is also due to the diverse requirements of aspect
classes themselves.

The superiority of vanilla BERT is also present in the aspect-specific evaluation scenario. How-
ever, vanilla BERT is outperformed by vanilla XLNet for three aspect classes with a small number
of samples (has effect, has quality, and opposite of ). In GloVe, symptoms has the highest pre-
cision score, which is probably caused by GloVe’s ability to utilize the full text of articles in
contrast to the Transformer models. Medical articles, like Alcoholism (Example 9 in Table 6.4),
contain a section “Signs and symptoms” in which their symptoms are listed. However, such a
section is not part of the first 512 tokens that fit into the Transformer input. When comparing
precision and recall for all classes, both scores are mostly balanced. There is only one striking
exception for vanilla BERT. For employer, the precision score of 0.829 is higher than the recall
of 0.653, while for educated at the opposite occurs, with a precision of 0.759 and recall of 0.900,
but in a smaller magnitude. A reason for this outcome is that employer is often confused with
educated at as Figure 6.6 shows.

The confusion matrix in Figure 6.6 depicts which aspect classes are most often confused with each
other. The predicted classes are taken from the vanilla BERT-512 method, whereby the number
of true and predicted classifications is normalized to make the different classes comparable. With
27% of the test sample, educated at and employer are the most mistaken aspect classes in our
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Figure 6.6: Confusion matrix for the predicted and Wikidata classes of vanilla BERT. The
prediction count is normalized. The most frequent confusion is found with the educated at and
employer aspect for 27% of the test samples.

experiments. We see this outcome because both aspect classes connect persons and organizations,
and we assume it is harder for the classifier to tell the aspects apart. For instance, Albert Einstein
could be employed or educated at ETH Zurich (Figure 6.1). The misclassification between
different aspects is also found in opposite of, has quality, and has effect, which we conclude is
because of similar reasons. In particular, the opposite of aspect class connects various types of
articles.

6.2.5 Manual Sample Analysis

To validate our empirical findings, we manually examine the prediction from vanilla BERT-512
with a focus on errors (Table 6.4). According to the Wikidata properties, examples 1 and 2 show
the desired classifier predictions apart from one misclassification. While Armenia is correctly
identified as Rudolf Muradyan’s country of citizenship, Brazil is not recognized. However, Brazil
is also not mentioned in Rudolf Muradyan’s Wikipedia article. The Wikidata statement is not
reflected in the Wikipedia article, which states Muradyan as Armenian only. Consequently, both
predictions would be correct when only considering the article text.

Two errors are exemplified in 3 and 4. Even though Zaki Naguib Mahmoud’s article explicitly
expresses the educated at aspect with the sentence “Mahmoud was educated at Cairo University”,
Cairo University is classified as his employer. Despite not being mentioned in Mahmoud’s
article, King’s College London is also wrongly classified as his employer. In example 5, Light is
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incorrectly classified as the quality of Darkness, not as the opposite of it. Still, opposite of is the
class with the second-highest probability.

Table 6.4: Examples for the aspect-based similarity between Wikipedia articles (seed and target)
as defined by Wikidata and as predicted by Vanilla BERT-512 with the first and second highest
probability. Correct predictions are marked with ✓.

ID Seed article Target article Wikidata class Predictions (1st; 2nd)

1 Rudolf Muradyan Brazil country of citizenship
none;
country of citizenship ✓

2 Rudolf Muradyan Armenia country of citizenship
country of citizenship ✓;
none

3 Zaki Naguib Mahmoud Cairo University educated at
employer;
educated at ✓

4 Zaki Naguib Mahmoud King’s College London educated at
employer;
educated at ✓

5 Light Darkness opposite of
has quality;
opposite of ✓

6 Mexican Revolution
Mexican War of
Independence

different from
has effect;
symptoms

7 History of blogging Blog facet of
opposite of;
different from

8 Iced tea Ice-T different from
none;
different from ✓

9 Alcoholism Cirrhosis has effect
has effect ✓;
none

Example 6 shows the Mexican Revolution as different from the Mexican War of Independence,
which would be clear to a human user since the Wikipedia article contains a banner “Not to
be confused with the Mexican War of Independence.”. However, this banner is missing in the
Wikipedia dump and, thus, is not available to the classifier. Many shared terms and vocabulary
make their classification hard to predict for the different from aspect. Examples 7-9 illustrate a
similar classifier’s performance.

Our manual examination confirms the overall results. Most aspect classes are correctly identified,
while some aspects are missing even if they are explicitly mentioned in the text.

6.3 Discussion

Given the results in Table 6.2, we can state that vanilla Transformers outperform all other methods.
Rather unexpected is that BERT generally achieves slightly better results than XLNet. According
to Yang et al. (2019), XLNet surpasses BERT on the related GLUE benchmark (Wang et al.,
2019), so we were expecting a similar outcome. We hypothesize that this difference may be
attributed to two reasons, pretraining on different corpora and smaller models compared to Yang
et al. (2019). We use the BASE, not the LARGE versions of the pretrained models used by Yang
et al. Furthermore, the published XLNet BASE model we considered is pretrained on different
data than the one in Yang et al. (2019)17. In contrast to BERT, XLNet is pretrained on Web

17See https://github.com/zihangdai/xlnet#released-models “This model (XLNet-Base) is trained on
full data (different from the one in the paper)”, last accessed: 18/01/2023.
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corpora in addition to Wikipedia and the BooksCorpus (Zhu et al., 2015). The almost exclusive
pretraining on Wikipedia most likely causes BERT to surpass XLNet. The effect of domain-
specific pretraining on the performance of the language model has already been shown (Beltagy
et al., 2019).

Our results also shows that the evaluated Siamese networks cannot capture the aspect-based
similarity, unlike vanilla Transformers. In Siamese models, the encoding of the seed document
does not affect the target, and vice-versa. Only the MLP is exposed to the documents as a pair
in the form of concatenated document vectors. During the encoding phase, the shared aspects
between the documents play no role. On the contrary, the multi-head attention mechanism in
the vanilla Transformers allows attending to the two documents simultaneously. As the results
suggest, this ability is crucial for pairwise document classification.

The Siamese models are also outperformed by the computationally less expensive GloVe. Gen-
erally, the Siamese models are very similar to GloVe (and Paragraph Vectors) since they derive
two document vectors and classify their concatenation. So the method’s performance ultimately
depends on its ability to encode the document’s content. Arora et al. (2017) have shown that the
weighted average of word vectors can outperform more sophisticated methods. GloVe benefits
from the fact that it utilizes the full-text article in contrast to the Transformers, which use only
the 512 first tokens of the article text. As a result, GloVe is a reasonable method for practical
scenarios in which computational resources are critical concerns. In such scenarios, one would
avoid classifying all possible n2 document pairs. Instead, evidently unrelated pairs must be
filtered out with traditional similarity measures at first, as done with the pairwise baseline in
Chapter 8.

Regarding the different aspect classes, almost all results present reasonable performance. More-
over, complex aspect classes like facet of or has effect yield promising results since they are
attractive for the recommender use case. As examples 1 and 2 show in Table 6.4, current systems
already reveal wrong or contradicting information between Wikidata and Wikipedia. The results
suggest that increasing the sequence length beyond the 512 tokens could further improve the
Transformer models. Higher sequence length is already possible with XLNet’s architecture, but
it would require a pretraining step with longer sequences.

From aspect-based similarity to recommendations. Classifying the aspect classes is not a
purpose on its own. We envision content-based recommendations as an example of a downstream
task. The obtained aspect information can be used for diverse or focused recommendations.
As the aspect classes describe different facets of the seed document, one could diversify the
recommendations. Choosing the recommendations from documents connected with different
aspect classes to the seed document would ensure diversity. In Figure 6.1, the German Empire
and ETH Zurich can be considered as diverse recommendations since they present different
aspects of Albert Einstein, i.e., his citizenship and education. When considering documents that
are connected to the seed document (i.e., one common document) over two edges (i.e., different
aspects), recommendations focusing on specific aspects are more feasible. Diverse and focused
recommendations could be especially suitable for scenarios in which different perspectives are
required for the same seed article. In contrast to user-based recommender systems, content-based
approaches usually struggle to account for the specific preferences of their users. One way to
respect different information needs would be to suggest alternative recommendation sets that
are focused on specific aspects. In the example of Albert Einstein, shown in Figure 6.1, focused
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recommendation sets could include articles about people with a similar citizenship or a similar
educational backgrounds. Additionally, the intersection of aspect classes would allow finding
people with a similar citizenship but different educational backgrounds. The classification of
the aspect-based document similarity, as done in our experiments, is the foundation for such
recommendations.

Generalization. Given the goal of applying the tested methods to other literature domains,
the question arises whether our findings are generalizable. We acknowledge that Wikipedia is
presumable a simpler corpus compared to other literature domains like research papers. Wikipedia
articles represent distinct entities, while most aspect classes are explicitly expressed in the article
text. However, even research papers express aspects in their abstracts, e.g., “we used X” or “we
found Y”. Accordingly, we hypothesize that our systems would yield worse but still satisfactory
results under comparable conditions (size of training data, pretraining on an in-domain corpus,
etc.). A reference value would be the F1-score of 0.65, which was achieved by SciBERT on
the related task of citation intent classification (Beltagy et al., 2019). While the effort for
the unsupervised pretraining of a language model is reasonable, we recognize that annotating
sufficient training data for other corpora is one of the most challenging tasks. In Chapter 7, we
demonstrate that our results are transferable to the domain of research papers.

6.4 Summary of the Chapter

This chapter investigated Research Task III and introduced pairwise document classification
to determine the aspect-based similarity between documents as an underlying task to advance
content-based recommender systems and other information retrieval applications. We elaborated
on why document similarity measures do not account for the heterogeneous semantics of extensive
documents and argued that similarity needs aspect information that defines what it relates to.

The task of measuring the aspect-based similarity was implemented as a multi-class classification
of document pairs. We demonstrated the viability of this approach with a new proposed dataset
of 32,168 Wikipedia article pairs and Wikidata properties that define shared aspects among these
articles. In an empirical study, we implemented six different methods (GloVe, Paragraph Vectors,
Siamese BERT, Siamese XLNet, vanilla BERT, and vanilla XLNet) and evaluated them under
different settings regarding the concatenation method and sequence length (Table 6.2). Our
evaluation revealed a sequence length of 512 tokens as the best-performing sequence limit for
the Siamese and vanilla Transformer models. In addition, we identified [u;v; |u− v|;u∗ v] as the
best concatenation method for GloVe, Paragraph Vectors, and the Siamese Transformer models.
With the manual sample examination and our evaluation for different aspect classes, we showed
the behavior of the classifiers when exposed to different input data and provide analysis from
different perspectives. Moreover, the manual analysis confirmed our empirical results.

Our findings demonstrated that pairwise document classification is a solvable task using the
evaluated methods. Even abstract aspect classes, like facet of, yielded considerably high F1 scores.
This outcome motivates us to investigate the aspect-based similarity between documents of other
literature domains. Therefore, the subsequent chapter will evaluate the pairwise classification
approach in the context of research papers.

132 Chapter 6
Pairwise Classification for Wikipedia Articles



Chapter 7

Pairwise Classification for Research Papers

The last chapter presented the first steps towards integrating aspect information into document
similarity measures. The experiments with Wikipedia articles and Wikidata properties were
successful. This chapter continues the work on Research Task III and on the pairwise document
classification approach with two major extensions. We move from a single-label to a multi-
label classification problem, i.e., documents can simultaneously be similar in multiple aspects.
Furthermore, we extend the approach to research papers that express shared aspects presumably
less explicit, making the classification task more challenging. The chapter’s content is based on
Ostendorff et al. (2020b).

_ “Aspect-based Document Similarity for Research Papers” by Malte Ostendorff,
Terry Ruas, Till Blume, Bela Gipp, and Georg Rehm. In: Proceedings of the 28th
International Conference on Computational Linguistics (COLING), 2020.

Content-based recommender systems assist researchers in finding relevant papers from the ever-
increasing amount of scientific literature. At the same time, research papers can be semantically
similar in many different ways. For instance, Huang et al. (2020) consider method or findings as
the aspects that make two papers alike. Differentiating between these aspects could facilitate in-
novations and scientific discoveries (Chan et al., 2018). This makes research papers a particularly
interesting domain for aspect-based document similarity.

Seed

(a) Aspect-free similarity

Seed

a1

a1

a1

a2

a2
a2

(b) Aspect-based similarity

Figure 7.1: Most research paper recommender systems rely on similarity measures between a
seed and the k most similar target paper (a). This neglects the aspects which make two or more
papers similar. In aspect-based similarity (b), papers are related according to the inner aspects
connecting them (a1 or a2), which we measure with a pairwise comparison.

In classical research paper recommender systems (Section 2.1.1.1), papers are recommended as
the k nearest neighbors based on a single similarity measure (Figure 7.1a). As a result, a researcher
using such a recommender system does not know whether a paper is recommended because it uses
a similar method or reports similar findings. With aspect-based similarity (Figure 7.1b), relevant
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papers can be recommended specifically when they are similar in a given aspect. Figure 7.1b
shows an example with two aspects, a1 (green) and a2 (red), which would correspond to method
and findings respectively.

Following the line of work from Chapter 6, we infer aspect information for document similarity by
formulating the problem as a multi-class classification of research paper pairs. We extend the ap-
proach of Chapter 6 from a single-label to a multi-label scenario and focus on scientific literature
instead of Wikipedia articles. More specifically, we aim to answer two research questions.

e Research questions

RQ1: Does the multi-class pairwise document classification approach achieve comparable
results in scientific literature as in Wikipedia articles?

RQ2: How do model architecture and pretraining objectives of the Transformer language
model affect their ability to measure the aspect-based similarity?

Similar to the work of Jiang et al. (2019) and Cohan et al. (2020), we use citations as training
signals. Instead of using citations for binary classification (i. e., similar and dissimilar), we
include the section’s title where a citation occurs as a label for a document pair. The section
titles of citations describe the aspect-based similarity of citing and cited papers. Our two datasets
originate from the ACL Anthology (Bird et al., 2008) and CORD-19 (Wang et al., 2020a).

In summary, this chapter’s main contributions are:

1. We extend aspect-free document similarity to aspect-based in a multi-label multi-class
document classification task.

2. We apply aspect-based document similarity successfully on research papers.

3. We evaluate six Transformer-based models and a baseline for the pairwise document
classification task.

The chapter’s source code, trained models, and two datasets from the computational linguistics
and biomedical domain are publicly available.1

The remainder of this chapter is structured as follows: First, we introduce the general method-
ology, i.e., the datasets and the evaluated methods. Subsequently, we present the overall results
in Section 7.2.1, the impact of aspects in Section 7.2.2, and the manual sample analysis in Sec-
tion 7.2.3. In Section 7.3, we discuss the results of all evaluations. Finally, we summarize the
main findings of this chapter.

7.1 Methodology

This section presents our methodology for the aspect-based similarity of research papers.

7.1.1 Datasets

The generation of human-annotated data for research paper recommendations is costly and usually
limited to small quantities (Beel et al., 2016b). The small dataset size hampers the application

1https://github.com/malteos/aspect-document-similarity, last accessed: 18/01/2023
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of learning algorithms. To mitigate the data scarcity problem, researchers rely on citations as
ground truth, i.e., when a citation exists between two papers, the two papers are considered
similar (Cohan et al., 2020; Jiang et al., 2019). Whether one or no citation exists corresponds to
a label for a binary classification that corresponds to aspect-free similarity.

Introduction

cites
in sections

Seed Target

Labels Discussion
…

Figure 7.2: We use the citations’ section titles as labels for the pair of citing and cited papers
(seed and target). The sections define the aspects of the similarity.

To refine the similarity from aspect-free to aspect-based, we transfer this idea to the problem of
multi-label multi-class classification. As ground truth, we adopt the title of the section in which
the citation from paper A (seed) to B (target) occurs as label class (Figure 7.2). The classification
is multi-class because of multiple section titles and multi-label because paper A can cite B in
multiple sections. For example, paper A citing B in the Introduction and Discussion section
would correspond to one sample of the dataset.

ACL Anthology. We use the ACL Anthology Reference Corpus version 2.0 (Bird et al., 2008)
as a dataset. The corpus comprises 22,878 research papers about computational linguistics. Aside
from full texts, the ACL Anthology dataset provides additional citation data. The citations are
annotated with the title of the section in which the citation markers are located. This information
is required for our experiments.

CORD-19. The COVID-19 Open Research Dataset (CORD-19) is a collection of papers on
COVID-19 and related coronavirus research from several biomedical digital libraries (Wang et al.,
2020a).2 CORD-19 contains approx. 1M papers with nearly 370K papers having full-text content.
The citation and metadata of all CORD-19 papers are standardized according to the processing
pipeline of Lo et al. (2020). Citations in CORD-19 are also annotated with section titles.

Data preprocessing. Considering the ACL Anthology and CORD-19, we derive two datasets
for pairwise multi-label multi-class document classification. The section titles of the citations, i. e.,
the label classes, are presented in Table 7.1. We normalize sections titles (lowercase, letters-only)
and resolve combined sections into multiple ones (Conclusion and Future Work to Conclusion;
Future Work). We query the API of DBLP (Ley, 2009) and Semantic Scholar (Lo et al., 2020) to
match citations and retrieve missing information from the papers such as abstracts. Invalid papers
without any text or duplicated ones are removed. We divide both datasets, ACL Anthology and
CORD-19, into ten classes according to their number of samples, so that the first nine compose
the most popular section titles and the tenth (Other) groups the remaining ones.

2https://www.semanticscholar.org/cord19/download, last accessed: 18/01/2023
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Table 7.1: Label class distribution as extracted from the citations’ section titles in the two datasets.
We report the top nine section classes in decreasing order and group the remaining as Other.

(a) ACL Anthology

Label class Count

Introduction 16,279

Related Work 12,600

Experiment 4,025

Background 1,365

Results 1,181

Conclusion 1,158

Discussion 1,132

Evaluation 971

Methods 719

Other 22,249

(b) CORD-19

Label class Count

Introduction 15,108

Discussion 13,258

Conclusion 1,003

Results 910

Methods 523

Background 454

Materials 420

Virus 218

Future work 171

Other 43,154

Even though the selection of our ten classes might neglect section title variations in the literature,
our approach still doubles the number of research aspects from existing datasets (Chan et al.,
2018; Huang et al., 2020). The resulting class distribution is unbalanced, but it reflects the true
nature of the corpora as Table 7.5 shows. Scripts for reproducing the datasets are available with
our source code.

Negative sampling. In addition to the ten positive classes (Table 7.1), we introduce a class
named None that works as a negative counterpart for our positive samples in the same propor-
tion (Mikolov et al., 2013a). The None document pairs are randomly selected and dissimilar
from each other. A random pair of papers is a negative sample when the papers do not exist
as a positive pair, are not co-cited together, do not share any authors, and are not published in
the same venue. A more elaborated sampling strategy similar to the one from Chapter 5 was
omitted for simplicity. We generate 24,275 negative samples for ACL Anthology and 33,083 for
CORD-19. These samples let the models distinguish between similar and dissimilar documents.

7.1.2 Evaluated Methods

We focus on sequence pair classification with models based on the Transformer architec-
ture (Vaswani et al., 2017). Transformer-based models are often used in text similarity tasks
(Jiang et al., 2019; Reimers and Gurevych, 2019). Moreover, we found in Chapter 6 that vanilla
Transformers, e.g., BERT (Devlin et al., 2019), XLNet (Yang et al., 2019), outperform Siamese
networks (Bromley et al., 1993) and traditional word embeddings, e.g., GloVe (Pennington et al.,
2014), Paragraph Vectors (Le and Mikolov, 2014), in the pairwise document classification task.
Hence, we exclude Siamese networks and pretrained word embedding models in this chapter’s
experiments.

Instead, we investigate six Transformer variations and an additional baseline for comparison.
The titles and abstracts of research paper pairs are used as input for the model so that the [SEP]

136 Chapter 7
Pairwise Classification for Research Papers



Section 7.1. Methodology

token separates seed and target paper (Figure 7.3). This procedure is based on our prior findings
(Chapter 6). We use only the paper abstracts in our experiments since many full texts are not
freely available. Another reason is that the selected Transformers are limited to 512 tokens.

Fully Connected Classification Layer

Seed Document Target Document

Predicted 
section titles

[CLS]

?

Title+Abstract [SEP] Title+Abstract [SEP]

Transformer
for Sequence Pair Classification

? …

Figure 7.3: A Transformer model with titles and abstracts as input is used for classification.

Baseline LSTM. The baseline is a bidirectional LSTM (Hochreiter and Schmidhuber, 1997).
To derive representations for document pairs, we feed the title and abstract of two papers through
the LSTM, where the papers are separated with a special separator token. We use the SpaCy
tokenizer (Honnibal et al., 2020) and word vectors from fastText (Bojanowski et al., 2017). The
word vectors are trained on the abstracts of ACL Anthology or CORD-19.

BERT, Covid-BERT & SciBERT. BERT is a neural language model based on the Transformer
architecture (Devlin et al., 2019). Commonly, BERT models are pretrained on large text corpora
in an unsupervised fashion. The two pretraining objectives are the recovery of masked tokens
(i. e., mask language modeling) and next sentence prediction (NSP). After pretraining, BERT
models are fine-tuned for specific tasks like sentence similarity (Reimers and Gurevych, 2019) or
document classification (Ostendorff et al., 2019). Several BERT models pretrained on different
corpora are publicly available.

For our experiments, we evaluate three BERT variations. (1) The BERT model from Devlin et al.
(2019), trained on English Wikipedia and the BooksCorpus (Zhu et al., 2015). (2) SciBERT (Belt-
agy et al., 2019), a variation of BERT tailored for scientific literature, which is pretrained on
computer science and biomedical research papers. (3) Covid-BERT (Chan, 2020) is the original
BERT model from Devlin et al. (2019) but fine-tuned on the CORD-19 corpus. BioBERT (Lee
et al., 2019) is another BERT model specialized in the biomedical domain. Nonetheless, we
exclude BioBERT as SciBERT even outperforms it on biomedical tasks (Beltagy et al., 2019).
All three models, i. e., BERT, SciBERT, and Covid-BERT, are similar in their structure, except
for the corpus used during the language model training.

SciNCL. As presented in Chapter 5, SciNCL is a citation-informed SciBERT language model.
The key difference to SciBERT is that SciNCL is explicitly trained for document representations
and not for a typical language modeling task.

RoBERTa. Liu et al. (2019) propose RoBERTa, which is a BERT model trained on larger
batches, longer training time, and drops the NSP task from its objective. Moreover, RoBERTa
uses additional corpora for pretraining, namely Common Crawl News (Nagel, 2016), OpenWeb-
Text (Gokaslan and Cohen, 2019), and STORIES (Trinh and Le, 2018).
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XLNet. Unlike BERT, XLNet (Yang et al., 2019) is not an autoencoder but an autoregressive
language model. XLNet does not employ NSP. We use the XLNet model published by its authors,
which is pretrained on Wikipedia, BooksCorpus (Zhu et al., 2015), Giga5 (Parker et al., 2011),
ClueWeb 2012-B (Callan et al., 2009), and Common Crawl (Elbaz, 2007).

ELECTRA. ELECTRA (Clark et al., 2020) has the pretraining objective of detecting replaced
tokens in the input sequence as an addition to mask language modeling. For this objective,
Clark et al. use a generator that replaces tokens and a discriminator network that detects the
replacements. The generator and discriminator are both Transformer models. ELECTRA does
not use the NSP objective. For our experiments, we use the discriminator model of ELECTRA.
The pretrained ELECTRA discriminator model is pretrained on the same data as BERT.

7.1.3 Implementation Details

We choose the LSTM hyperparameters according to the findings of Reimers and Gurevych (2017)
as follows: 10 epochs for training, batch size b = 8, learning rate η = 1−5, two LSTM layers
with 100 hidden size, attention, and dropout with probability d = 0.1. While the LSTM baseline
uses vanilla PyTorch, all Transformer-based techniques are implemented using the Huggingface
API (Wolf et al., 2020). Each Transformer model is used in its BASE version. The hyperparameters
for Tranformer fine-tuning are aligned with Devlin et al. (2019): four training epochs, learning
rate η = 2−5, batch size b = 8, and Adam optimizer with ε = 1−8.

We conduct the evaluation in a stratified k-fold cross-validation with k = 4 (i.e., the class distribu-
tion remains identical for each fold). On average, this produces 54,618/18,206 train/test samples
for ACL Anthology, and 74,436/24,812 train/test samples for CORD-19.

The source code, datasets, and trained models are publicly available on GitHub3 and Zenodo4.
We provide a Google Colab to try out the trained models on any papers from Semantic Scholar.5

7.2 Evaluation

Our results are divided into three parts: overall, label classes, and qualitative evaluation.

7.2.1 Overall Results

The overall results of the quantitative evaluation are presented in Table 7.2. We conduct the
evaluation as 4-fold cross-validation based on our datasets. We report micro and macro averages
for precision, recall, and F1-score to account for the unbalanced label class distribution (see
Section 7.1.1).

Given the overall scores, SciBERT is the best method with 0.326 macro-F1 and 0.678 micro-F1 on
ACL Anthology, and with 0.439 macro-F1 and 0.833 micro-F1 on CORD-19. All Transformer
models outperform, in all metrics, the LSTMbaseline except for the micro-precision on ACL
Anthology. The gap between macro and micro average results is due to discrepancies between
the label classes (see Section 7.2.2). BERT, SciBERT, SciNCL, and Covid-BERT perform better,

3https://github.com/malteos/aspect-document-similarity, last accessed: 18/01/2023
4https://doi.org/10.5281/zenodo.4087898, last accessed: 18/01/2023
5https://ostendorff.org/r/coling2020-colab, last accessed: 18/01/2023
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Table 7.2: Overall F1 score, precision, and recall for the macro and micro averages of eight
methods for ACL Anthology and CORD-19. SciBERT yields the best results in both datasets.

Dataset

ACL Anthology CORD-19

macro avg micro avg macro avg micro avg

F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.

LSTMbaseline 0.063 0.069 0.058 0.290 0.761 0.179 0.128 0.137 0.121 0.579 0.758 0.469

BERT 0.256 0.317 0.238 0.641 0.719 0.578 0.387 0.619 0.357 0.822 0.840 0.806

Covid-BERT 0.270 0.404 0.253 0.648 0.715 0.592 0.394 0.578 0.364 0.818 0.836 0.802

SciBERT 0.326 0.458 0.303 0.678 0.725 0.637 0.439 0.560 0.401 0.833 0.846 0.820

SciNCL 0.319 0.379 0.296 0.671 0.724 0.624 0.428 0.573 0.393 0.830 0.845 0.816

RoBERTa 0.250 0.285 0.232 0.626 0.703 0.564 0.332 0.473 0.316 0.820 0.840 0.801

XLNet 0.263 0.372 0.250 0.645 0.705 0.595 0.362 0.523 0.345 0.817 0.832 0.804

ELECTRA 0.245 0.287 0.228 0.616 0.693 0.554 0.280 0.306 0.276 0.820 0.840 0.801

on average, for ACL Anthology and CORD-19 when compared to the baseline and the other
Transformer-based models. For ACL Anthology, the methods produce the same rankings for
both macro and micro averages.

SciBERT achieves the highest scores with a large margin, followed by SciNCL, Covid-BERT,
XLNet, and BERT. The lowest scores are from RoBERTa (0.626 micro-F1) and ELECTRA (0.616
micro-F1). In terms of macro average, the methods present the same ranking for CORD-19 and
ACL Anthology except for BERT, which outperforms XLNet. Only for micro average on CORD-
19 the outcome is different, i. e., ELECTRA and RoBERTa achieve higher F1 scores than Covid-
BERT and XLNet. Even though Covid-BERT is fine-tuned on CORD-19 its performance yields
only a 0.818 micro-F1. SciBERT outperforming SciNCL can be attributed to SciNCL’s training
being tailored towards document representations from the [CLS] token, which is fundamentally
different from the sequence pair classification evaluated in this experiment. As already shown in
Chapter 6, using the next-sentence-prediction objective for pretraining seems especially important
for the performance of sequence pair classification due to the similarity of the task and the
pretraining objective.

7.2.2 Impact of Aspect Classes

We divide both datasets (ACL Anthology and CORD-19) into 11 aspect classes between positive
and negative examples (Section 7.1.1). Each class represents a different section in which a paper
is cited. The section indicates in what aspects the two papers are similar. The aspects can also
be ambiguous making their classification a hard task. The following section investigates the
classification performance with respect to the different aspect classes. Table 7.3 presents F1 score,
precision, and recall of SciBERT for all 11 labels. Additionally, we include the overall results for
single and multi-label samples (i. e., 2, and ≥ 3). The remaining methods from Table 7.2 present
lower but proportionally similar scores.6

6The detailed data on the remaining methods is available together with the trained models in our GitHub repository.
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Table 7.3: Results of SciBERT on ACL Anthology and CORD-19 datasets per aspect class or
aggregated by label count with number of test samples, F1 score, precision, and recall.

ACL Anthology CORD-19

Aspect Samples F1 Prec. Rec. Aspect Samples F1 Prec. Rec.

Background 341 0.436 0.651 0.329 Background 113 0.617 0.655 0.588

Conclusion 289 0.000 0.000 0.000 Conclusion 250 0.274 0.563 0.182

Discussion 283 0.000 0.000 0.000 Discussion 3314 0.636 0.641 0.631

Evaluation 242 0.008 0.396 0.004 Future work 42 0.032 0.150 0.018

Experiment 1006 0.360 0.491 0.284 Introduction 3777 0.644 0.669 0.620

Introduction 4069 0.527 0.576 0.486 Materials 105 0.241 0.552 0.157

Methods 179 0.014 0.208 0.007 Methods 130 0.205 0.519 0.130

Related work 3150 0.638 0.660 0.617 Results 227 0.322 0.558 0.227

Results 295 0.015 0.475 0.008 Virus 54 0.000 0.000 0.000

Other 5562 0.645 0.646 0.645 Other 10788 0.876 0.872 0.879

None 6068 0.942 0.934 0.951 None 8270 0.979 0.980 0.977

Number of labels Number of labels

1 label 15652 0.721 0.717 0.726 1 label 22885 0.860 0.844 0.876

2 labels 1968 0.540 0.738 0.425 2 labels 1632 0.656 0.849 0.535

≥ 3 labels 585 0.492 0.857 0.345 ≥ 3 labels 295 0.590 0.925 0.433

The None class has the highest F1 score by a large margin (0.942 for ACL Anthology, 0.980
for CORD-19). The Other class shows the second-best F1 score, which in a similar-dissimilar
classification scenario can be interpreted as an opposite class to the None label. The remaining
positive aspect classes yield lower scores but also a lower number of samples. Since we conduct a
4-fold cross-validation the ratio of train and test samples is 75/25. In CORD-19, 10,788 Other test
samples exist compared to 3,777 Introduction samples, which is the most common section title
(Table 7.1). Still, the lower number of samples does not necessarily correlate with low accuracy.
In ACL Anthology, the aspect class Related work (3,150 samples) yields higher scores when
compared to Introduction (4,069 samples) with an F1 score of 0.638 and 0.527 respectively. The
aspect class Background in CORD-19 has an F1 score of 0.617 despite having only 113 samples.
The results in Table 7.3 show an impact from the aspect classes on the overall performance. Six
aspect classes (ACL Anthology - Conclusion, Discussion, Evaluation, and Methods; CORD-19 -
Future work and Virus) have F1 scores between zero and 0.05. The discrepancy in the number of
samples and difficulty in uncovering latent information from aspects contribute to the decrease in
some classes’ accuracy. Even for domain experts, the location of whether one paper cites another,
e. g., in Introduction or Experiment, is not trivial to predict.

The bottom rows in Table 7.3 illustrate the effect of multi-labels (similarity in more than one
aspect class). F1 scores decrease on both datasets as the number of labels increases. This is due
to decreasing recall. The precision increases with more labels. Table 7.4 shows a portion of the
distribution of multi-label samples in CORD-19 and corresponding SciBERT predictions. When
two or more aspect labels are present, SciBERT often correctly predicts one of the aspects but
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not the others. For example, the label pair of Discussion and Introduction (D,I) has only 22%
test samples correct. Still, SciBERT correctly predicts for the remaining samples one of the two
aspects, i. e., either Discussion (35%) or Introduction (31%). We see comparable results for other
multi-labels such as Discussion, Introduction, and Other (D,I,O).

Table 7.4: Confusion matrix of selected multi-labels for SciBERT on CORD-19 (N=None,
C=Conclusion, O=Other, D=Discussion, I=Introduction, R=Results). For example (in bold),
459 test samples are assigned to Discussion and Introduction (D,I), of which 103 are correctly
classified. The remaining samples are mostly classified as single-label, i. e., either Discussion
(163) or Introduction (146).

Ground Truth Predictions

Sections Sample N B C D I O R C,O D,I D,O D,R I,O O,R D,I,O D,O,R

C,D 21 - - - 1 6 7 - - 1 - - 1 - - -

C,O 79 - - 2 1 2 58 - 13 - - - 3 - - -

D,I 459 1 - - 163 146 17 - - 103 7 2 9 - 10 -

D,O 351 1 2 - 102 30 120 1 - 15 59 1 4 1 4 -

D,R 65 1 - - 6 10 10 - - 1 3 28 - - - 1

I,O 453 2 1 - 15 114 215 1 - 12 16 1 62 - 9 -

D,I,O 142 1 1 - 28 31 11 - - 33 8 - 12 - 14 -

D,O,R 23 - - - 5 - 7 - - - 5 2 - 1 - 1

7.2.3 Manual Sample Analysis

To validate the quantitative findings, we qualitatively evaluate the prediction from SciBERT on
ACL Anthology. Table 7.5 presents example papers including SciBERT’s predictions of whether
the seed cites the target paper and in which section the citation should occur. We manually
examine the predictions for their correctness.

The first example of Bär et al. (2012) and Agirre et al. (2012) is a correct prediction. Given the
ground truth, the aspect is Other (the citation occurs in a section called “Results on Test Data").
We assess Introduction as a potentially valid prediction since Bär et al. (2012) is a submission
to the shared task described in Agirre et al. (2012). Therefore, one could have cited it in the
introduction. All predictions in the example 2 are correct. Compared to the other examples, we
consider example 2 a simple case as both papers mention their topic (i. e., query segmentation)
in the title and in the first sentence of the abstract (hint for Introduction label). Both abstracts
of example 2 also refer to “mutual information and EM optimization” as their methods. In
example 3, Zhang and Clark (2009) and Xi et al. (2012) do not share any citation. Hence,
the paper pair is assigned with the None aspect according to the ground truth data even though
they are topically related. Zhang and Clark (2009) and Xi et al. (2012) are both about Chinese
machine translation. Still, we disagree with the model’s prediction of Experiment since the two
papers conduct different experiments making Experiment an invalid prediction. Example 4’s
predictions are correct. Polifroni et al. (1992) is published before Winterboer and Moore (2007)
and, therefore, a citation cannot exist. Nonetheless, the two papers cover a related topic. Thus,
one could expect a citation of Polifroni et al. (1992) in Winterboer and Moore (2007) in the
introduction section as SciBERT predicted. The model finds this semantic similarity given their
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Table 7.5: Example aspect-based similarity of research paper pairs (seed and target) as defined
by citing section title and as predicted by SciBERT. Based on the test set, correct predictions are
marked with ✓, invalid ones with ×.

Seed Paper Target Paper Citation Prediction

1 UKP: Computing Semantic Tex-
tual Similarity by Combining Mul-
tiple Content Similarity Measures
(Bär et al., 2012)

SemEval-2012 Task 6: A Pilot
on Semantic Textual Similarity
(Agirre et al., 2012)

Other Introduction×

2 Query segmentation based on
eigenspace similarity (Zhang et al.,
2009)

Unsupervised query segmentation
using generative language mod-
els and Wikipedia (Tan and Peng,
2008)

Introduction,
Experiment

Introduction✓,
Experiment✓

3 Transition-Based Parsing of the
Chinese Treebank using a Global
Discriminative Model (Zhang and
Clark, 2009)

Enhancing Statistical Machine
Translation with Character
Alignment (Xi et al., 2012)

None Experiment×

4 Experiments in evaluating interac-
tive spoken language systems (Po-
lifroni et al., 1992)

Evaluating information presenta-
tion strategies for spoken re-
commendations (Winterboer and
Moore, 2007)

None Introduction×,
Other×

5 Similarity-based Word Sense Dis-
ambiguation (Karov and Edelman,
1998)

Targeted disambiguation of ad-hoc,
homogeneous sets of named enti-
ties (Wang et al., 2012)

None None✓

6 SciSumm: A Multi-Document
Summarization System for Scien-
tific Articles (Agarwal et al., 2011)

Improving question-answering
with linking dialogues (Gandhe
et al., 2006)

None None✓

latent information on the topic. Examples 5-6 present two pairs for which None was correctly
predicted according to the ground truth. Agarwal et al. (2011) and Gandhe et al. (2006) from
Example 6 are topically unrelated as their titles already suggest. However, Karov and Edelman
(1998) and Wang et al. (2012) on Example 5 share the topic of disambiguation. Thus, we would
agree with the prediction of a positive aspect class, i.e., the papers are similar.

In summary, the qualitative evaluation does not contradict the quantitative findings. SciBERT
distinguishes documents at a higher level and classifies which aspects make them similar. In
addition to traditional document similarity, the aspect-based predictions allow us to assess how
two papers relate to each other at a semantic level. For instance, whether two papers are similar in
the aspects of Introduction or Experiment is valuable information, especially in literature reviews.

7.3 Discussion

In the experiments, SciBERT outperforms all other methods in pairwise document classification.
We observe that in-domain pretraining and next-sentence-prediction objectives often lead to
higher F1 scores. Transferring generic language models to a specific domain usually decreases
the performance in our experiments. A possible explanation for this is the narrowly defined
vocabulary in ACL Anthology or CORD-19. Beltagy et al. (2019) and Lee et al. (2019) have
also explored the transfer learning between domains with similar findings. Covid-BERT seems
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to be an exception as it yields lower results (micro-F1) than BERT on CORD-19 even though
Covid-BERT was fine-tuned on CORD-19. We observe the language model fine-tuning in Covid-
BERT does not guarantee a higher performance compared to pretraining from scratch in SciBERT.
However, Covid-BERT’s authors provide too little information to give a proper explanation for
its performance.

Apart from in-domain pretraining, the next-sentence-prediction objective has a positive effect
on the models. All BERT-based systems, which use next-sentence-prediction, outperform the
models that excluded next-sentence-prediction (SciNCL, XLNet, RoBERTa, and ELECTRA).
We attribute the positive effect of next-sentence-prediction to its similarity to our task since both
are sequence pair classification tasks. Table 7.2 and 7.3 show variance among labels and both
datasets. The larger number of training samples in CORD-19 (36%) may have contributed to
higher performance in comparison to ACL Anthology. An unbalanced class distribution and
different challenges of the aspects cause the performance to differ between the aspect classes.
The high F1 scores of above 0.9 for negative samples are expected since the None aspect class
is essentially an aspect-free similarity or citation prediction problem. Transformer models have
been shown to perform well in these two problems (Cohan et al., 2020; Reimers and Gurevych,
2019). Besides the unbalanced distribution of training samples, we attribute the differences
among positive aspect classes to their ambiguity and to the different challenges posed by the
aspect classes. Authors often diverge when naming their section titles (e. g., Results, Evaluation),
thus, increasing the challenge of classifying the different aspects of a paper. This also contributes
to the high number of Other samples. Some sections are also content-wise more unique than
others. An Introduction section usually contains different content than a Results section. The
content difference makes some sections and the corresponding aspect classes easier to distinguish
and predict than others. We suspect the poor performance for Future work is due to little or no
information about them in the titles or abstracts.

Our main research objective in this chapter is to explore methods that are capable of incorporating
aspect information into the traditional similar-dissimilar classification. In this regard, the results
are successful. In particular, the micro-F1 score of 0.86 of SciBERT for the CORD-19 dataset
is suitable for a recommender system. Our qualitative evaluation indicates that SciBERT’s
predictions can correctly identify similar aspects of the selected research papers.

Furthermore, we observe that aspect classes with little training data performed poorly. For
example, Conclusion and Discussion have a zero F1-score for ACL Anthology whereas for the
larger CORD-19 dataset Discussion yields 0.636 F1. We anticipate that more training data will
lead to more correct predictions.

7.4 Summary of the Chapter

In this chapter, we continued the work on Research Task III and applied pairwise multi-label multi-
class document classification on scientific papers to compute aspect-based document similarity
scores. We used section titles as aspects of papers and labeled citations occurring in these
sections accordingly. The investigated models were trained to predict citations and the aspect-
based similarity based on the paper’s title and abstract. We evaluated the Transformer models
BERT, Covid-BERT, SciBERT, SciNCL, ELECTRA, RoBERTa, and XLNet and an LSTM
baseline over two scientific corpora, i.e., ACL Anthology and CORD-19. Overall, SciBERT
performed best in our experiments. Despite the challenging task, SciBERT predicted the aspect-
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based document similarity with F1 scores of up to 0.83. SciBERT’s successful results provide
already a value for a research paper recommender system.

Before integrating the aspect-based document similarity into a recommender system, there are
technical challenges to be solved. The pairwise classification as performed in this experiment
is computationally expensive. We have used Transformer language models that require specific
hardware such as GPUs. The computational less-expensive method, the LSTM baseline, yielded
poor results making it not a valid alternative to Transformers. Also, pairwise classification is
limited to a small corpus size since all possible document pairs would be need to classified. In
the next chapter, we will address these issues and propose a method for aspect-based document
similarity that scales to large document corpora.
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Chapter 8

Specialized Research Paper Representations

The last two chapters introduced the pairwise document classification approach for Wikipedia
articles (Chapter 6) and research papers (Chapter 7). Despite its high accuracy, the pairwise
classification approach has a quadratic complexity making it computationally expensive even
for small document corpora. However, aspect-based similarity measures should scale to large
document corpora, as defined in Research Task IV. To improve the efficiency, this chapter
revisits the use case of research papers from the previous chapter but formulates aspect-based
similarity as a representation learning problem of aspect-specific document embeddings. This
makes aspect-based similarity scale linearly with respect to the corpus size. The chapter’s content
is based on Ostendorff et al. (2022a).

_ “Specialized Document Embeddings for Aspect-based Similarity of Research Papers”
by Malte Ostendorff, Till Blume, Terry Ruas, Bela Gipp, and Georg Rehm. In:
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2022.

In content-based recommender systems and other information retrieval applications, the retrieval
of semantically similar documents is often performed based on document embeddings that can
be derived from the text (Devlin et al., 2019; Le and Mikolov, 2014), citations or links (Han et al.,
2018; Tang et al., 2015), and combinations of text and citations (Cohan et al., 2020; Ostendorff
et al., 2022b). The similarity between documents is then calculated based on the similarity of
their vector representations, e. g., with cosine similarity (Ellis et al., 1993; Salton, 1963). Existing
approaches represent a document with a single monolithic vector in the embedding space.

The single point representation follows the geometric understanding of similarity (Blough, 2001).
As a result, it entangles the many aspects or meanings that a document can represent in a single
measurement and makes the aspects indiscriminative (Camacho-Collados and Pilehvar, 2018).
Consequently, it also leads to a single and generic notion of document similarity, which neglects
the many aspects represented within a document. In the context of word embeddings, Camacho-
Collados and Pilehvar (2018) coined “the inability to discriminate among different meanings
of a word” as the meaning conflation deficiency. While the appearance of contextualized word
embeddings has solved the meaning conflation for words (Peters et al., 2018; Vaswani et al.,
2017), document embeddings still suffer from this issue. Given the length and different aspects
covered by documents such as research papers, the meaning conflation deficiency is even more
prevalent at the document level. Since single generic representations conflate individual aspects,
similarity measures derived from them are aspect-free.

As discussed in Chapter 7, the similarity of research papers is often concerned with multiple
aspects of the presented research, e. g., methods or findings (Chan et al., 2018). Addressing
these aspects individually enables recommendations tailored for specific information needs and
increases their diversity (Ge et al., 2010; Kunaver and Požrl, 2017). Especially in the scientific
domain, this can help burst filter bubbles or facilitate new discoveries (Narechania et al., 2022;
Portenoy et al., 2021).
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In Chapter 6 and 7, we have demonstrated how aspect-based document similarity can be achieved
through a pairwise multi-class document classification approach. However, with O(n2) compar-
isons for a corpus of n documents, the pairwise multi-class classification approach scales poorly
to large-scale corpora. A quadratic complexity requires extensive computational resources, in
particular in combination with other computationally expensive methods, e. g., large Transformer
language models (Section 2.3.7.1).
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Figure 8.1: Papers are associated with tasks (T), methods (M), and datasets (D). With generic
embeddings (a), the k-nearest neighbors are papers similar in any aspect. Specializing the
embeddings for the task aspect (b) lets papers with the same task be close to each other in the
embedding space. In the dataset-specific embedding paper (c), the papers with the same dataset
are close to each other.

In this chapter, we present specialized representations as an alternative approach to aspect-based
document similarity. We propose to represent a document using multiple specialized embeddings
– one embedding for each aspect. We learn an aspect-specific embedding space for each aspect.
Thus, we can capture the similarity of documents regarding different aspects. We build upon
the idea of disentangled representation learning (Section 2.5.4) and specialization (sometimes
referred to as retrofitting) of word embeddings (Faruqui et al., 2015; Glavaš and Vulić, 2018).
According to Higgins et al. (2018), disentangled representations are characterized by “the
decomposition of a vector space into independent subspaces”. The decomposition is typically
done in an unsupervised setting and without making the semantic meaning of the subspaces
explicit. These subspaces are closely related to the conceptual spaces from Gardenfors (2004).

In the context of word embeddings, specialization models leverage external lexical knowledge
and other constraints, e. g., vectors of synonyms should be close to each other. The use of multi-
sense embeddings to better represent the different meanings of words is known to improve natural
language understanding related tasks (Li and Jurafsky, 2015; Pilehvar and Collier, 2016; Ruas
et al., 2020; Ruas et al., 2019; Wahle et al., 2021). We apply the idea of disentanglement and
specialization to documents and for each aspect-specific embedding space. Our goal is to leverage
aspect information such that documents similar in a particular aspect are close to each other in the
embedding space for that aspect (Figure 8.1). Thus, we refer to these embeddings as specialized
for a specific aspect in contrast to generic embeddings that only reflect one unspecified aspect or
view of a document.

The specialization approach keeps the documents intact as opposed to segmentation approaches
(Chan et al., 2018; Huang et al., 2020; Kobayashi et al., 2018). More importantly, the approach
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addresses the scalability issues of pairwise document classification (Chapter 6 and 7). The
computationally expensive encoding of aspect information is only performed once per document
and aspect. Retrieving similar documents can be done through a k nearest neighbor search in
each aspect-specific embedding space. As a result, the approach has linear complexity, i. e., O(n)
w.r.t. to n documents in the corpus. But it is unclear how the improved scalability affects the
recommendation performance.

Thus, this chapter seeks to answer the following two research questions:

e Research questions

RQ1: Can specialized document representations measure the aspect-based similarity more
efficiently than the pairwise classification approach but without loss in quality? If
so, what specialization method yields the best results?

RQ2: What do the specialized document representations reveal about generic unspecialized
representations?

In the experiments, we evaluate our approach of specialized document representations on a
content-based recommendation task using the Papers with Code1 corpus. Research papers in
Papers with Code are labeled with three aspects: the papers’ task, the applied method, and the used
dataset. We use these labels as aspects to specialize the embeddings of the research papers. In
contrast to the citation dataset from Chapter 7, Papers with Code can be considered as a true gold
standard since the aspect annotations are manually created. As specialization methods, we rely
on existing methods but apply them in a way diverging from their original purpose. Namely, we
evaluate retrofitting (Glavaš and Vulić, 2018) and jointly learned embeddings from Transformer
fine-tuning (Beltagy et al., 2019; Cohan et al., 2020) and Siamese Transformers (Reimers and
Gurevych, 2019). The specialized embeddings are compared against a pairwise multi-class
document classification baseline and generic (non-specialized) embeddings from FastText word
vectors (Bojanowski et al., 2017), SciBERT (Beltagy et al., 2019), SPECTER (Cohan et al.,
2020), and SciNCL (Chapter 5).

In summary, this chapter’s main contributions are:

1. We propose a representation learning approach to aspect-based document similarity using
specialization methods. As opposed to pairwise document classification, we treat aspect-
based similarity as a classical vector similarity problem in aspect-specific embedding
spaces, which improves the scalability.

2. We empirically evaluate three specialization methods for three aspects on a newly con-
structed dataset based on Papers with Code for the use case of research paper recommenda-
tions. In our experiment, specialized embeddings improved the results in all three aspects,
i. e., task, method, and dataset.

3. We find that recommendations solely based on generic embeddings had an implicit bias
towards the dataset and against the method aspect.

4. We demonstrate the practical use of our approach in a prototypical recommender system.2

1https://paperswithcode.com/, last accessed: 18/01/2023
2https://recsys.ostendorff.org/, last accessed: 18/01/2023
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Section 8.1. Methodology

The chapter’s code, dataset, and models are publicly available.3

The remainder of this chapter is structured as follows: First, we introduce the general method-
ology, i.e., the datasets and the evaluated methods. Subsequently, we present the overall results
in Section 8.2.2, the overlap of recommendation sets in Section 8.2.3, and the manual sample
analysis in Section 8.2.4. In Section 8.3, we discuss the results of all evaluations. Finally, we
summarize the main findings of this chapter.

8.1 Methodology

Figure 8.1 illustrates the specialization approach. It consists of two major components: (1)
aspect information for a defined set of aspects A = {a0, . . . ,an}, and (2) a specialization method
that derives for any document di in the corpus D a set of n specialized embeddings d

(a j)
i for

each specific aspect a j with 0 ≤ j ≤ n. The aspect information is given in the form of triples
(da,db,y(a j)) where the label y(a j) = {0,1} holds the binary information whether da and db are
similar or dissimilar in aspect a j. The training objective of the specialization method is to
maximize the similarity of the embeddings of those document pairs (da,db) with y(a j) = 1, which
are the ones that are similar in aspect a j.

We distinguish between specialized embeddings and generic embeddings. Generic embeddings
can be considered aspect-free, i. e., d

(a1)
i = d

(a2)
i = d

(an)
i . Specialized or generic similar doc-

uments are retrieved through a k nearest neighbors search using the cosine similarity of the
document embeddings. We evaluate our approach in the context of content-based recommender
systems. Therefore, we refer to the results of the nearest neighbor search as specialized or generic
recommendations.

With this approach, we treat aspect-based similarity as a classical vector similarity problem in
aspect-specific embedding spaces. As a result, similar documents can be more efficiently retrieved
as in the pairwise classification approach (Chapter 6 and 7). Pairwise classification requires the
classification of all document pairs, i. e., a corpus with |D| documents is equivalent to |D|∗(|D|−1)

2
classifications. Thus, the pairwise classification approach has a quadratic complexity, i. e.,
O(|D|2) w.r.t. the number of documents |D|. This quadratic complexity makes the computation
infeasible even for a medium-sized corpus, in particular when Transformers are used for each
classification. Our approach computes for each document d ∈ D and each aspect a ∈ A one
specialized document embedding d(a). Consequently, only |D| ∗ |A| Transformer forward passes
are sufficient during inference. Thus, our approach scales linearly w.r.t. the number of documents
|D|. Retrieving the k most similar documents can be done efficiently in the vector space using
cosine similarity (Section 2.2.4). For larger corpora, an approximate nearest neighbor search
could be used (Aumüller et al., 2017).

8.1.1 Dataset

Our approach requires information about aspects that make a document pair similar. To the best
of our knowledge, no appropriate dataset for the problem of aspect-based similarity is publicly
available as they lack either quantity or quality. For instance, the dataset provided by Chan et al.
(2018) is too small in size for a machine learning approach. In Chapter 7, we rely on citations

3https://github.com/malteos/aspect-document-embeddings, last accessed: 18/01/2023
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and section titles as a training signal. The citations have the advantage of being available for all
fields of science. However, section titles are inconsistently used and, therefore, prevent a clear
distinction among aspects.

Papers with Code provides a hand-curated collection of research papers in the machine learning
domain (Kardas et al., 2020). In addition to metadata on authors or bibliography, each research
paper is labeled with the task a paper is focusing on, the papers’ method, and the dataset used.
We exploit these labels as aspects, A = {task,method,dataset}. These aspects address different
information needs that are beneficial for research paper recommender systems and are comparable
to the aspects used in related work (Chan et al., 2018). For example, Beltagy et al. (2019) and
Cohan et al. (2020) are labeled with BERT (Devlin et al., 2019) as their method. Thus, we
consider the pair of Beltagy et al. (2019) and Cohan et al. (2020) as similar regarding the method
aspect. Other aspect labels are for example:

• Tasks: Low-Rank Matrix Completion, Q-Learning, Quantization, Speaker Recognition,
Object Detection

• Methods: Residual Connection, Tanh Activation, Multi-Head Attention, LSTM, Trans-
former

• Datasets: Atari 2600 Atlantis, Cityscapes, SOP, MS MARCO, Labeled Faces in the Wild

We use the Papers with Code dataset as our gold standard that contains 157,606 papers in total.4

Table 8.1: Dataset statistics for each aspect

Aspect Papers Labels Avg. papers per label

Task 154,350 1,421 17.9

Method 108,687 788 12.4

Dataset 37,604 1,743 5.6

For each aspect, we construct separate datasets containing positive and negative samples. Positive
samples are unique unordered paper pairs with the same label, i. e., y = 1. For each label, the
number of pairs is L

2 where L is the number of papers per label. Negative samples are randomly
sampled paper pairs without the same label, i. e., y = 0. A more elaborated sampling strategy
similar to the one from Chapter 5 was omitted for simplicity. The number of negative samples is
50% of the number of positive samples.

Some labels are too frequent in the corpus, e. g., the method label Softmax is assigned to 5,324
papers. To ensure the specificity of aspect information, we discard all labels which are assigned
to more than 100 papers. The removal of too frequent labels increases the task’s difficulty and
ensures an appropriate dataset size. The dataset would become too large otherwise, e. g., Softmax
alone would account for 1.2M paper pairs.

The experiments are conducted as a 4-fold cross-validation, i.e., we split the data into 75%
training and 25% test papers. The resulting ground truth consists of 1,227,058 task, 284,193
method, and 58,984 dataset paper pairs.

4Downloaded on Oct 27th, 2020
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In summary, Papers with Code enables us to evaluate aspect-based similarity for research papers
based on a curated dataset. The aspect labels from Papers with Code have a higher quality
compared to the citation dataset from Chapter 7. At the same time, Papers with Code contains
only machine learning papers while the citation dataset provides a broader coverage across
scientific domains. Therefore, both datasets complement each other.

8.1.2 Evaluated Methods

We evaluate the document embeddings from three base models and three specialization methods.
Besides the aspect information (Section 8.1.1), each method utilizes the title and abstract to
generate the embeddings. We distinguish between generic and specialization methods, where the
latter is divided into two categories: retrofitted and jointly learned embeddings. Source codes,
trained models, and instructions to reproduce our work are publicly available3.

8.1.2.1 Generic Embeddings

We use generic document embeddings that do not leverage any aspect information. As base
models, we rely on averaged FastText word vectors as document embeddings (Bojanowski et
al., 2017), document embeddings from SciBERT (Beltagy et al., 2019)5, SPECTER (Cohan
et al., 2020), and SciNCL (Chapter 5). The latter three are BERT-inspired models (Devlin et al.,
2019) pretrained on scientific literature. In contrast to SciBERT, SPECTER and SciNCL apply
additional contrastive fine-tuning based on citations. SciBERT, SPECTER, and SciNCL are used
as published by their authors without any fine-tuning on our corpus and in their BASE-version.

8.1.2.2 Retrofitted Embeddings

Retrofitting refers to the postprocessing of existing embeddings such that they fit predefined
constraints (Faruqui et al., 2015). In the context of word embeddings, synonyms or antonyms
are typically used as constraints and define which vectors should be close or apart. For our
experiments, we use the aspect labels from Papers with Code as constraints. We retrofit all
generic embeddings with Explicit Retrofitting (ER) as proposed by Glavaš and Vulić (2018). As
opposed to other retrofitting methods such as the one from Faruqui et al. (2015), ER generalizes
to unseen vectors for which no predefined constraints exist. An ER model can be learned on a
subset for which constraints exist (training set) and, then, be applied to all remaining embeddings
(test set). The training constraints are the positive samples in the same fashion, in which the
synonyms are used in the retrofitting of words.

8.1.2.3 Jointly Learned Embeddings

We refer to this category as jointly learned embeddings since the aspect information is integrated
into the representation learning process. Aspect-based embeddings are directly generated from
textual input (title and abstract of a paper). We fine-tune SPECTER, SciNCL, and SciBERT in a
sequence-pair setup on positive and negative samples from our training set. The input is a pair of
two papers separated with a [SEP]-token. The sequence pair is subject to a binary classification

5For SciBERT, we apply mean-pooling, i. e., a document vector is the mean of the hidden-states of the last layer
of the SciBERT model. Documents embeddings from the [CLS]-token yielded significantly lower results, e. g., 0.001
MAP for the task aspect).

150 Chapter 8
Specialized Research Paper Representations



Section 8.2. Evaluation

(similar in the current aspect or not). To derive embeddings for the test set, we use only a single
paper as input to the fine-tuned version of SPECTER, SciNCL, and SciBERT.

Aside from the sequence pair fine-tuning, we also test a Siamese network based on three Trans-
former models; see Sentence-BERT from Reimers and Gurevych (2019). Siamese-SciBERT,
Siamese-SPECTER, and Siamese-SciNCL use a Siamese architecture (Bromley et al., 1993), in
which the paper pair is separately fed as an input and then used in the loss function.6

In summary, our experiments use the four generic embeddings from FastText, SciBERT, SPEC-
TER, and SciNCL (see Section 8.1.2.1). As specialization methods, we retrofit the four generic
embeddings, and also jointly learn specialized embeddings with Transformer fine-tuning and
Siamese Transformers (see Section 8.1.2.2 and 8.1.2.3). Furthermore, we use the pairwise
classification approach as a baseline:

8.1.2.4 Baseline

We train a pairwise classification model based on the SciNCL model according to the methodol-
ogy from Chapter 7. We selected SciNCL over SciBERT and SPECTER since SciNCL’s generic
version outperformed the other two models. With a document pair as input, the model predicts
the probability distribution over the aspect labels.

The pairwise approach is not directly applicable to our dataset as its quadratic complexity would
require the classification of 1.3 billion document pairs. To reduce the number of candidate
pairs, we first retrieve the n = 300 nearest neighbors dn for any seed document ds based on the
generic SciNCL embeddings. The pairs of seed and neighbor documents (ds,dn) are selected as
candidates for the classifier. This candidate filtering reduces the number of classifications to 11.3
million document pairs.

8.1.3 Evaluation Methodology

Each of the n aspects is evaluated separately (n train, n test sets). All documents from the test set
are used as seeds. For a given aspect a j and the vector d

(a j)
s of seed ds, we retrieve k candidate

documents, with a k nearest neighbor search (Cover and Hart, 1967). The similarity of documents
is computed as the cosine similarity of their vectors. The only exception is the pairwise baseline
approach, for which the predicted class probabilities are used instead of cosine similarity. A
candidate document dc is relevant for the seed ds if they are associated with the same label for
aspect a j, i. e., (ds,dc,y(a j) = 1) is part of the ground truth. We compute precision, recall, mean
average precision, and mean reciprocal rank based on this relevance definition (Section 2.1.3).

8.2 Evaluation

This section presents the experimental results, starting with the pairwise baseline. Subsequently,
aspect-based similarity methods, generic and specialized embeddings are compared.

6For Siamese-Transformers, we experimented with different losses and found the Multiple Negative Ranking
Loss (Henderson et al., 2017), with only positive samples from the train set, yielding the best results.
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Table 8.2: Classification results for Pairwise SciNCL.

Aspect ↓ / Metric → Precision Recall F1-Score

Task 0.88 0.81 0.84

Method 0.56 0.45 0.50

Dataset 0.10 0.33 0.16

Micro Avg. 0.79 0.74 0.76

Macro Avg. 0.51 0.53 0.50

8.2.1 Pairwise Results

For the pairwise approach, we first need to train a classification model that can be separately
evaluated on the test set. Table 8.2 shows the classification performance of Pairwise SciNCL
in terms of precision, recall, and F1-score. With a micro F1 score of 0.76, the performance is
comparable to the experiments from Chapter 7. A performance discrepancy can be seen between
the aspect classes. For task the F1-scores are the highest with 0.84, followed by method with
0.50. The worst performance yields the dataset aspect with only 0.16 F1.
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Figure 8.2: Results of the pairwise SciNCL baseline in terms of MAP@k=10 depending on the
candidate filtering for different n nearest neighbors.

To make the pairwise approach applicable to our dataset, we introduced an artificial constraint
since the prediction for all document pairs is not possible due to the quadratic complexity and
limited resources. We retrieve the n = 300 nearest neighbors based on generic SciNCL to filter
for candidate pairs for that we predict the aspect labels. As this constraint potentially harms the
performance, we plot Pairwise SciNCL’s performance as MAP@k=10 depending on the size of
the n nearest neighbor filter in Figure 8.2. The performance generally increases as n increases.
However, performance gains are getting smaller for larger n. The high MAP for the dataset
aspect and small n is due to the good performance of generic SciNCL for this aspect.
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Table 8.3: Overall results for generic and aspect-specific representations and the pairwise SciNCL
baseline. Precision, recall, and mean average precision (MAP) are reported as average over a
4-cross-validation and for each aspect and as average over the aspects. The highest score among
aspects in each metric is underlined for the individual method, and bold shows the highest score
among methods for a single metric. Siamese SciNCL yields the best result.

Aspects → Task Method Dataset Avg.

Methods ↓ Prec. Rec. MAP Prec. Rec. MAP Prec. Rec. MAP MAP

Pairwise SciNCL 0.289 0.110 0.089 0.152 0.048 0.039 0.133 0.126 0.078 0.069

FastText 0.208 0.071 0.046 0.096 0.029 0.016 0.170 0.260 0.152 0.071

SciBERT 0.083 0.027 0.015 0.044 0.012 0.006 0.079 0.112 0.059 0.026

SPECTER 0.241 0.084 0.056 0.077 0.023 0.011 0.214 0.325 0.195 0.087

G
en

er
ic

em
b.

SciNCL 0.268 0.093 0.065 0.081 0.023 0.012 0.227 0.355 0.219 0.099

Retrofitted FastText 0.233 0.081 0.054 0.133 0.040 0.024 0.202 0.290 0.174 0.084

Retrofitted SciBERT 0.106 0.035 0.019 0.067 0.018 0.009 0.103 0.140 0.073 0.034

Retrofitted SPECTER 0.263 0.093 0.064 0.099 0.029 0.015 0.225 0.337 0.205 0.095

Retrofitted SciNCL 0.285 0.101 0.071 0.101 0.029 0.016 0.240 0.367 0.227 0.105

Fine-tuned SciBERT 0.091 0.031 0.020 0.052 0.013 0.007 0.070 0.088 0.045 0.024

Fine-tuned SPECTER 0.098 0.032 0.021 0.088 0.028 0.018 0.077 0.096 0.052 0.030

Fine-tuned SciNCL 0.084 0.027 0.017 0.089 0.027 0.017 0.107 0.138 0.083 0.039

Siamese SciBERT 0.569 0.242 0.224 0.407 0.168 0.137 0.270 0.374 0.235 0.199

Siamese SPECTER 0.571 0.244 0.227 0.402 0.162 0.134 0.262 0.371 0.229 0.196

Sp
ec

ia
liz

ed
em

be
dd

in
gs

Siamese SciNCL 0.567 0.241 0.222 0.402 0.166 0.135 0.280 0.390 0.244 0.200

8.2.2 Overall Results

Table 8.3 presents the overall results based on the most k = 10 similar documents from each
method. Results for other k values are depicted in Figure 8.3. In the following, unless stated
otherwise, we refer to the MAP scores since we consider MAP as our primary evaluation metric
since it takes the rank of multiple relevant candidates into account.

Siamese SciNCL is the best method in terms of average MAP scores over all three aspects. In
general, all three Siamese methods (also including Siamese SciBERT and Siamese SPECTER)
outperform the other methods for all metrics and aspects by a large margin. Between the Siamese
methods, the performance differences are insignificant. Among the generic embeddings, SciNCL
is the best method closely followed by SPECTER and FastText. For task and dataset, the
generic SciNCL and SPECTER outperform FastText, while for method the opposite is the case.
SciBERT yields the lowest scores in the generic category. As our experiments in Chapter 4
and 5 showed, BERT-based embeddings perform poorly without task-specific fine-tuning. Even
the computationally less complex FastText outperforms SciBERT. Despite requiring the largest
computational effort, the Pairwise SciNCL baseline yields generally poor results especially
compared to the Siamese Transformers.

The ER retrofitting approach from Glavaš and Vulić (2018) has a small but positive effect on the
performance. For FastText and SciBERT, the retrofitting increases all scores (on average +26%
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MAP for FastText, +34% MAP for SciBERT), while for SciNCL and SPECTER retrofitting has
an even smaller effect on the performance. The fine-tuning of SciNCL, SPECTER, and SciBERT
has a different effect depending on the aspects. Compared to its generic counterpart, fine-tuned
SPECTER’s MAP score is 25% higher for the task aspect but 57% lower for the dataset aspect.
For SciBERT, the fine-tuning also decreases its MAP score by 23% for the dataset aspect.

Furthermore, we do not only see performance differences between the methods but also between
the aspects. All methods yield the highest precision for task, whereas recall and MAP are
the highest for dataset. The poor method results can be partially attributed to the unbalanced
distribution of the aspects (Section 8.1.1). Most samples are available for task, explaining its good
performance compared to method. However, dataset has the least number of samples but still
outperforms method. When we specialize the document embeddings, we also notice a decrease
in performance differences between the aspects. While SciNCL has a high MAP difference
from dataset to method (94%) and from dataset to task (70%) , the same difference is lower for
Siamese SciNCL (44% and 9% respectively). The better the specialization effect the lower the
performance gap between aspects.
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Figure 8.3: Precision and MAP@k for two generic (FastText and SciNCL) and two specialized
embeddings (Retrofitted and Siamese SciNCL). For generic embeddings, each line presents the
scores of the generic method evaluated on different aspect datasets. For specialized embeddings,
a line presents a separately trained model. Generic embeddings and retrofitted SciNCL yield
similar results on different k and aspects, while for Siamese SciNCL, the task aspect yields a
higher MAP compared to dataset for k > 15.

To analyze the aspect-specific performance, Figure 8.3 depicts the performance ranking as MAP
and precision for different k values for FastText, SciNCL, Retrofitted SciNCL, and Siamese
SciNCL. The performance among the aspect remains stable independent of k for all methods,
except Siamese SciNCL. With Siamese SciNCL, the task aspect yields a higher MAP than dataset
for k > 15. In terms of precision, Siamese SciNCL is another exception since the precision of
method is higher than in dataset. For all other methods, method has the lowest precision.
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In summary, Siamese SciNCL achieves on average the best results. Thus, we consider SciNCL in
combination with the Siamese specialization as the best method to handle specialized embeddings
even outperforming the Pairwise SciNCL baseline.

8.2.3 Overlap of Recommendation Sets

The performance discrepancy among the aspects could indicate a systematic difference between
the documents recommended through the similarity of generic embeddings and the specialized
ones. Therefore, we conduct an additional experiment with overlapping recommendation sets.

We use the trained models from Table 8.3 but infer vectors for all documents in the whole
corpus. Then, we retrieve k = 50 recommendations and measure the overlap between each
method’s nearest neighbors on a seed level. The large k value is selected to increase the chance
of overlapping recommended documents. Table 8.4 presents the intersection ratio between the
generic recommended documents from FastText and SciNCL and the specialized ones from
Siamese SciNCL. For the remaining methods, we report the intersection in the supplemental
materials3. The lower the overlap, the more distinct the recommendations are from each other.

Table 8.4: Intersection of k = 50 recommendations from A and B. Most overlap between generic
methods (FastText and SciNCL) and between generic SciNCL and Siamese SciNCL’s dataset
recommendations. Only 7% of Siamese SciNCL’s method recommendations are also retrieved
by generic SciNCL.

Recommendations A Recommendations B A∩B

FastText SciNCL 0.20

Siamese SciNCLDataset 0.15

Siamese SciNCLMethod 0.06

Siamese SciNCLTask 0.10

SciNCL FastText 0.20

Siamese SciNCLDataset 0.21

Siamese SciNCLMethod 0.07

Siamese SciNCLTask 0.15

On the one hand, a substantial overlap can be found between the two generic recommendations
from FastText and SciNCL. This suggests little difference within the generic recommended
documents. An even larger overlap can be found between generic SciNCL and Siamese SciNCL’s
dataset recommendations. On the other hand, Siamese SciNCL’s method-specific recommenda-
tions overlap the least with the generic ones. The discrepancy among the aspects is significant.
Compared to SciNCL, Siamese SciNCL has an overlap of 15%, 7%, and 21% for task, method,
and dataset respectively. Thus, indicating dataset-specific recommendations are overrepresented
in generic recommendations, while method-specific ones are underrepresented.

Furthermore, the overlap between the aspect-specific recommendations is also low. The method-
specific recommendations have only an overlap of 5% with dataset and 4% with task. This
low overlap between the recommendations of individual aspects can be used to diversify the
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recommendations by mixing recommendations across aspects. For example, we observed that
selecting the top k = 1 recommendations from the three aspects instead of the top k = 3 generic
recommendations increased the coverage by up to 5.8% (from 81.9 to 86.7).

8.2.4 Manual Sample Analysis

To verify the quantitative findings, we also qualitatively analyze the generic and specialized
embedding spaces (Section 8.2.4.1) and the recommendations generated from the respective
embeddings (Section 8.2.4.2).

8.2.4.1 Embedding Space Analysis

Generic embeddings Dataset-speci�c embeddings

Datasets
COCO minival
ScanNet

S�AD1.1
Human3.6M

MNIST
WMT2014 English-German

MPII Human Pose
TACRED

SNLI
Penn Treebank

Generic embeddings Method-speci�c embeddings

Methods
Heatmap
3D Convolution

WordPiece
k-NN

Discrete Cosine Transform
CARLA

Normalizing Flows
fastText

GA
AdaGrad

Figure 8.4: Visualization of embedding spaces reduced to two dimensions using UMAP. The
separation between aspect labels is much clearer with aspect-specific embeddings (right column)
compared to the generic ones (left column). The generic embeddings plotted according to their
dataset aspect (top-left plot) have a better separation than the generic embeddings with method
labels (bottom-left plot).

In addition to the quantitative evaluation, we visually inspect the embedding spaces from generic
SciNCL and specialized Siamese SciNCL. For this purpose, we reduce the dimensionality
of the paper embeddings from 768 to two dimensions using UMAP (McInnes et al., 2018).
Figure 8.4 visualizes the paper embeddings of a subset of our corpus. Most papers in our corpus
are associated with multiple aspect labels, e.g., more than one dataset or method. For better
readability, the papers with multiple aspect labels are excluded from the plot, and only papers
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with a single label are shown. This reduces the number of available papers but makes patterns
in their embedding spaces more evident. We color all data points (e.g., the papers) according to
their aspect labels.

While the two visualizations at the top of Figure 8.4 illustrate paper embeddings according to
their dataset, the two bottom visualizations are about their method. In each row, the generic
embeddings are in the left column and aspect-specific embeddings are in the right column,
dataset-specific and method-specific respectively.

The comparison of generic and specialized embedding spaces in both rows demonstrates the
specialization effect that we already found in the quantitative evaluation (see Table 8.3). The
separation between aspect labels is much clearer with aspect-specific embeddings (right column)
compared to the generic ones (left column). In contrast to aspect-specific embeddings, which
produce distinct clusters, generic embeddings have many aspect labels scattered throughout the
whole embedding space. This leads to papers being neighbors but having semantically dissimilar
aspect labels, e.g., the dataset of MNIST and PennTreebank (top-left plot).

The visualizations of the embedding spaces also confirm the results from Table 8.4, as the aspects
are differently reflected in the generic embeddings. The generic embeddings plotted according
to their dataset aspect (top-left plot) have a better separation than the generic embeddings with
method labels (bottom-left plot). Even though the separation is not as distinct as in the aspect-
specific embeddings, the generic embeddings still produce separate regions for NLP datasets
(e.g., SQuAD, SNLI, or Penn Treebank) and computer vision datasets (e.g., MNIST, ScanNet,
or COCO). Also, datasets with related tasks are in close proximity (e.g., MPII Human Pose and
Human3.6M). The method aspect is less reflected in the generic embeddings. For instance, the
methods of k-NN or heatmap are scattered throughout the whole embedding space. We attribute
this to the fact that these methods are general techniques applied in various contexts.

8.2.4.2 Recommendation Analysis

We also qualitatively analyze randomly sampled seed papers and their most similar documents
in the context of research paper recommendations. Table 8.5 presents one of these samples with
its top-k = 3 recommendations. Generic recommendations are taken from SciNCL and task-,
method-, and dataset-specific ones from Siamese SciNCL. For other examples, we provide a
Web-based demo to browse the recommendations for all papers from the dataset2.

Gupta (2019) is the seed paper to which Papers with Code associates three task labels (data aug-
mentation, sentiment analysis, text generation), two method labels (convolution and generative
models (GAN)), and none dataset label. As the labels and the title suggest, Gupta (2019) uses
generative adversarial networks as a data augmentation method to generate textual training data
for the sentiment classification task. The four different recommendation sets illustrate the many
aspects in that papers can be similar.

The first generic recommendation (Zhu et al., 2017) uses as the seed also GANs as an augmen-
tation method and evaluates the related task of emotion classification. The second (Monti et al.,
2019) and third (Han et al., 2020) generic recommendations do not have any obvious semantic
connection to the seed paper but both use graph neural networks for fake news detection.

While the first task-specific recommendation (Amram et al., 2018) shares the task of sentiment
analysis with the seed, the second (Horne and Adali, 2017) and third (Farajtabar et al., 2017)
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Table 8.5: Example recommendations from SciNCL (generic) and Siamese SciNCL (aspect-
specific) for the seed “Data augmentation for low resource sentiment analysis using generative
adversarial networks” by Gupta (2019)

Generic Task Method Dataset

1 Data Augmentation in
Emotion Classification
Using Generative Ad-
versarial Networks (Zhu
et al., 2017)

Representations and
Architectures in Neural
Sentiment Analysis for
Morphologically Rich
Languages: A Case Study
from Modern Hebrew
(Amram et al., 2018)

Company classification
using machine learning
(Husmann et al., 2022)

From Image to Text in
Sentiment Analysis via
Regression and Deep
Learning (Onita et al.,
2019)

2 Fake News Detection on
Social Media using Ge-
ometric Deep Learning
(Monti et al., 2019)

This Just In: Fake News
Packs a Lot in Title, Uses
Simpler, Repetitive Con-
tent in Text Body, More
Similar to Satire than Real
News (Horne and Adali,
2017)

Fake News Mitigation via
Point Process Based Inter-
vention (Farajtabar et al.,
2017)

Homogeneity-Based
Transmissive Process to
Model True and False
News in Social Networks
(Kim et al., 2019)

3 Graph Neural Networks
with Continual Learning
for Fake News Detection
from Social Media (Han
et al., 2020)

Fake News Mitigation via
Point Process Based Inter-
vention (Farajtabar et al.,
2017)

Multi-agent Policy Opti-
mization with Approxima-
tively Synchronous Ad-
vantage Estimation (Wan
et al., 2020)

Leveraging the Crowd to
Detect and Reduce the
Spread of Fake News and
Misinformation (Kim et
al., 2018)

task-specific recommendations are about the fake news detection task without any direct semantic
similarity to the seed paper.

The method-specific recommendations (Husmann et al., 2022), (Farajtabar et al., 2017), and
(Wan et al., 2020) are at first sight unrelated to the seed since they focus on unrelated topics
such as company classification or fake news. Nonetheless, the seed and the first method-specific
recommendation (Husmann et al., 2022) use t-distributed Stochastic Neighbor Embedding (t-
SNE) for visualization. Despite of being different in central themes, the paper pairs have similar
methodologies.

The similarity between the seed and the first dataset-specific recommendation (Onita et al., 2019)
can be attributed to both being about sentiment analysis. The second (Kim et al., 2019) and third
(Kim et al., 2018) dataset-specific recommendations have little similarity with the seed paper.

In summary, we consider all recommendations at the first rank as generally relevant since they
share one or more aspects with the seed, whereas most of the recommendations at the second
and third rank are only partially related. Due to the subjectiveness of relevance, a recommender
system would need to relate the recommendations to its users’ individual information needs.
However, when new user data is unavailable, this is not feasible. This is a general problem of
purely content-based recommendations.

Our example illustrates how different aspects can approximate similar research papers in a
granular and more detailed perspective. The specialization from Siamese SciNCL also leads to
diverse recommendations between aspect-specific recommendations and generic ones. SciNCL’s
generic recommendations have a relatively narrow focus. The method-specific recommendations
even reveal the implicit shared use of the t-SNE visualization. Notably, many recommendations
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are about fake news detection, which we would consider irrelevant to the seed. The fake news
recommendations can be explained by the abstract of the seed paper in which the authors refer
to “real data points”. A similar wording can be also found in the abstracts of the fake news
recommendations.

8.3 Discussion

Our experimental results reveal the effect of specialized document representations. The perfor-
mance gains between the best generic and the best aspect-specific embeddings, i. e., generic
SciNCL and Siamese SciNCL, are substantial. We anticipated this outcome as the generic em-
beddings are not optimized for this task compared to the specialized ones. Still, our findings
do not mean generic embeddings lead to unrelated recommendations, but only that they are not
similar concerning task, aspects, or dataset.

Pairwise baseline. Siamese SciNCL also outperforms the Pairwise SciNCL baseline. Pair-
wise SciNCL with an unbounded n would potentially yield better results than our restricted
version. For instance, Reimers and Gurevych (2019) have showed that unrestricted Pairwise
Transformers achieve better performances than Siamese Transformers. However, due to the
quadratic complexity, we would have to perform 1.3 billion comparisons, which would take ap-
proximately 46 days on the hardware used in our experiments (GeForce RTX 2080 Ti with 11GB
memory). Thus, the potential performance gains would not justify the increase in computational
effort for most recommender system deployments.

Specialization performance. In terms of specialization, the Siamese Transformers (Siamese
Network with SciBERT, SPECTER, or SciNCL) outperform retrofitting and non-Siamese Trans-
former fine-tuning. This outcome can be explained for several reasons. The ER retrofitting
method from Glavaš and Vulić (2018) has been originally developed for words and optimized
for the properties of a word embedding space. We see retrofitting having a larger effect on
FastText compared to the Transformer models. The integration of citation information as done
in SPECTER and SciNCL generally improves the performance of their generic and fine-tuned
version compared to SciBERT. The poor performance of SciBERT is aligned with the results
of our previous experiments (Chapter 4 and 5), which show that document embeddings from
BERT-based models are suboptimal for the similarity search. Since we perform the similarity
search based on static embeddings, each document needs to be independently encoded. While
this is the case in the Siamese Transformers, the sequence pair fine-tuning uses a joint encoding
of document pairs. As the results from Chapter 3 suggest, the joint encoding is superior for
the pairwise document classification approach. However, our results show the opposite in the k
nearest neighbor search setting. The independent encoding, as in the Siamese model, produces
semantically similar document embeddings with higher precision and recall.

Given the overall results, we consider Siamese SciNCL as the best method to specialize the
embeddings of research papers. Nevertheless, we ask ourselves if the specialization effect depends
on individual aspects. The most positive specialization effect can be observed for the method
aspect, while the effect is less significant for dataset. We partially attribute the discrepancy in
the specialization effect to training data availability, e. g., more samples for method than dataset.
However, the effect is also due to the aspects being differently inherent in generic embeddings’
similarity.
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Bias in generic embeddings. The similarity of generic embeddings does not explicitly con-
tain aspect information, i. e., we cannot attribute the document similarity to a specific aspect in
which documents are similar. However, we can assume the aspects are implicitly part of the
similarity. Thus, the similarity of generic embeddings would be denoted as a weighted sum
∑a∈A wa ∗ sa, where A = {task,method,dataset, . . .an} is a set of aspects consisting of our three
and an arbitrary number of other aspects. If the similarity of generic embeddings would evenly
incorporate all aspects, all weights wa should be equal. Still, our experiments suggest the aspects
are not equally weighted. Table 8.4 reports an uneven intersection ratio among the recommenda-
tions. The method-specific recommendations have less overlap with the generic recommendation
than the dataset or task-specific recommendations. Given that task has the most samples in the
ground truth, we would have expected a different outcome, e. g., more specialization concerning
task. Therefore, wmethod < wtask < wdataset likely holds true. Accordingly, the results indicate
an implicit bias in the similarity of generic embeddings towards dataset and against method.
Our qualitative analysis of the embedding spaces and sample recommendations does not reject
this finding. We hypothesize the bias is more likely to be caused by the corpus’ characteristics
than by the embedding methods themselves. Title and abstract of papers prominently mention
tasks and datasets, whereas methodological details are of marginal importance, e. g., the t-SNE
visualization in our example from Table 8.5.

Implications for content-based recommender systems. Having this bias toward a single
aspect indicates the generic embeddings present only a single view of the content of a document.
Therefore, the conflation of meaning, which has been shown for word embeddings (Camacho-
Collados and Pilehvar, 2018; Pilehvar and Collier, 2016), also exists for document embeddings.
Consequently, a recommender system based on generic embeddings is limited in the information
needs that the system can address. Namely, those information needs that match with the single
aspect, which is the dataset aspect in our case. Such a narrow focus on one information need
hurts the diversity of the recommendations. In the literature (Ge et al., 2010; Nguyen et al.,
2014b), the lack of diversity has been identified as a major issue of today’s recommender systems.
By changing the approach of representing documents, from generic to specialized embeddings,
diverse information needs can be addressed even when user data is sparse. In the context of
recommendations, our results do not allow a decisive statement on the relevancy of the generic or
aspect-based recommendations since we primarily evaluate the similarity of research papers. We
use similarity only as an approximation of relevance for specific information needs, i. e., interest
in the task, method, or dataset of the presented research. To the best of our knowledge, a dataset
that would allow a relevance-based evaluation of the Papers with Code corpus is not publicly
available. Thus, further experiments involving user feedback are required to investigate the rele-
vancy of aspect-based recommendations. Nonetheless, the recommendations from specialized
embeddings can expose the implicit bias within the generic recommendations. Integrating the
aspect information can improve research paper recommender systems as users would decide
in which particular aspect they are interested. As a result, tailored content-based recommenda-
tions are feasible even without user feedback. The aspect-based recommendations increase the
transparency of a recommender system since the system can provide explicit explanations of
the aspects to which documents are related. Such explanations can also strengthen the trust in
the recommendations, as demonstrated by Kunkel et al. (2019). Furthermore, recommendation
diversity and coverage can be improved through selection from multiple aspects, as our results
showed. In a user interface, recommendations will not only be selected from a single aspect but
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rather across multiple aspects, e. g., the top recommendation for task, method, and dataset (the
items in the first row of Table 8.5; illustrated in Figure 9.1).

Scalability. Diversity and explainability are also covered by the pairwise multi-class classifi-
cation approach. However, the pairwise approach bears scalability constraints that would prevent
recommender systems to be deployed in practice. Pairwise document classification requires
large computational resources even for medium-sized corpora since aspect information needs
to be separately derived for all document pairs. To use the pairwise approach as a baseline,
we introduced the candidate filtering but it still needs to perform 11.3M Transformer forward
passes while achieving only a lower performance compared to Siamese SciNCL. Instead, our
approach derives the aspect information during the encoding phase, which results in a linear
time complexity (118,146 forward passes in our experiments). During the indexing of a new
document, the system would only need to create n specialized embeddings instead of a single
generic embedding. Thus, the complexity of this chapter’s approach is mainly bound to the
number of aspects and not to the size of the document corpus as in pairwise classification. As
a result, our approach can be used in practice and is not limited to academic experiments. Our
Web-based demo is one example of a prototypical recommender system based on specialized
document embeddings2.

Interpretability. Aside from scalability, the specialized embeddings have additional advan-
tages such as explainability and interpretability. Each individual aspect-specific vector d

(a j)
i could

also be combined through concatenation into a single document vector di = [d
(a1)
i ; . . . ;d(an)

i ] for
other downstream tasks. The aspect’s dimensions could then facilitate the interpretability of the
document vectors in a similar fashion as Liao et al. (2020a) already demonstrated with sparse
vectors. In the context of words, related approaches already exist. For example, Schwarzenberg
et al. (2019) project word vectors into a concept space in which the dimensions correspond to
predefined concepts.

Alternative approaches. Lastly, the question is whether comparable recommendations are
also possible with alternative approaches such as query-sensitive similarity (Tombros and Van
Rijsbergen, 2001). One could filter papers by a query, i. e., their respective aspect labels, and
then perform a nearest neighbor search on the filtered papers’ generic embeddings. However, the
filtering depends on hard label assignments, e. g., papers need to have an identical task, method, or
dataset to be considered. Papers without an exact match that are only similar in a particular aspect
would be excluded. In our example (Table 8.5), the papers about emotion classification would
have been excluded even though the task is very related to sentiment classification. Moreover, the
specialized embedding space allows dissimilarity search, e. g., considering papers with similarity
above a certain threshold. This allows retrieving papers similar in their task but different in their
method. The formulation of such queries could furthermore facilitate the discovery of analogies
between research papers (Chan et al., 2018).

8.4 Summary of the Chapter

This chapter investigated Research Task IV and proposed specialized document representations
for aspect-based similarity of research papers. Instead of considering each research paper as
a single entity for document similarity, we incorporated multiple aspects in our approach, i. e.,
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task, method, and dataset. Therefore, we moved from a single generic representation to three
specialized ones. We treated aspect-based similarity as a classical vector similarity problem in
aspect-specific embedding spaces.

This chapter contributed two major improvements to aspect-based document similarity: In con-
trast to segment-level similarity (Chan et al., 2018; Huang et al., 2020; Kobayashi et al., 2018),
documents were not divided into segments, potentially harming the coherence of the document.
Instead, we preserved the semantics of the whole document that is needed for a meaningful rep-
resentation. Additionally, our approach was less resource intensive and achieves higher precision
and recall compared to the pairwise document classification baseline (Chapter 7). The improved
scalability allowed the development of a recommender system, which we demonstrated with our
demo2. Having such a working prototype with recommendations for a large corpus based on
aspect-based similarity fulfills the goal formulated in Research Task IV.

In our experiments, we compared and analyzed four generic document embeddings, ten special-
ized document embeddings, and a pairwise classification baseline in the context of research paper
recommendations. To the best of our knowledge, all applied specialization methods were, so far,
used only to derive generic embeddings. Our evaluation is conducted on the newly constructed
Papers with Code corpus containing more than 150,000 research papers. The Papers with Code
dataset is unique for research on aspect-based document similarity as it contains curated annota-
tions regarding different aspects of research papers in the machine learning domain. Thus, the
dataset from this chapter complements the citation dataset from Chapter 7. In our experiments,
Siamese SciNCL outperformed all other methods with a 0.20 avg. MAP score.

Our comparison between recommendations using generic and specialized embeddings indicated
a tendency of generic recommendations to be more similar regarding dataset than method. Thus,
papers with a similar method were less likely to be recommended with these generic embeddings.
This outcome confirms the findings from Research Task I, which already identified that the lack
of aspect information implicitly impacts recommendations. The aspect-specific document em-
beddings mitigate potential risks arising from implicit biases by making them explicit. This can,
for example, be used for diverse recommendations with higher coverage, e. g., by recommending
documents for every aspect.

Most importantly, we have presented a practical approach that allows aspect-based document
similarity to be integrated into a recommender system since the approach scales to large document
corpora. The approach even can be combined with existing approximate nearest neighborhood
frameworks that have been shown to scale to trillions of documents, e.g., SCANN (Guo et al.,
2020) or FAISS (Johnson et al., 2021).
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Chapter 9

Conclusion and Future Work

This chapter concludes the thesis by summarizing the presented research in Section 9.1, providing
an overview of the research contributions in Section 9.2, contrasting aspect-free and aspect-based
similarity in Section 9.3, and highlighting areas for future research in Section 9.4.

9.1 Summary

This thesis introduced a new approach to literature recommendation systems through aspect-based
document similarity. Aspect-based document similarity addresses limitations of existing aspect-
free similarity measures, which fail to differentiate between the many aspects in which documents
can be similar. By incorporating aspect information into document similarity measures, this
thesis presented an approach that provides a more nuanced view of the document content. The
differentiation between aspects gives literature recommender systems more control over the
generated recommendations. This control can both tailor recommendations to specific aspects or
diversify them across different aspects.

Similarity is a subjective and context-sensitive measure. What counts as “similar” or “not similar”
can vary depending on the aspects a person considers when making the assessment. However, the
unspecified use of similarity has been criticized in the psychological and philosophical literature
(Chapter 2). In his famous critique, Goodman (1972) describes “similarity as a slippery and both
philosophically and scientifically useless notion” unless one can say in what aspect two things
are similar. As a consequence, the similarity should be measured with respect to a given aspect
that provides the context and specifies to what the similarity relates. NLP tasks such as sentiment
analysis are context-sensitive and address this by incorporating aspect information. For instance,
attributing sentiment to specific aspects has been shown to be beneficial for analyzing customer
feedback (Pontiki et al., 2016). However, to the best of our knowledge aspect-based document
similarity has been an underexplored research area. Thus, it remained an open question about
which impact the lack of aspect information has on document similarity.

This thesis evaluated document similarity measures in the context of literature recommendations
and showed the impact of the lack of aspect information. We compared two classical similarity
measures for Wikipedia article recommendations using qualitative and quantitative experiments
(Chapter 3). The two methods, MLT and CPA, rely on different sources of information to
determine whether documents are similar or not – text and graph information, respectively.
The evaluations revealed that although the overall user satisfaction was comparable between
the two information sources, the users perceived the recommendations from these sources as
different. Therefore, the choice of similarity measures affects the recommendations, i.e., they
implicitly address different aspects. MLT’s recommendation had a narrow topical focus, whereas
CPA was perceived as more diverse, as our user study showed. In other words, MLT and CPA
implicitly convey a different notion of similarity and address different information needs. While
the discrepancy between MLT and CPA can be attributed to the difference in the information
they rely on, it demonstrates that Goodman’s critique applies to MLT and CPA. Both methods
measure how similar two documents are but do not specify in what aspects they are similar.
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Subsequently, we conducted experiments with legal literature and state-of-the-art document rep-
resentations (Chapter 4). The experiments revealed the same pattern we already found with MLT
and CPA. Despite seemingly close recommendation scores, the overlap of the legal recommenda-
tion sets between the individual methods was very low. This suggests that the evaluated methods
also implement a different notion of similarity. We found that the overlap is especially low when
comparing methods based on different information sources, i.e., text or graph information. This
shows the lack of aspect information also affects state-of-the-art document representations and
legal literature recommendations.

The findings suggest the hybrid combination of text-based and graph-based methods since both
information sources implicitly address different aspects. Based on this finding, the thesis intro-
duced SciNCL, a representation learning approach for scientific documents (Chapter 5). SciNCL
combines text and graph information and achieves state-of-the-art results on the SciDocs bench-
mark (Cohan et al., 2020). It is a general representation learning approach for which we show
performance improvements on diverse tasks, ranging from topic classification to citation or user
activity prediction. Due to its generality, SciNCL does not incorporate explicit aspect information,
but it can be used as the foundation for both aspect-free and aspect-based document similarity.

Furthermore, the findings of the evaluation of existing methods motivate the development of
document similarity measures that account for Goodman’s critique and incorporate explicit aspect
information. The similarity of documents should be measured with respect to a specific aspect
that defines the perspective from which the document content is looked at when assessing the
similarity. In other words, solving the identified problem corresponds to getting from an aspect-
free to an aspect-based document similarity.

To develop an aspect-based document similarity, we followed the concepts of the feature similarity
model from Tversky (1977) and conceptual spaces from Gardenfors (2004). Specifically, we first
designed a pairwise multi-class document classification approach for measuring the similarity of
a document pair for a given aspect. In experiments with Wikipedia articles and aspect information
from Wikidata properties (Chapter 6), we demonstrated this approach’s validity and evaluated its
different implementations. Based on these findings, we extended this approach in the subsequent
experiments. We changed the application domain from Wikipedia articles to research papers
(Chapter 7), which can be seen as a more challenging literature domain for recommender systems.
Additionally, we extended the classification task from a single-label to a multi-label problem
such that a document pair can be similar not just in a single but in multiple aspects. Even with
these two modifications, which increased the task’s difficulty, pairwise document classification
achieves high accuracy for aspect-based document similarity.

The pairwise classification approach has a quadratic time complexity with respect to the corpus
size since it requires the classification of all possible document pairs in the document corpus.
To achieve a linear complexity, we proposed specialized document representations for research
papers (Chapter 8). Specialized document representations formulate aspect-based document
similarity as a classical vector similarity problem in aspect-specific embedding spaces. For
each aspect, one specialized embedding space is learned such that documents are located in
close proximity when they are similar in this particular aspect. The computationally expensive
encoding of aspect information is performed only once per document and aspect. After the
initial encoding, similar documents can be retrieved through a nearest neighbor search in the
aspect-specific embedding space. This makes the approach scalable to large document corpora.
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To obtain aspect-specific document representations, we combined SciNCL with the Siamese spe-
cialization method and found this combination as the best-performing method in our experiments
(Chapter 8). Further analysis of the resulting embedding spaces confirmed the findings con-
cerning aspect-free methods. Specifically, we found that aspect-free representations of research
papers had an implicit bias towards papers being similar in their dataset and against the similarity
with respect to the methods utilized in the papers. With the classical approach of aspect-free
similarity, this bias remains hidden despite affecting the recommendations. In contrast, aspect-
based similarity mitigates potential risks arising from implicit biases by making them explicit
and controllable.

The aspect-based similarity gives literature recommender systems more control over the gener-
ated recommendations. This can, for example, be used for more diverse and specifically tailored
recommendations. As the aspect describes different semantics of the document content, the
aspect information allows diversifying recommendations, e.g., by choosing the recommendations
from documents that are similar in different aspects to the seed document. Generating recommen-
dations from diverse aspects increases the recommendation coverage, as our experiments showed.
Likewise, recommendations can be tailored to specific aspects that are most relevant to the users
of the recommender system. These features are enabled by the specialized document representa-
tions, which efficiently incorporate aspect information making the aspect-based similarity scale
linearly with respect to the corpus size.

1

2 3

4

5

Figure 9.1: Example of aspect information integrated into a research paper recommendation
system. 1) Similar papers are listed in the “Recommendations” section. 2) Overall similar
papers are recommended using aspect-free similarity. 3) Aspect-specific recommendations are
provided for task, method, or dataset. Users can click on the icon to browse more papers
focused on a particular aspect. 4) Users can navigate to a detailed paper comparison. 5) More
recommendations are available upon request.

We showcase our approach by creating a prototypical recommender system for research papers
using aspect-based similarity.2 Figure 9.1 shows a screenshot of the prototype and how aspects
are integrated into a graphical user interface. The four presented recommendations are diverse
since they reflect the aspect-free similarity (2) and aspect-based similarity (3) concerning the
three aspects of task, method, or dataset. If users are interested in one particular aspect, they can
click on the aspect icon (3) to browse more focused recommendations. A detailed comparison
between the two papers is also available (4). The aspect-based document similarity developed in
this thesis is the foundation for such a recommender system.
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In summary, this thesis evaluated existing methods for content-based literature recommendations
and for the underlying document similarity measures, identified the lack of aspect information as a
major limitation of the existing methods, developed approaches to incorporate aspect information
into document similarity, and iteratively improved the resulting approach.

9.2 Contributions

This thesis made three main contributions:

1. The thesis showed that the lack of aspect information in document similarity measures is
not only a theoretical problem but has a notable impact on literature recommendations,
which is demonstrated with quantitative and qualitative experiments.

2. The thesis presented two approaches for incorporating aspect information into document
similarity measures that can both tailor literature recommendations to specific aspects or
diversify recommendations across different aspects.

3. The thesis introduced a novel approach for state-of-the-art scientific document representa-
tions that combines text and graph information and improves aspect-free and aspect-based
similarity measures and other downstream tasks.

The following section summarizes the individual contributions for each of the four research tasks,
as defined in Section 1.3. The work on these research tasks resulted in nine core publications
(Ostendorff, 2020; Ostendorff et al., 2021a; Ostendorff et al., 2022a; Ostendorff et al., 2021b;
Ostendorff et al., 2022b; Ostendorff et al., 2020b; Ostendorff et al., 2020c; Schwarzer et al., 2017;
Schwarzer et al., 2016b).

Furthermore, the thesis contributed to 14 additional publications partially related to the research
tasks (Calizzano et al., 2021; Calizzano et al., 2022; Dehio et al., 2022; Garcia et al., 2023;
Ostendorff et al., 2020a; Ostendorff et al., 2019; Ostendorff and Rehm, 2023; Raring et al., 2022;
Rehm et al., 2022; Rehm et al., 2021; Rehm et al., 2020b; Ruan et al., 2022; Schulz et al., 2020;
Schwarzer et al., 2016a). A detailed overview of these publications can be found in Section 1.5.

e Research Task I

Evaluate state-of-the-art document similarity measures and underlying document represen-
tations that use text or graph information.

Contribution: Our evaluation showed that the lack of aspect information in document
similarity measures is not only a theoretical problem but has a notable impact on literature
recommendations (Ostendorff et al., 2021a; Ostendorff et al., 2021b; Schwarzer et al.,
2017; Schwarzer et al., 2016b).

Research Task I was about the evaluation of the state-of-the-art in document similarity measures
and underlying document representations for content-based literature recommendations. The
analysis of the existing methods revealed the limitations, which are addressed in the subsequent
research tasks, and determined the most promising technical directions.
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As a first contribution to this research task, we reviewed the existing literature and laid the
theoretical foundation for the empirical experiments (Chapter 2). Subsequently, we compared
three document similarity measures in the context of Wikipedia articles (Chapter 3). Specifically,
we evaluated MLT (an implementation of TF-IDF), Co-Citations, and CPA. We conducted a
large-scale offline evaluation and a qualitative user study. With MLT, Co-Citations, and CPA, we
selected three methods using either text or graph information. In particular, the combination of
offline evaluation and user study provided insights into the evaluated methods. Most significantly,
we identified that the lack of aspect information is not only a theoretical problem but has a notable
impact on the recommendations. We found that these text-based and graph-based methods
yield different kinds of document similarity, each implicitly addressing different aspects and
information needs, and that this difference is also perceived by the users.

To verify this finding, we complemented our work on Research Task I with an evaluation of
a large number of state-of-the-art document representation methods in the context of the legal
literature (Chapter 4). Our offline evaluation compared 25 methods ranging from word vectors
over language models to graph embeddings and their hybrid combinations. We found that
graph-based and text-based methods yield comparable accuracy scores but produce different
recommendation sets with low overlap. These findings align with the ones from Chapter 3.
Moreover, graph-based and text-based methods were vulnerable to certain dataset characteristics
like text length or citation count. Combining text and graph in a hybrid method reduced the
weaknesses of a single information source and increased recommendation diversity. Overall, the
hybrid methods also achieved the best results for legal recommendations.

Both experiments have shown that different methods also implicitly address different aspects.
In other words, the methods implicitly convey a different notion of document similarity. These
findings highlight the need for aspect-based document similarity and the hybrid combination of
individual methods.

e Research Task II

Design one document representation method that improves upon the state-of-the-art while
using both text and graph information.

Contribution: We designed a novel approach for state-of-the-art scientific document
representations that combines text and graph information and improves aspect-free and
aspect-based similarity measures and other downstream tasks (Ostendorff et al., 2022b).

This thesis investigated the domains of Wikipedia, court decisions, and research papers. In all
three domains, the textual content of a document is complemented by links or citations that
provide additional semantic information. To overcome the limitations of individual methods that
either rely on text or graph information, we combined both sources of information.

At first, we combined text and graph information through concatenation or score summation
(Chapter 4). We either concatenated the document vectors of a text-based method with the vectors
of a graph-based method to obtain hybrid vectors, or we added up the scores of two individual
methods, i.e., we added up cosine similarities. Both approaches showed a positive effect on
the recommendation performance, but they are also affected by the weakness of the individual
methods. For example, score summation yielded only the best results when both information
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sources were available. However, document representations are also needed for many applications
where no or only little graph data in the form of citations is available.

To address these limitations, we proposed SciNCL as a text-based document encoder trained with
citation information (Chapter 5). The foundation of SciNCL is the contrastive fine-tuning of a
SciBERT language model that is built upon informative positive and negative samples derived
from citation embeddings. SciNCL achieved state-of-the-art results for scientific document rep-
resentations in the SciDocs benchmark (Cohan et al., 2020). The benchmark covers seven tasks,
including topic classification, citation prediction, user activity prediction, and recommendations.
In the subsequent experiments, we also showed how SciNCL could be used as the base model
for aspect-based document similarity.

e Research Task III

Design an aspect-based document similarity measure to address the limitations of existing
aspect-free similarity measures.

Contribution: We designed the pairwise multi-class document classification approach,
which addresses the limitation of aspect-free similarity by incorporating aspect information
into document similarity, and evaluated this approach for Wikipedia articles and scientific
literature (Ostendorff et al., 2020b; Ostendorff et al., 2020c).

Our findings from Research Task I emphasized the need to extend document similarity measures
with aspect information. Given the novelty of aspect-based document similarity and a limited
amount of related work (Section 2.1.1 and 2.5), we explored its general feasibility in Chapter 6.

Aspect-free similarity can be seen as a single-class classification problem for document pairs.
Given a pair of documents, a classifier predicts if the two documents are similar or not similar. In
line with this, we formalized aspect-based document similarity as a pairwise multi-class document
classification problem. The classifier predicts the aspect-based similarity for a given aspect and a
document pair. We evaluated this approach using Wikipedia articles as the application domain
and Wikidata properties as the ground truth for aspect information (Chapter 6). Wikipedia
and Wikidata provided sufficient data such that we were enabled to compare state-of-the-art
deep learning approaches without suffering from data scarcity. Moreover, Wikipedia properties
represented diverse aspect classes with varying classification difficulty. Our experiments showed
that vanilla Transformer models outperformed all other methods, which we attribute to the
pretraining with the next sentence prediction objective.

In a second experiment, we continued the same line of research but with two modifications
(Chapter 7). We investigated research papers as a literature domain and relied on the section titles
in that citations occur as a source for aspect information. Also, we increased the classification
task’s difficulty by modeling aspect-based similarity as a multi-label classification instead of a
single-label classification, as done in the Wikipedia experiment. Despite these modifications,
pairwise multi-class classification was able to achieve high accuracy for measuring the aspect-
based similarity of research papers.
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In summary, these two studies have shown the validity of the pairwise multi-class classification
approach for aspect-based document similarity. The validity is shown for two application domains,
namely Wikipedia articles and research papers, and for diverse aspect classes.

e Research Task IV

Implement aspect-based document similarity such that it scales to large document corpora.

Contribution: We implemented aspect-based document similarity using specialized doc-
ument representations that formulate aspect-based similarity as a classical vector similarity
problem in aspect-specific embedding spaces. This approach scales linearly with respect to
the corpus size and allows tailoring recommendations for specific aspects or diversifying
recommendations across aspects (Ostendorff et al., 2022a).

Recommender systems are applications typically deployed into a live system where users interact
with the recommendations. In particular, recommender systems should be capable of generating
recommendations for corpora with a large number of documents. The recommendations must
also reflect changes in the underlying corpus, e.g., when new documents are added. Thus, re-
commender systems should be scalable in terms of corpus size and corpus changes. The pairwise
document classification approach has a quadratic complexity since it requires O(n2) document
pair classification for a corpus of n documents. Such a quadratic complexity is computationally
expensive. Furthermore, the classification must also be repeated every time a new document gets
added to the corpus leading to additional computational costs.

To reduce the computational costs, we presented the specialized document representations as an
approach to aspect-based document similarity that scales efficiently to large document corpora
(Chapter 8). This approach treats aspect-based similarity as a vector similarity problem in aspect-
specific embedding spaces. The computationally expensive encoding of aspect information is
only performed once per document and aspect. Retrieving similar documents can then be done
through a nearest neighbor search in each aspect-specific embedding space. As a result, this
approach has linear time complexity, i.e., O(n) with respect to n documents in the corpus. To
showcase the functionality of this approach, we implemented a prototypical recommender system
based on the proposed method. Our prototype displays the top-k recommendations selected from
different aspects and allows users to browse recommendations for specific aspects (Figure 9.1).
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Other contributions. We created several datasets, pretrained models and open source imple-
mentations and made them publicly available. Table 9.1 summarizes these contributions.

Table 9.1: Our other contributions, including datasets and open source implementations.

Contribution Publication Link

Evaluation benchmark for Wikipedia
recommendation (“See also” links)

Schwarzer et al. (2016b) github.com/wikimedia/citolytics

CPA-based Wikipedia recommender system,
including backend and Android app integration

Schwarzer et al. (2017) github.com/malteos/apps-android-
wikipedia

Evaluation benchmark for legal document
similarity (Wikisource and Open Case Book)

Ostendorff et al. (2021a) github.com/malteos/legal-
document-similarity

Pretrained SciNCL language model Ostendorff et al. (2022b) hf.co/malteos/scincl

Citation section title dataset Ostendorff et al. (2020b) github.com/malteos/aspect-
document-similarity

Aspect-based similarity labels for research
papers (Papers With Code)

Ostendorff et al. (2022a) github.com/malteos/aspect-
document-embeddings

9.3 Lessons Learned

The research presented in this thesis is centered around aspect-based similarity and its aspect-free
counterpart. This section presents the lessons learned from our research by contrasting both
types of similarity, summarizing their strengths and weaknesses, and recommending under what
circumstances one of the similarities is superior over the other one.

An aspect determines the perspective of how we look at the content of a document (or an item in
general) when assessing similarity. More formally, aspect-based similarity is a function of two
items and an aspect. The aspect is assumed to be a part of a given set of aspects. Opposed to this,
the classical aspect-free approach to similarity would correspond to a function of only two items
without any given aspect. But our experiments showed that aspects are implicitly contained in the
aspect-free similarity measures. Therefore, we conclude that aspect-free similarity is a special
case of aspect-based similarity. The aspect-free similarity function is also parameterized with an
aspect, but this parameter is an unspecified single aspect or an arbitrarily large set of aspects.

Our findings have implications for using similarity measures in recommender systems and other
applications. The aspect-free similarity has a smaller implementation effort compared to aspect-
based similarity. With aspect-free similarity, the set of aspects can remain undefined and super-
vised training data is not required. Aspect-free similarity can be considered a one-fits-all approach.
Analog to user-based recommender systems, aspect-free similarity is the recommendation of the
most popular items, whereas aspect-based similarity is more comparable to collaborative filtering.
Such a one-fits-all approach yields good but not optimal recommendations while keeping the
effort at a minimum. Recommending the most popular items is often a strong baseline compared
to collaborative filtering approaches, as shown by Ji et al. (2020). Thus, the aspect-free similarity
is a suitable approach when resources are scarce and recommendations are not crucial for the
application. Wikipedia is such an example. Wikipedia’s audience is mostly casual users that
look up specific information instead of conducting literature surveys, as our user study showed.
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The majority of our participants were already satisfied with recommendations from aspect-free
similarity measures.

Implementing aspect-based similarity, on the other hand, requires more effort. The set of aspects
needs to be defined and aligned to the application. Concerning the implementation, this means
significant effort for creating supervised datasets when using the methods developed in this thesis.
The increased effort yields a much more specialized implementation of similarity compared to the
one-fits-all approach of aspect-free similarity. Hence, aspect-based similarity targets an expert
audience, e.g., researchers or legal professionals. An expert audience benefits from aspect-based
similarity since experts tend to have complex information needs and are less interested in just the
most popular items.

Ultimately, whether the effort for aspect-based similarity is justified depends on its importance for
the overall application. In law, there are high stakes for finding the most relevant information as a
case can be won or lost depending on whether or not supporting information can be found. These
high stakes justify a high implementation effort. Similarly, scientific literature recommendations
that address a complex information need can foster innovations and discoveries, as shown by
Chan et al. (2018). Generally speaking, any improvement to an application can make it more
competitive and attract new users. In particular, aspect-based similarity can be the edge that sets
an application apart from competitors. In a commercial setting, this could decide the success
of a business. Finally, even tiny improvements in the recommender systems of applications like
YouTube or Netflix can have significant effects due to the scale of these applications.

In conclusion, aspect-based similarity is an improvement over aspect-free similarity, but it requires
additional effort. If the effort is reasonable depends on the application in that the similarity
measure is used. However, it is vital that the application developers are aware of the role of
aspects in similarity measures and their opportunities to enhance applications.

9.4 Future Work

The research presented in this thesis yielded various ideas to improve document similarity mea-
sures and other NLP tasks. We briefly discuss these ideas in the following.

Joint graph and text representation learning. Representation learning underpins all sub-
sequent applications, whether it is document similarity or any other NLP task. Therefore, future
work needs to focus on improving document representation methods. With SciNCL, we have
shown the advantage of combing citation graphs with text information for scientific document
representation learning. For other domains, related approaches like LinkBERT (Yasunaga et al.,
2022) have shown link or citation prediction as a beneficial pretraining objective for Transformer
language models. Despite achieving state-of-the-art results, these approaches still treat text and
graph information as separate entities. The language and graph models are separately trained, and
then a joint model is constructed based on the two sub-models. The separate learning of text and
graph information is probably suboptimal compared to true joint learning. However, the exact
approach of integrating two different modalities into a joint learning framework remains chal-
lenging. A potential approach could be to treat citation markers as regular tokens in a language
modeling task that induces document-to-document semantics with text generation pretraining
objectives. In recent works, Tay et al. (2022b) and Bevilacqua et al. (2022) have shown that text
generation models can be used for information retrieval by generating document identifiers as
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answers to a given query. We envision a similar approach capable of generating citation markers
for a document similarity task.

Zero-shot pairwise document classification. The experiments on aspect-based document
similarity conducted in this thesis assumed a predefined set of aspects. Being constrained on a
set of aspects is sufficient when the potential information needs are limited. However, one can
imagine other use cases in that you do not have a predefined set of aspects but rather need to
determine the document similarity with respect to an arbitrary aspect. Large language models
could provide aspect-based document similarity for arbitrary aspects. Brown et al. (2020) and
Wang et al. (2021) have demonstrated the zero-shot or few-shot capabilities of large language
models for the entailment task, which is essentially a pairwise document classification task. This
approach could be adopted for aspect-based document similarity without requiring a predefined
set of aspects and reducing the need for the expensive collection of supervised datasets.

Explainable content-based recommendations. As described in Chapter 3, the user study
participants trusted the recommender system without understanding how the system generated
the recommendation. Recommender systems should provide explanations that help users get an
intuition of why a particular item is recommended to respect the user’s trust. Also, explanations
would help users to comprehend the connections between the seed item and the recommendations.
Explainable recommendations are a subject of active research (Kunkel et al., 2019; Zhang and
Chen, 2020). However, most research focuses on only user-based approaches. The content-based
approaches would benefit as well from explanations. One promising line of work is the task
of citation text generation (Luu et al., 2020; Xing et al., 2020). The aspect-based document
similarity could also provide such explanations. However, further research in the form of user
studies is needed in this direction.

Broader impact. The research presented in this thesis focussed on the literature recommenda-
tion use case. Given that similarity measures underpin many other use cases, we expect our work
to be as well relevant outside of literature recommender systems. The most obvious impact would
be on other types of recommendations. For instance, aspect-based similarity could be extended
to product recommendations, where the aspects could be concerned with colors or other product
attributes. More generally, aspect-based similarity allows tailoring recommendations to specific
information needs and, therefore, it addresses one of the major weaknesses of content-based
recommendations compared to user-based ones. User-based recommender systems dominate,
especially in commercial settings, despite having known issues. In particular, user-based systems
require the collection of large amounts of user information that might be unavailable (cold start
problem) or cause privacy issues. In other use cases, information about the historical user inter-
est may lead to irrelevant recommendations when the user’s information need is changing too
frequently. Given that aspect-based similarity enables tailored recommendations based on the
content alone, recommender systems can get less dependent on user information, i.e., it would
decrease the need for collecting user information but still allow tailored recommendations.

Another application for which our research is relevant is semantic storytelling, i.e., the semi-
automatic story generation based on existing pieces of content. In Rehm et al. (2022) and Raring
et al. (2022), we have already demonstrated that the multi-class pairwise classification approach
can be used to arrange text segments into new stories. Similarly, multi-document summarization
can benefit from aspect information. Aspect-based document similarity could be used to reduce
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Section 9.4. Future Work

redundancy and to compose richer summaries by identifying the fine-grained differences and
similarities of documents. Our experiments in Ruan et al. (2022) already showed that additional
information about the hierarchical document structure is beneficial for summarization. Overall,
we expect a broader impact on applications dealing with complex documents such as laws, patents,
and other industry use cases.
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Glossary

A
ACL — Annual Meeting of the Association for Computational Linguistics

The ACL conference is one of the primary high impact conferences for natural language
processing research (has a CORE-2021 rank of A*).

AILA — Shared task on Artificial Intelligence for Legal Assistance

Apache Lucene:
Apache Lucene is a free and open-source full-text search library written in Java.

API — Application Programming Interface
Computing interface for software-to-software communication; specifies the possible inter-
actions, their workflow, and the data exchanged.

ArXiv:
ArXiv is an online repository of scientific publications and preprints that are freely available
to the public.

Aspect:
The aspect defines the perspective from that a user looks at the document’s content when
assessing the document’s similarity.

AVG — Average

B
B — Billion

BERT — Bidirectional Encoder Representations from Transformers
BERT is a encoder-only Transformer language model introduced by Devlin et al. (2019).

C
CAP — Caselaw Access Project

CBOW — Continuous Bag-of-Words

CF — Collaborative Filtering
Collaborative filtering is a method of generating recommendations or predictions about a
user’s interests based on the interests of other users. It involves finding similar users based
on their past ratings or behavior, and using those users’ preferences to make recommenda-
tions to the target user.
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CNN — Convolutional Neural Network
A convolutional neural network is a type of artificial neural network specifically designed
to learn spatial hierarchies of features from input data with the help of convolutional filters.

CoCit — Co-Citation
A co-citation occurs when two or more documents are being cited together in a third docu-
ment. Co-citations are used as a measure of the relationship between different documents.

COLIEE — Competition on Legal Information Extraction and Entailment

COLING — International Conference on Computational Linguistics
COLING is one of the premier conferences for the natural language processing and com-
putational linguistics (has a CORE-2021 rank of A).

Content-based method:
A method is considered content-based if it primarily relies on information extracted from
the item it is applied to. In the case of documents, this information can include the textual
content, such as the title and main body text, as well as graph information like citations or
web links.

CORE — Computing Research and Education Association of Australasia
CORE is an association of university departments that provide assessments of major con-
ferences in the computing disciplines. The main categories are A* (flagship), A (excellent),
B good to very good, and C for other ranked conferences that meet minimum standards, see
http://portal.core.edu.au/conf-ranks/.

Corpus:
A corpus is a collection of texts in machine-readable form.

CPA — Co-Citation Proximity Analysis
CPA is a similarity measures introduced by Gipp and Beel (2009) that uses co-citation and
the position of citation markers to assess the similarity of documents.

CPI — Co-Citation Proximity Index
CPI is the central metric of CPA that quantifies the proximity of co-cited documents.

CPU — Central processing unit

CSV — Comma-separated values

CTR — Click-through-rate

CUP — Cambridge University Press
Cambridge University Press is a department of the University of Cambridge and is both an
academic and educational publisher.
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D
DBOW — Distributed Bag-of-Words

Doc2Vec (Paragraph Vectors):
A document embedding technique introduced by Le and Mikolov (2014).

DocEng — ACM Symposium on Document Engineering
The ACM Symposium on Document Engineering is an annual meeting of researchers
active in document engineering (has a CORE-2021 rank of B).

DOI — Digital Object Identifier
Persistent identifier for digital data maintained and resolved by a registrar; frequently
assigned to research publications.

E
Embedding:

An embedding is a way of representing discrete variables as low-dimensional, continuous
vectors in the context of machine learning.

EMNLP — The Conference on Empirical Methods in Natural Language Processing
EMNLP is a leading conference in the area of natural language processing and artificial
intelligence and organized by the Association for Computational Linguistics (has a CORE-
2021 rank of A).

ER — Explicit Retrofitting
A word vector retrofitting method introduced by Glavaš and Vulić (2018).

ES — Elasticsearch
Elasticsearch is a distributed search engine based on the Apache Lucene framework.

F
F1-Score:

Harmonic mean of precision and recall

G
GenSim:

GenSim is an open-source Python library used for topic modeling, word vectors, and other
NLP tasks (Rehurek and Sojka, 2010).

GPT — Generative Pretrained Transformer

GPU — Graphics processing unit
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I
ICADL — International Conference on Asia-Pacific Digital Libraries

ICADL is a digital library conference and held annually for connecting digital library,
computer science, and library and information science communities (has a CORE-2018
rank of A).

ICAIL — International Conference on Artificial Intelligence and Law
ICAIL is the primary international conference addressing research in Artificial Intelli-
gence and Law, and has been organized biennially since 1987 under the auspices of the
International Association for Artificial Intelligence and Law (has a CORE-2021 rank of C).

Information need:
An information need is the topic about which the user desires to know more.

IR — Information Retrieval
Information retrieval is the process of searching for and retrieving information from a
collection of documents or data. It involves designing and implementing systems that can
locate and extract relevant information from a large corpus based on a user’s query.

J
JCDL — ACM/IEEE Joint Conference on Digital Libraries

JCDL is an annual international conference focusing on digital libraries and associated
technical, practical, and social issues (has a CORE-2018 rank of A*).

JSON — JavaScript Object Notation
A a lightweight data interchange format based on the JavaScript programming language
that is easy for humans to read and write and easy for machines to parse and generate.

K
k — Kilo (Thousand)

kNN — k Nearest Neighbors

KONVENS — Konferenz zur Verarbeitung natürlicher Sprache
KONVENS is an annually held conference covering diverse topics from computer linguis-
tics and language technologies.

L
LDA — Latent Dirichlet Allocation

LDA is a statistical topic model introduced by Blei et al. (2003).

LM — Language Model
A language model is a type of artificial intelligence model that is trained on a large corpus
of text data and is used to predict or generate new sequences of text.
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LREC — International Conference on Language Resources and Evaluation
LREC is the major event on language resources and evaluation for language technologies
(has a CORE-2021 rank of C).

LSTM — Long Short-Term Memory
An LSTM is a type of RNN that is specifically designed to model long-term dependencies
in sequential data, introduced by Hochreiter and Schmidhuber (1997).

M
M — Million

MAG — Microsoft Academic Graph

MAP — Mean Average Precision
A performance measure representing the mean of the average precision scores over a set of
queries.

MeSH — Medical Subject Headings

MLM — Masked Language Modeling
MLM is a pretraining objective in which the model is trained to predict masked (hidden)
tokens in a given sequence.

MLP — Multilayer Perceptron
MLP is a type of artificial neural network that has at least two layers of nodes: an input
layer and an output layer, with one or more hidden layers in between.

MLT — MoreLikeThis
MLT is a function of the Apache Lucence search framework that allows the retrieval of
semantically similar documents, see https://lucene.apache.org/core/7_2_0/
queries/org/apache/lucene/queries/mlt/MoreLikeThis.html.

MRR — Mean Reciprocal Rank
A performance measure representing the average of the reciprocal ranks at which the
method retrieves the first relevant item for each query.

N
nDCG — Normalized Discounted Cumulative Gain

A performance measure computed as the sum the true scores ranked in the order induced
by the predicted scores, after applying a logarithmic discount.

NLP — Natural Language Processing
Natural language processing is a field of artificial intelligence, computer science, and lin-
guistics that involves developing algorithms and models that can understand, interpret, and
generate human language, including speech and text. Applications of NLP include lan-
guage translation, text and speech recognition, question answering, and text summarization,
among others.
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NSP — Next Sentence Prediction
NSP is a pretraining objective used by BERT and other language models.

O
Offline evaluation:

Offline evaluation is an evaluation of a system based on historical data.

Online evaluation:
Online evaluation is an evaluation of a system based on measurement of real users’ experi-
ences of the system in a natural usage environment.

OOV — Out-of-vocabulary

P
P — Precision

A performance measure that is defined as the fraction of relevant items among the retrieved
items.

PDF — Portable Document Format

PV-DBOW — Distributed Bag-of-Words of Paragraph Vector

PV-DM — Distributed Memory Model of Paragraph Vectors

PyTorch:
PyTorch is an open-source machine learning library for Python.

Q
QURATOR — Conference on Digital Curation Technologies

The Qurator conference provides a forum on the use of digital curation technologies in
application domains for, e.g., media, journalism, logistics, cultural heritage, health care
and life sciences, energy, industry.

R
R — Recall

A performance measure that is defined as the fraction of relevant items that were retrieved.

RAM — Random access memory

RDF — Resource Description Framework
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Recommender System:
A recommender system is an application that recommends the most suitable item to a
particular user given a collection of items.

RecSys — ACM Conference on Recommender Systems
The ACM Conference on Recommender Systems is the major international conference for
new research results, systems and techniques in the broad field of recommender systems
(has a CORE-2021 rank of A).

RNN — Recurrent Neural Network
A recurrent neural network is a type of artificial neural network that is designed to process
sequential data by maintaining a state that depends on the past elements of the sequence.

S
S2ORC — Semantic Scholar Open Research Corpus

SciDocs — Scientific Document Representation Benchmark

SPARQL:
SPARQL (SPARQL Protocol and RDF Query Language) is a query language for accessing
and manipulating data stored in the Resource Description Framework (RDF) format. RDF
is a standardized data model for representing information as a set of interconnected triples,
where each triple consists of a subject, predicate, and object.

T
T — Trillion

TF-IDF — Term Frequency - Inverse Document Frequency
TF-IDF evaluates how relevant or important a term is to a document in a collection of
documents (Salton, 1971).

Transformer:
A Transformer is a type of deep learning model architecture introduced by (Vaswani et al.,
2017).

U
UI — User Interface

A user interface is the point of interaction between a human user and a computer or a
software application.

UMAP — Uniform Manifold Approximation and Projection

URL — Uniform Resource Locator
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USE — Universal Sentence Encoder

User-based method:
A user-based method is one that primarily relies on user information, such as user profiles
or interactions. Collaborative filtering is an example of a user-based method.

V
VSM — Vector Space Model

A representation of documents as numeric vectors by using raw or weighted term counts
as the vector elements.

W
Wikidata:

Wikidata is a free and open knowledge graph that is used to support Wikipedia and other
Wikimedia projects.

Wikipedia:
Wikipedia is a free online encyclopedia that is collaboratively written and consists of
articles on a wide range of topics in many languages.

Word2Vec:
A word embedding technique introduced by Mikolov et al. (2013b).

X
XML — Extensible Markup Language

A standard for encoding documents in a format that is readable for machines and humans.
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