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Abstract
Incorporating additional knowledge into pre-trained language models (PLMs) has proven to be
highly effective in improving their performance in specialized fields. Graph structures, in particular,
allow models to capture domain-specific relationships between documents that would otherwise be
missed. In the process industry, where unstructured text logs document critical operational insights,
leveraging these relationships becomes essential for improving document representation. This
thesis proposes a graph-aware domain adaptation method aimed at enhancing the representations
of PLMs for the process industry. Building upon SciNCL, a neighborhood contrastive learning
approach, the study constructs a process industry graph comprising functional locations and
maintenance text logs to sample document pairs for contrastive learning. The proposed method
outperformed baseline models in a semantic search task, with the best-performing model achieving
an nDCG@10 score 9 points higher than the best baseline. These findings encourage further
exploration of graph-based domain adaptation techniques, particularly in domains characterized
by sparse document connections and limited data availability.
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Chapter 1

Introduction

In recent years, we have observed great advances in Natural Language Processing (NLP). At
the center of this development are so-called Pre-trained Language Models (PLMs) like BERT [1],
RoBERTa [2], or BART [3]. Those models were trained on large datasets using vast computing
and time resources. Transfer learning allows us to leverage the knowledge of these models by
fine-tuning them for new tasks or on new datasets [4]. This approach can produce well-performing
models with smaller datasets and less training time. Thus, fine-tuning PLMs has become the
leading practice in NLP [5].

Domain adaptation is a special case of transfer learning and focuses on fine-tuning PLMs on
domain-specific data. PLMs are usually pre-trained on a large general-domain language corpus
like Wikidata [6]. During the training, they learn universal language representations, which
are useful for various downstream tasks. However, when applied to specialized domains, they
do not perform as well as models pre-trained on domain data [7]. So why do we not train a
domain-specific model from scratch every time?

Large efforts have been put into training domain-specific models from scratch such as BioBERT [8]
for biology, SciBERT [9] for the scientific field, and ClinicalBERT [10] for the medical domain,
leading to new state-of-the-art on their domain-specific downstream tasks. However, in-domain
pre-training is not feasible for every domain, considering the large costs and amounts of data
necessary [11]. Especially, since even small specializations can be considered separate domains [12].
Domain adaptation aims at improving the knowledge of a general language PLM by fine-tuning it
on domain-specific data by applying methods suitable for the available amount of domain data [5].
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1.1 Problem Description

In manufacturing industries such as the process industry, valuable employee knowledge is often
described textually [13], PLMs allow to leverage this knowledge for decision support [14] or predic-
tive maintenance [15]. However, no domain-specific PLM exists for the process industry, making
the adaptation of general-purpose PLMs crucial for enhancing downstream task performance.
Considering the lack of labeled data in real-world scenarios, unsupervised and self-supervised
domain adaptation methods achieve the widest applicability. When the amount of unlabeled text
data is scarce, self-supervised methods propose to utilize additional data sources, e.g., underlying
graph structures, to support the language model training.

Knowledge graphs capture how documents are connected by representing documents as nodes
and their relationships as edges [16]. Introducing this information into the training process of a
language model enables it to learn inter-document relatedness. Since the pre-training of language
models is usually done on token- or sentence-level objectives, learning document-level semantics
can improve the model’s language representation [17]. Ostendorff et al. [18] improved the vector
representation of documents in the scientific domain by combining text data with a citation graph
for a contrastive learning method to learn citation similarity. The authors found that even training
a general-domain language model this way outperformed baselines pre-trained in-domain.

1.2 Research Objective

This work aims to improve the vector representation of the domain-specific language of the
process industry, focusing on German language models. To do so, I will use SciNCL, a contrastive
learning approach proposed by Ostendorff et al. [18] to learn the similarity between documents of
the process industry. In this project, I will evaluate whether transferring this methodology to a
different domain — in this case, the process industry, and specifically in the context of German
language data — can enhance performance in domain-specific downstream applications, especially
document-level ones like text classification or semantic search.

In chemical plants, a functional location tree describes the machinery the plant consists of. Every
machine, and even its parts can be considered an individual functional location. Using a plant
management software, employees report their daily operations, e.g. maintenance activities. These
unstructured text reports ("text logs") contain information about functional locations involved in
these activities. This project will use the assumption that if two logs mention the same functional
locations, they are similar. Since text logs have a direct connection to a graph structure, i.e. the
machinery graph, they can be used for the graph-based contrastive learning approach proposed by
Ostendorff et al.
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Motivated by the successful application of Ostendorff et al.’s approach in the scientific domain, the
following research question was formulated:

How can we transfer and adapt a graph-based contrastive learning approach for the domain
adaptation of PLMs for the process industry?

To answer this research question, the following research tasks were defined:

Task 1: Develop a methodology for transferring and adapting the approach of Ostendorff et
al. [18], i.e., graph-based contrastive learning for improving scientific representations, to the
process industry

Task 2: Implement the proposed methodology for the process industry

Task 3: Evaluate the methodology on a benchmark of the process industry

1.3 Thesis Outline

In Chapter 1, I highlight the need for domain adaptation and the challenge of applying it to
narrow domains like the process industry. Based on this problem setting the research objective
was defined.

In Chapter 2, I describe background knowledge and related work for this thesis. Relevant research
areas are Pre-trained Language Models with a focus on German models and self-supervised domain
adaptation techniques. Next, I define the process industry as the application domain, discussing
its language characteristics and relevant NLP use cases. Finally, I explore domain adaptation
approaches applicable to the process industry, highlighting the potential of incorporating additional
knowledge, such as graph structures, as a promising research direction.

In Chapter 3, I propose a graph-aware domain adaptation methodology for the process industry
that uses SciNCL as its core. I present the heterogeneous process industry graph, and the sampling
scheme to create positive and negative samples for contrastive learning. Lastly, I summarize the
key differences between applying SciNCL to the scientific domain and the process industry.

In Chapter 4, I describe the implementation of the proposed methodology. I give an overview of
the training data and parameters for the graph embedding and language models.

In Chapter 5, I evaluate the proposed methodology on a domain benchmark of the process industry.
The benchmark covers a wide range of NLP tasks like text classification, semantic search, and
token classification. I conduct an ablation study by analyzing the influence of different datasets,
fine-tuning an already domain-adapted PLM, and further enriching the training data. I discuss the
results and provide an outlook for future work.

Finally, in Chapter 6, I conclude the thesis with a summary.
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Chapter 2

Background and Related Work

In this chapter, I provide an overview of the research field of this master’s thesis. This includes
definitions of the relevant terminology used throughout the work. The project is located at
the intersection of two areas within NLP: PLMs, especially German models, and the domain
adaptation of PLMs focusing on self-supervised methods.

In Section 2.1, I briefly introduce PLMs and provide an overview of the German foundation models
available. Next, in Section 2.2, I describe self-supervised domain adaptation methods and their
application in adapting German language models to specific domains. In Section 2.3, I characterize
the application domain in this work, the process industry, by giving a definition, introducing the
language characteristics, discussing NLP use cases, and how PLMs are applied to them. Lastly, in
Section 2.4, I discuss domain adaptation approaches suited to the process industry, emphasizing
the use of additional knowledge, such as underlying graph structures of the text, as a promising
research direction.

2.1 Pre-trained Language Models

PLMs have significantly advanced NLP by offering general-purpose models that can be fine-
tuned for a wide range of tasks. PLMs are deep neural networks that learn universal language
representations from large volumes of text data using self-supervised training methods. Central to
their success is the transformer architecture [19], which allows efficient training and contextual
text understanding. Transformer-based PLMs can be divided into three categories: Encoder-only
models [1], decoder-only models [20], and encoder-decoder models [3]. While encoder-only models
were developed for Natural Language Understanding (NLU) tasks like text classification, decoder-
only models are typically used for Natural Language Generation (NLG) like text generation. In this
work, I focus on encoder-only models as the targeted downstream tasks do not contain any NLG
tasks. I begin by exploring influential English encoder-only PLMs, which have not only advanced
the field of NLP but also laid the groundwork for the German foundation models in use today.
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The release of BERT [1] marks the start of the development of several powerful encoder-only PLMs.
The key innovation of BERT is to apply the bidirectional training of the transformer architecture to
language modeling. This is done by introducing a new pre-training task called Masked Language
Modeling (MLM), where the model needs to predict the masked words in a sentence given the left
and the right context. Since the relationship between two sentences is not directly captured by the
MLM objective, the authors introduce a second task called Next Sentence Prediction (NSP) where
the model needs to distinguish whether two input sentences are continuous segments from the
training corpus. BERT was the first fine-tuning-based representation model that achieved state-of-
the-art performance on a large range of sentence-level and token-level tasks, outperforming many
task-specific architectures.

Motivated by the success of BERT, researchers developed similar language models based on
it. RoBERTa [2] enhances the training process of BERT by optimizing the training parameters,
increasing the training data, and dropping the NSP pre-training objective. It also slightly adopts
the MLM objective, by introducing dynamic masking: tokens are masked differently at each epoch,
whereas BERT does it once and for all.

ELECTRA [21] introduces a more sample-efficient pre-training task called Replaced Token Detec-
tion (RTD), where instead of masking input tokens, some are replaced with plausible alternatives
generated by a small generator network. Then, a discriminative model is trained to identify which
tokens in the corrupted sequence have been replaced, allowing for gradient updates across all
input tokens rather than just a masked subset, as in MLM.

DeBERTa [22] improves the pre-training efficiency and performance of BERT and RoBERTa models
by using two novel techniques: disentangled attention and an enhanced mask decoder. The
disentangled attention mechanism represents each input word using two vectors that encode its
content and position, respectively, and the attention weights among words are computed using
disentangled matrices on their contents and relative positions, respectively. The enhanced mask
decoder incorporates absolute positions in the decoding layer to predict the masked tokens in
model pre-training.

Although the models were initially trained for the English language, research efforts have focused
on applying them to other languages, including German. In the following section, I will examine
German encoder-only models in more detail, with an overview provided in Table 2.1.

In 2019, the first German BERT models were published by deepset (deepset-BERT1) and the
MDZ Digital Library team (DBMDZ) at the Bavarian State Library (dbmdz-BERT2) outperforming
mBERT [1], a multilingual BERT variant, on various German NLP tasks.

In 2020, deepset and DBMDZ published together two new German models GBERT and GELECTRA,
based on the BERT and ELECTRA models [23]. Compared to the previous two German models

1https://deepset.ai/german-bert
2https://github.com/dbmdz/berts#german-bert
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which were trained on around 15 GB, the new models were trained on 163 GB of data and were
published in a base and a large version. GBERT is trained by replacing the MLM objective by
Whole Word Masking (WWM) which masks all subword tokens corresponding to a word at once,
instead of just randomly masking a single subword, making the prediction of subword tokens
of a word, that had been split into multiple subword tokens, more challenging. The GBERT and
GELECTRA models were found to outperform the two previous German BERT models on all of
the three evaluated NLP tasks.

In the same year, Scheible et al. [24] published GottBERT, a German RoBERTa model trained on 143
GB of data. GottBERT outperforms deepset-BERT and dbmdz-BERT on three of five downstream
tasks.

In 2022, German WECHSEL-RoBERTa was published by Minixhofer et al. [25]. Instead of training
a German model from scratch, they transferred the English RoBERTa [2] to the German language
by effectively initializing subword embeddings for cross-lingual transfer. The model was eval-
uated together with GBERT on two downstream tasks, where they found that their model was
outperforming GBERT in both cases.

In 2023, Dada et al. published GeBERTa [26], a German model based on DeBERTa-v2, together with
a comprehensive benchmark of eight downstream datasets. They evaluated GeBERTa together
with previous German models such as GBERT, GELECTRA, and GottBert. They found GeBERTa
outperforming those models on all downstream tasks.

Recently, a German language understanding evaluation benchmark known as SuperGLEBer [27]
was published, comprising 29 tasks across various categories, including document classification,
sequence tagging, sentence similarity, and question answering. The authors evaluate four previ-
ously introduced models: deepset-BERT, GBERT-base, GBERT-large, and GottBERT. The findings
revealed that while GBERT-large generally achieved the highest performance, it was occasionally
matched or surpassed by smaller models, with GBERT-base emerging as the best-performing
base-size model overall.

Alongside the development of pure German language models, there has also been a rise in
multilingual models that incorporate German data among other languages. A prominent example
is mBERT, developed by the original BERT authors, along with other significant models like
XLM-R [28] and MBART [29]. However, exploring multilingual models is outside the scope of this
thesis and is reserved for future work.

6



Model Year Architecture Data Source Data Size

deepset-BERT 2019 BERT German Wikipedia, OpenLegal-
Data [30] and News

12 GB

dbmdz-BERT 2019 BERT German Wikipedia, EU Book-
shop corpus, Open Subtitles,
CommonCrawl, ParaCrawl and
News Crawl

16 GB

GottBERT [24] 2020 RoBERTa German OSCAR corpus [31] 145 GB
GBERT* [23] 2020 BERT German OSCAR corpus [31],

German Wikipedia, OPUS [32],
and OpenLegalData [30]

163 GB

GELECTRA* [23] 2020 ELECTRA Same as GBERT 163 GB
German
WECHSEL-
RoBERTa [25]

2022 RoBERTa German OSCAR corpus [31] 4 GB

GeBERTa* [26] 2023 DeBERTa-v2 Formal (Wikipedia, News), infor-
mal, legal (OpenLegalData [30]),
medical, and literature data

167 GB

Table 2.1: Overview of German language models. Models marked with an asterisk (*) also have a
large version.

Summary The introduced PLMs achieve state-of-the-art performance on various NLP tasks.
While these models were initially published for English, substantial efforts have been made to
leverage these advancements for German NLP by training pure German models. Nonetheless, the
language barrier is just one factor affecting the applicability of PLMs. Another important issue is a
possible domain shift between the task domain and the pre-training domain which can lead to a
performance drop of the PLM when applied to the downstream tasks of the task domain [5].

2.2 Domain Adaptation

Different approaches have emerged to fine-tune general-purpose PLMs for specific domains,
categorized by the amount of labeled data required [5]. Supervised and semi-supervised methods
rely on fully or partially labeled datasets, while unsupervised and self-supervised approaches
require no labels, making them more broadly applicable where labeled data is scarce. In the
following section, I introduce self-supervised domain adaptation methods.
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Continual Pre-training (CP) The most common approach for domain adaptation of PLMs is to
continue the pre-training on an unlabeled domain corpus [4]. This second phase of pre-training
allows the model to learn about the characteristics of the domain language, resulting in better
domain-specific text representations. By carefully choosing the right self-supervised pre-training
task, different learning goals can be emphasized. Self-supervised Learning (SSL) can be classified
into generative, contrastive, and adversarial approaches [33].

Generative SSL allows the model to learn by decoding the encoded input. An example is the
MLM [1] task where a language model predicts the masked tokens based on the unmasked tokens.
Another example is TSDAE [34] which encodes corrupted sentences into fixed-sized vectors and
requires the decoder to reconstruct the original sentences from these sentence embeddings.

Contrastive SSL allows the model to learn by making comparisons. It is commonly used to further
improve the model by introducing sentence-level or document-level semantics. The language
model is trained to distinguish between pairs of positive and negative texts [35]. NSP [1] requires
the model to identify if the given sentence pair includes consecutive sentences or not. SimCSE [36]
applies different dropout masks to the same sentence to create positive pairs and uses other
sentences of the same batch as negatives.

Adversarial SSL allows the model to learn by identifying whether the tokens in the input sentence
are replaced, shuffled, or randomly substituted. An example is the RTD task of ELECTRA [21].

Hybrid SSL combines more than one type of SSL. For example, the BERT model uses generative
(MLM) and contrastive (NSP) SSL to learn word-level as well as sentence-level semantics.

Vocabulary Adaptation (VA) The vocabulary of general-purpose PLMs may not capture the
diverse terminology of a specific domain. Because of this, researchers have created domain-
specific vocabularies when training a PLM on domain data from scratch [9, 37], added additional
domain-specific words to the existing vocabulary before continuing the pre-training on a domain
corpus [38, 39], or updated the vocabulary during fine-tuning on downstream data [40].

Knowlegde-enrichment Another line of research aims to improve the domain knowledge of
PLMs by adding more context through additional data sources. K-BERT [41] adds triplets from a
domain knowledge graph to the training data, providing more information about entities within
the text. SciNCL [18] uses citation information extracted from a citation graph to identify similar
and dissimilar papers for contrastive learning, improving document-level representations.

After introducing several domain adaptation approaches, I will now discuss studies that adapted
German PLMs to specialized domains. Table 2.2 shows an overview of German domain-specific
language models, including the domain, the training approach, and the training data.
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Domain Year Model Training Data source Data size

Clinical 2022 BioGottBERT [42] CP GottBERT A biomedical
corpus

0.8 GB

Clinical 2022 BioELECTRA [42] PT ELECTRA A biomedical
corpus

0.8 GB

Clinical 2024 GBERT-Clinical*
[43]

CP GBERT Clinical docu-
ments

25M docs

Clinical 2024 GeBERTa-Clinical*
[43]

CP GeBERTa Clinical docu-
ments

25M docs

Medical 2024 GBERT-BioM-
Translation* [43]

CP GBERT Translated med-
ical texts from
PubMed

45M docs

Medical 2023 medBERT.de [37] PT BERT + VA Medical texts
from a hospital
and scientific
texts

10 GB

JobsAds 2022 jobGBERT [39] CP of GBERT German job ad-
vertisements

0.23 GB

JobsAds 2022 jobBERTde [39] CP + VA
dmbdz-BERT

German job ad-
vertisements

0.23 GB

Financial 2024 Financial GBERT
[44]

CP GBERT FinCorpus-
DE10k [45]

0.9 GB

Parlamentary
debates

2022 ParlBERT [46] CP deepset-
BERT

DeuParl corpus
[47]

2.55 GB

Table 2.2: Overview of German domain-specific language models. Abbreviations for training
methods: pre-training (PT), continual pre-training (CP), and vocabulary adaptation (VA). Models
marked with an asterisk (*) also have a large version.

I find that most attempts to train German domain-specific models were made for the clinical
domain. Lentzen et al. [42] experimented with adapting GottBERT [24] to the biomedical and
clinical domain by applying continual pre-training on a small biomedical corpus (BioGottBERT).
They trained an ELECTRA model [21] from scratch (BioELECTRA) on the same data, but found it
was underperforming because the amount of pre-training data was insufficient. They compared
these domain models with general-purpose models like GBERT or GELECTRA [23] on biomedical
Named Entity Recognition (NER) and document classification tasks, identifying GBERT as the
best-performing model for document classification. Idrissi-Yaghir et al. [43] also applied continual
pre-training to train several German medical language models using GBERT and GeBERTa as
base models. They evaluated them on various downstream tasks, including NER, multi-label
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classification, and extractive question answering. They found that continuously pre-trained models
match or even exceed the performance of clinical models trained from scratch.

Gnehm et al. [39] applied continual pre-training on German job advertisements and could improve
over the general-domain language models in all evaluated tasks, namely text classification, token-
level sequence labeling, and NER.

Kozaeva et al. [44] trained several models for the financial domain using different data configura-
tions and evaluated them on a text classification and an NER task. While continual pre-training of
GBERT outperformed the vanilla GBERT in some cases, this finding was not consistent over all
configurations.

Klamm et al. [46] continually pre-trained deepset-BERT on German parliamentary debates (Parl-
BERT). They evaluated both models on a topic classification task. While there was no substantial
improvement over the base model, ParlBERT yielded higher results on low-frequency topics.

Summary While domain adaptation of PLMs is an active research field, it was shown that
continual pre-training with the MLM objective is the dominant method when domain-adapting
German language models. However, the success depends on the amount of domain data available,
i.e. the more distant the domain, the more data is required. Since data is often scarce, sample-
efficient methods or methods leveraging additional data sources are a promising research direction.

2.3 Process Industry

In this section, I examine NLP applications in the process industry, focusing on the use of PLMs
for industrial plant maintenance. I define the process industry, identify the types of text data it
generates, review current NLP research, and explore key use cases, especially those leveraging
PLMs for improving maintenance processes.

The process industry refers to companies that process raw materials to manufacture finished or
semi-finished products through physical, mechanical, or chemical processes 3. The production
involves a continuous flow of materials. Examples of process industries include food, beverages,
chemicals, and pharmaceuticals.

An industrial plant produces vast amounts of data, this can be numerical data like sensor data from
machines, but also text data like maintenance reports. Maintenance reports are usually free-form
text entries recorded by maintenance operators. These log entries contain vast amounts of tacit
knowledge [14]. However, until recently this data source was underutilized [48]. The reason
is that these reports are characterized by domain-specific technical terms, abbreviations [49] as
well as incomplete sentences, typographical errors, and non-standard notations [50] which create

3https://www.ipa.fraunhofer.de/en/industry-solutions/process-industry.html
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challenges for applying classical NLP methods developed for "standard" language (e.g. newspaper
texts).

Brundage et al. [51] proposed the field of Technical Language Processing (TLP) which aims to
transfer classical NLP methods to the technical industry setting. Addressing the challenges of
technical texts, several TLP pre-processing pipelines were developed [13, 49]. A recent literature
review [52] showed that transformer-based models like BERT have not been widely applied
to industrial maintenance yet. However, given their advantage of being less dependent on
classical pre-processing pipelines, I find several works that explore their application to industrial
downstream tasks.

As one of the earliest studies, Usuga-Cadavid et al. [53] used CamemBERT [54], a French BERT
version, to predict the criticality and duration of a maintenance issue from the description provided.
They compared the model with a smaller range of classical and feature-based approaches and
found that CamemBERT outperformed them. In a following study [15], they extended their
evaluation to another French BERT model, FlauBERT [55], and compared the two models with a
broader range of classic machine learning approaches. Similar to their first study, the transformer-
based models achieved the best results with minimum text pre-processing and hyperparameter
tuning. In a similar study, Naqvi et al. [48] fine-tuned CamemBERT to predict the problem category
of maintenance logs, outperforming traditional NLP approaches.

In a more recent study, Naqvi et al. [14] explored how PLMs like BERT [1] can be adapted to
enable semantic search in industrial text. They compared three self-supervised domain-adaptation
techniques to fine-tune BERT for the target domain: SimCSE [36], TSDAE [34] and contrastive
tension [56]. They found that TSDAE can efficiently identify intricate patterns in the industrial text
regardless of associated complexities, outperforming the other fine-tuning techniques.

Figure 2.1 depicts an example of a BERT model fine-tuned to a text classification task, predicting
whether the description of a machine problem will stop production or not (severity prediction).
BERT tokenizes the input text, adds a special classification token "[CLS]", and processes it through
transformer layers to capture contextualized information. The final hidden state of the [CLS] token
represents the entire input and is passed to a linear layer for classification. A softmax function
produces probabilities for each class, leading to the final prediction.
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Figure 2.1: BERT for text classification [15].

The presented studies focus on two NLP use cases, predictive maintenance and semantic search.
Predictive maintenance aims at predicting machine failures to reduce machine downtime while
semantic search allows employees to quickly retrieve critical information from vast amounts of text
data. Another important NLP use case is knowledge extraction [57] which focuses on identifying
relevant information from unstructured text. By extracting asset names and maintenance reasons
from maintenance logs, previously unstructured information can be captured in more easily
readable formats, such as knowledge graphs [58].

Compared to the vast number of documents available in domains like science, publicly accessible
resources in manufacturing are limited [52]. Companies often withhold internal data to protect
privacy or maintain a competitive edge, leading to research being conducted on non-disclosed
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datasets [53]. The process industry, as a subdomain of manufacturing, is affected by the same
constraints.

Most of the works did not adapt the general-purpose model to the target domain before fine-tuning
it to the target tasks [15, 48, 53]. This is likely because their focus was on comparing BERT with
classical machine learning methods, rather than on improving the performance of BERT itself.
While Naqvi et al. [14] explore different domain adaptation techniques, the chosen methods do
not consider any other resources besides the given text, only learning sentence-level semantics.
However, for narrow domains like the process industry, leveraging additional information like
graph structures to integrate further domain knowledge into the model training is a promising
research direction.

Summary The process industry offers several NLP use cases like predictive maintenance [15],
knowledge extraction [57], and semantic search [14]. To fully leverage PLMs in this technical
domain, this work aims at improving the domain representation of German models through
domain adaptation. In the next section, I will explore knowledge-enriched domain adaptation
techniques well-suited to the process industry.

2.4 Knowledge-enriched Domain Adaptation

Since general-purpose PLMs lack domain-specific knowledge, several approaches have been
developed to incorporate additional information from external knowledge bases into PLMs to
improve the domain language representation [59]. Widespread sources of knowledge are graphs,
e.g., an academic graph gives information on which papers cite each other or were written by the
same authors, indicators for document similarity.

Knowledge Graphs (KGs) encapsulate rich structural information, and knowledge embedding
techniques enable the transformation of this information into continuous embeddings for entities
and relations [60].

K-BERT [41] injects triples extracted from a knowledge graph into sentences as domain knowledge.
To prevent a change of the original sentence meaning due to too much incorporated knowledge
(known as knowledge noise), K-BERT introduces soft positioning and visible matrix which limits
the impact of knowledge.

ERNIE [61] improves text representation by linking entity embeddings from a knowledge graph
with the corresponding entity mentioned in the text. KnowBERT [62] follows a similar approach
by integrating an entity linker to retrieve relevant entity embeddings and training jointly the entity
linker and self-supervised language modeling objective in an end-to-end fashion.

13



KEPLER [60] integrates factual knowledge into the language presentation by introducing a
Knowledge Embedding (KE) objective. By combining the KE objective with the classical MLM
objective the goal is to align the factual knowledge and language representation into the same
semantic space.

The previously introduced works incorporate knowledge by injecting it directly into the training
data in the form of entity embeddings or text. Another research direction leverages the underlying
graph structure of documents as a similarity signal to learn document-level semantics, also known
as graph-aware language model fine-tuning [63]. For example, papers citing each other are
assumed to be semantically similar.

SPECTER [17] applies a contrastive learning approach to learn task-independent representations
of scientific documents. To do so, they use the information about the citations between papers to
generate citation-informed triplets for training. A positive paper is cited by the query paper, while
a negative paper is either not cited by the query paper (easy negative) or cited by a positive paper
(hard negative). The authors fine-tune SciBERT [9] with a triplet loss.

LinkBERT [64] uses document hyperlinks for PLM training. The authors propose a document
relation prediction objective that aims to classify the relation of two node text pairs as contiguous,
random, and linked. The linked pairs are sampled from a document graph. They experimented
with hyperlinks of Wikipedia articles (general domain) and citation links of academic articles
(biomedical domain).

SciNCL [18] improves on the work from SPECTER. Instead of sampling triplets directly from the
citation links, they train a graph embedding model on a citation graph, allowing them to sample
positives and negatives on a continuous scale. Positive papers are sampled close to a given query
paper in the citation embedding space, while negatives are sampled more distant from the query
paper. By introducing a sample-induced margin between positives and negatives, the authors are
able to sample hard-to-learn negatives. Like SPECTER they fine-tune SciBERT. They achieved
state-of-the-art results on the SciDocs benchmark [17]. They found that even a small amount
of triplets leads to an improvement on the benchmark tasks which is interesting for a narrow
domain like the process industry. They also found that the fine-tuned model outperforms the
model pre-trained in-domain, emphasizing the suitability of their approach for domain adaptation.

TwHIN-BERT [65] introduces a contrastive social loss to train BERT on Twitter data. After con-
structing a Heterogeneous Information Network [66] from the engagement logs of users and
Tweets (TwHIN), they train a graph embedding model to capture co-engagement and map Tweets
and users into a vector space. Similar to Ostendorff et al., they mine positive node pairs based
on graph embeddings, i.e. a positive tweet is close to the query tweet in the embedding space.
However, they do not apply a scheme for sampling hard-to-learn negatives, but just randomly
sample negatives.
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MICoL [67] applies metadata-induced contrastive learning using a Heterogeneous Information
Network. A positive sample is a document that is reachable from the query document within a
given meta-path [68] or meta-graph [69]. Negatives are randomly sampled from the whole corpus.
Using a discrete path makes their work similar to SPECTER but they do not consider hard-to-learn
negatives. Table 2.3 gives an overview of the introduced techniques that use external data for
domain adaptation.

Approach Graph / Domain Training Objective

K-BERT [41] CN-DBpedia KG, HowNet KG, MedicalKG MLM+NSP
ERNIE [61] Wikidata KG MLM+NSP+dEA
KnowBERT [62] Wikipedia KB, Wordnet KG MLM+NSP+EL
KEPLER [60] Wikidata5M KG, Wordnet KG MLM+KE
SPECTER [17] Citation Graph CL
LinkBERT [64] Wikipedia Graph, Citation Graph MLM+DRP
SciNCL [18] Citation Graph CL
TWHIN-BERT [65] Twitter Graph MLM+CL
MICoL [67] Academic Graph CL

Table 2.3: Overview of knowledge-enriched fine-tuning methods. Abbreviations used: Contrastive
Learning (CL), Denoising Entity Auto-Encoder (dEA), Document Relation Prediction (DRP), Entity
Linker (EL), Knowledge Embeddings (KE), Knowledge Graph (KG), Knowledge Base (KB), Masked
Language Modeling (MLM), and Next Sentence Prediction (NSP).

Summary After reviewing various knowledge-enriched and graph-aware fine-tuning approaches,
SciNCL [18] emerges as the most suitable for adapting a pre-trained language model to the process
industry. Unlike methods that rely on discrete document links [17, 64, 67], SciNCL leverages a
graph embedding space for sampling similar and dissimilar documents. Moreover, compared to
approaches like TwHIN-BERT [65], which randomly samples negatives, SciNCL’s sophisticated
sampling strategy includes hard-to-learn negatives which are known to improve contrastive
learning [70, 71].

15



Chapter 3

Methodology

In this chapter, I propose a methodology for self-supervised domain adaptation of language models
for the process industry, by leveraging underlying graph structures of text data. It builds upon
SciNCL, a contrastive learning approach introduced by Ostendorff et al. [18] for the scientific
domain, which has been reworked and tailored to the process industry. Figure 3.1 shows the four
components of the proposed methodology which will be described in the following sections.

Figure 3.1: Graph-aware Domain Adaptation.

In Section 3.1, I define the heterogeneous process industry graph used in this work. In Section 3.2,
I motivate the training of a graph embedding model to capture the domain-specific relationships.
Next, in Section 3.3, I outline how the triplets are sampled from the graph embedding space. In
Section 3.4, I describe the contrastive learning objective used for fine-tuning the language model on
the triplets. Finally in Section 3.5, I summarize the differences between the scientific and process
industry domains and the proposed changes to the methodology of Ostendorff et al.
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3.1 Process Industry Graph

An industrial plant consists of multiple functional locations (i.e. processing units, machines, and
other parts). Thus, the entire plant can be described in the form of a functional location tree. When
workers report about their daily operations at the plant, they usually mention functional locations
involved in these activities. Besides functional locations, these "text logs" can also refer to older
reports that are related to the current one. For example, if an employee reports a solution to an
earlier reported problem.

Based on these relationships within the process industry data, I define three edge types. First, a
is_part_of relation between functional locations (funclocs). Second, a reports_about relation between
a text log and a funcloc. Lastly, a follows relation between text logs. All of these edges are directed,
having a source and a target node. I expect that combining all three relation types will lead
to a well-connected graph, effectively capturing the domain-specific relationships within the
process industry data. A graph consisting of multiple node and edge types is referred to as a
heterogeneous graph in graph theory. In comparison, Ostendorff et al. [18] use a unipartite graph,
i.e. only consisting of one node type (paper) and one relation type (citation). Figure 3.2 shows an
exemplary graph containing the defined node and relationship types.

Figure 3.2: A heterogeneous process industry graph with directed edges. Two node types: Text
log (t) and funcloc (f) nodes. Three edge types: follows (green), reports_about (black) and is_part_of
(blue).

3.2 Graph Embeddings

To capture the domain-specific relationships of the process industry graph, I train a graph em-
bedding model. During training, the model learns to position nodes connected by an edge closer
together in the embedding space. Typically, the initial values for node embeddings are generated
randomly. However, to enhance the learning process, I initialize the node embeddings with text
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embeddings. To do so, I use a text encoder model to generate text embeddings from the texts
connected to the graph nodes.

This approach is similar to the strategy employed by Asada et al. [72], where the authors use text
embeddings to support learning a graph embedding model in areas where the graph’s structural
information is insufficient. They use PubMedBERT [73], a BERT model pre-trained on biomedical
text data, to encode textual information of a heterogeneous pharmaceutical knowledge graph into
embeddings.

In the absence of a domain-specific model for the process industry, I will use a general German
PLM to encode the text. Although this model may not produce domain-specific embeddings as
effectively as Asada et al.’s approach, it will capture the semantics of the text logs and functional
location (funcloc) descriptions, providing valuable insights for the graph training process. For
instance, initializing funcloc nodes with their descriptions will naturally position similar funcloc
types (e.g., pumps) closer together in the embedding space. During training, text logs reporting
about different pumps are more likely to be placed in a similar location within the embedding
space since the funclocs of the same type were placed close together right from the start. Thus, text
logs that do not share the same funclocs but are from a semantically similar context can still end
up with similar node embeddings. I expect that combining the domain-specific relationships with
semantic similarity will lead to high-quality text log embeddings that can be used for sampling
similar and dissimilar text documents.

Upon learning dense representations of nodes in the process industry graph, I utilize the text log
representations to sample context-similar text logs.

3.3 Triplet Sampling

In contrastive learning, the effectiveness of the model relies heavily on the quality of triplet sam-
pling. A triplet consists of a query document dQ, a positive (similar) document d+, and a negative
(dissimilar) document d−. Ostendorff et al. [18] use the graph embedding neighborhood around
a query document vector dQ to sample similar (positive) and dissimilar (negative) documents
by selecting the k nearest neighbors. Graph embeddings provide a continuous and undirected
similarity signal that allows us to find semantically similar nodes, even without direct edges
between those nodes in the graph. The continuous scale makes it possible to define hard-to-learn
positives as well as hard-to-learn negatives.

In a heterogeneous graph setup, sampling from graph embeddings simplifies identifying similar
and dissimilar nodes. The generated node embeddings inherently capture the diverse contexts
provided by various relation types, thereby eliminating the necessity for complex sampling schemes
that directly build positive samples from graph edges [67], which might work in unipartite
setups [17] but becomes impractical in heterogeneous ones.
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Figure 3.3 visualizes a graph embedding space, where potential ’query, positive, negative’ triplets
(dQ,d+,d−) are represented by ( , , ).

Figure 3.3: SciNCL: Controlled nearest neighbor sampling over graph embeddings for contrastive
learning. Starting with a query document in the graph embedding space, hard-to-learn positives

are embeddings from a close context (green band), yet distant enough to prevent gradient
collapse. Hard-to-learn negatives are close to positives within a sample-induced margin (red
band), while easy negatives are very distant from the query document. [18]

Positive Samples d+ should be semantically similar to the query document dQ, but not too
similar to prevent gradient collapse. Moreover, positives should be sampled from a comparable
distance to the query embedding dQ [74]. To account for this, Ostendorff et al. sample positive
(similar) documents by first defining the distance to the query embedding dQ with k+ and then
selecting the c+ nearest neighbors (k+ − c+, k+) visualized by the green band in Figure 3.3.

Negative Samples d− should be semantically dissimilar from the query document dQ, i.e., sam-
pled distant to the query embedding dQ. The sampling of hard-to-learn negatives, i.e., negatives
that are close to potential positives, has been found to improve contrastive learning [70, 71]. How-
ever, the collision of negative and positive samples can make the learning signal noisy [75]. To
avoid collisions, Ostendorff et al. introduce a sample-induced margin using the k parameter. This
margin allows to sample hard negatives (red band in Figure 3.3) that do not collide with the sam-
pled positives (green band). To produce a diverse similarity signal for contrastive learning, they
recommend sampling a mix of hard and easy negatives. Easy negatives are document embeddings
that are even more distant from the query embedding than hard negatives (outside of the red
band).
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Sampling Strategies Ostendorff et al. [18] propose three strategies for sampling triplets. Sampling
close documents from the graph embeddings space (KNN), using random sampling, or by using
both strategies (filtered random). For each strategy, c′ denotes the number of samples.

K-Nearest Neighbors (KNN) Given a graph embedding model (e.g., PyTorch BigGraph [76])
denoted as fgem, document node embeddings D, and a search index (e.g., FAISS [77]), a k-nearest
neighbors search KNN(fgem(dQ),D) is performed. From the range of neighbors around the
query document dQ, c′ samples are selected using the interval (k − c′, k], where the neighbors
N = {n1, n2, n3, . . .} include ni as the i-th nearest neighbor in the graph embedding space. For
example, if c′ = 3 and k = 10, the selected samples would be the three neighbors: n8, n9, and n10.

Random Sample c′ documents from the corpus without replacement.

Filtered Random Similar to random sampling but excluding the documents retrieved by KNN,
i.e., all neighbors within the largest k are omitted.

Like Ostendorff et al., I use KNN sampling for positives and hard negatives and filtered random
sampling for easy negatives.

3.4 Contrastive Learning Objective

Given the textual content of a document d (text log), the objective is to create a dense vector repre-
sentation d that effectively encodes the document’s information and is applicable for downstream
tasks. A Transformer language model (e.g., GBERT [23]) flm encodes documents d into vector
representations flm(d) = d.

While Ostendorff et al. use a combination of title and abstract to represent a paper, I use only the
text log document as input to the language model. The final layer’s hidden state of the [CLS] token
is then used to represent the document. Following the approach from Ostendorff et al., I continue
training the model using a self-supervised triplet margin loss [78]:

L = max
{︁⃦⃦

dQ − d+
⃦⃦
2
−

⃦⃦
dQ − d−⃦⃦

2
+ ξ, 0

}︁
(3.1)

Here, ξ represents the margin which ensures that d+ is at least ξ closer to dQ than d−, and ∥∆d∥2
is the L2 norm, used as a distance function.

Using a contrastive learning objective, similar documents will be placed close in the embedding
space of the language model while dissimilar documents will be further away. Since the training is
done on domain data, it will capture domain-specific document-level semantics.
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3.5 Graph-aware Domain Adaptation

The goal of this work is to improve the domain language representation of a language model
by utilizing additional data, i.e., underlying graph structures of text data. Ostendorff et al. [18]
enhance scientific document representations by incorporating inter-document information through
citations. My research question (see Section 1.2) investigates how this graph-aware contrastive
learning approach can be adapted to the process industry domain. Given the distinct nature of the
scientific and process industry domains, successfully bridging these differences will expand the
methodology’s applicability across various fields, establishing it as a domain adaptation technique.

The previous sections proposed adjustments to the methodology to solve challenges of the process
industry domain. The key contribution revolves around creating a heterogeneous graph for the
process industry and supporting the training of graph embeddings through text embeddings.
Table 3.1 gives an overview of the key distinctions of the data used in the work from Ostendorff
et al. and this work. There are distinctions in the length and quality of the documents, in the
document connectivity, and in the dataset size.

Ostendorff et al. This work

Domain Scientific Process Industry
Document type Papers (title + abstract) Text logs
Document length (in words) 150-250 8-21
Doc-to-Doc connectivity High Low
Data quality High Low
Dataset size (in docs) >52M 23-166K
Graph type Unipartite Heterogeneous
Graph size (in edges) >462M 22-152K

Table 3.1: Scientific vs process industry domain.

Document Type Ostendorff et al. use scientific publications, represented by the title and abstract
as a document. The text documents of interest for the process industry are reports about daily
operations at an industrial plant (aka "text logs").

Document Length An abstract consists of 150-250 words while the median word count of a text
log in the available datasets lies between 8 and 21. While abstracts will always keep a certain
length to fulfill their roles as a summary of a scientific paper, there is no such restraint for text logs.
This results in text logs below 8 words which are challenging for any language learning objective.
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Doc-to-Doc Connectivity Scientific publications typically include a large number of references
to acknowledge prior research, provide evidence for claims, and situate the work within the
broader scientific context. In contrast, linking text logs into a chain of story-related entries is not a
commonly-used functionality.

Data Quality Published papers are carefully reviewed, so they rarely contain typos or grammati-
cal errors. On the other hand, text logs are handwritten notes and often include errors, missing
words, inconsistent formatting, and other irregularities.

Dataset Size There are millions of papers available, but only a limited number of records from
the process industry.

Graph type Ostendorff et al. used a unipartite graph consisting only of paper nodes and their
citations. I employ a heterogeneous graph, consisting of text logs and funclocs, and three edge
types.

The proposed methodology expands the applicability of SciNCL to domains with less data, shorter
texts, and heterogeneous graph structures.
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Chapter 4

Implementation

In this chapter, I describe the implementation of the methodology outlined in the previous chapter.
I provide an overview of the training data and the training parameters for the graph embedding
models and the language models.

In Sections 4.1 and 4.2, I present an overview of the four datasets utilized in this study and outline
the various pre-processing techniques applied. In Section 4.3, I describe the constructed process
industry graphs. In Section 4.4, I explain the training process for the graph embedding models.
In Section 4.5, I present the sampled triplets. Lastly, in Section 4.6, I describe the language model
chosen for the later experiments and its training parameters.

Ostendorff et al. [18] made their code publicly available1. This allowed me to modify the code base
to meet the specific requirements of my project. SciNCL was implemented using Huggingface
Transformers [79], and the KNN strategy was implemented with FAISS [77]. My project code can
be found in the submitted ZIP file.

4.1 Data

In this section, I introduce the datasets used in this work by first providing a high-level overview,
followed by examples of the text data. Finally, I present the features of the datasets that were
utilized for constructing the process industry graphs.

The experiments were performed on four German customer datasets representing different sub-
domains of the process industry (chemistry and pharma). The customers, from here on called
"tenants", are anonymized by replacing their names with a letter (A, B, C, and D). Each dataset
consists of two files: one containing unstructured reports (text logs) documenting daily operations
within an industrial plant, and the other describing the plant’s functional location tree. Table 4.1
shows an overview of the datasets. Tenant D has the lowest number of text logs and the smallest

1https://github.com/malteos/scincl
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functional location tree, while tenant B shows the lowest median word count, i.e. half of the records
consist of eight or fewer words.

Tenant A B C D

Domain Chemistry Chemistry Chemistry Pharma
Funclocs 36 824 35 113 62 290 489

Text logs 82 013 112 447 166 866 23 448

- Median word count 21 8 15 18

Table 4.1: Overview of process industry datasets. The term "funclocs" refers to all unique entries of
the functional location tree of the given tenant.

To get a better idea of how similar the four datasets are, I calculated the overlap of their respective
vocabulary by considering the top 10K most frequent words excluding stopwords (see Figure 4.1).
Figure 4.1 shows a slight overlap between tenants A, B, and C, whereas tenant D appears more
distinct from the others. This aligns with the distinct domains of the tenants, as tenant D operates
in the pharmaceutical industry while the others are part of the chemical sector (see Table 4.1).
These findings highlight the need for careful integration of tenant D’s data when combining all
four datasets to avoid disrupting the language model’s learning process.

Figure 4.1: Vocabulary overlap (%) between tenants. Vocabularies for each dataset were created by
considering the top 10K most frequent words (excluding stopwords).

After giving a more high-level introduction to the different datasets, Table 4.2 shows some
anonymized examples of the actual data translated to English. The samples were selected, so
that they show the heterogeneity of the data. While some logs cover general information like
employee attendance, most focus on maintenance-related activities like routine maintenance tasks,
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problem identification and resolution, or shift instructions. The different content types are not
strictly separated and are often mixed within the data records. The writing style is characterized
by short sentences and funcloc codes are often used without any additional description of the
machinery behind it. These text characteristics align with the ones described in the maintenance
literature [50].

Type Text

General Person A and B are on vacation. Person C is sick
Daily Operation Cleaning carried out, A13 is now pH neutral and empty. The

following pipes were flushed, to B345, to K45, and to B455.
Problem/Solution Due to a shortage in substance A, we reduced the feed into K10 to

500kg/h. The feed was also adjusted for K30.
Instruction If reactor B is empty, the B12 must be removed and cleaned.

Table 4.2: Text log examples. The examples were translated from German to English and
anonymized.

In the following, I introduce the relevant attributes of the datasets. The text log datasets contain
the following features:

• Guid: The unique identifier of a text log

• ParentItemGuid: Refers to the id of the text log that occurred earlier but is connected to the
event of the current text log

• text: The report about daily maintenance activities

• FunclocGuid: The functional locations that are referred to within the report

The features FunclocGuid and ParentItemGuid are important for the graph-building step which is
described in detail in Section 4.3.

The funcloc datasets contain the following features:

• Guid: The unique identifier of a funcloc

• ParentFunctionalLocationGuid: Refers to the id of a funcloc it is part of

• FuncLoc: A short description of the funcloc
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4.2 Data Pre-processing

The pre-processing of the data involved three steps: data enrichment, data cleaning, and data
filtering.

Data Enrichment The process industry data was enriched in two ways. First, by extracting
funclocs codes mentioned within the text (funcloc retrieval). This method may identify other
funclocs besides the already attributed ones. By increasing the number of attributed funclocs, a
more interconnected graph can be built. Second, the expansion of the context of a funcloc code
within the text by adding the funcloc description, e.g. instead of "A1" it is "Filter A1" (context
expansion). This improves the semantic meaning of a text log, while also increasing its length.
The functionality for both approaches was provided by the collaborating company. Unfortunately,
it was not available for tenant D. Table 4.3 shows a higher number of text logs with attributed
funclocs and a higher median word count after data enrichment.

Tenant A B C D

Text logs 82 013 112 447 166 866 23 448
- with funclocs (before) 77 016 90 202 77 686 21 689
- with funclocs (after) 79 801 96 465 110 046 -
- median word count (before) 21 8 15 18
- median word count (after) 23 10 17 -

Table 4.3: Data enrichment. The number of attributed funclocs before and after funcloc extraction
and linking. Median word count before and after context expansion using funcloc descriptions.

Data Cleaning Unlike earlier NLP models, transformer-based models like BERT require minimal
pre-processing. Removing stop words and punctuation can reduce performance, as BERT uses
these elements for contextual understanding. However, checking the text for any formatting issues
or unwanted characters remains important. In my case, this affects newline "\n" and carriage
return characters "\r" which I replaced with a period, and tabs "\t" which I replaced with white
space. Furthermore, repeated occurrences of white spaces and punctuation were removed.

Data Quality Filtering Ostendorff et al. base their experiments on the Semantic Scholar Open
Research Corpus (S2ORC) published by Lo et al. [80]. In the creation process of S2ORC, Lo et al.
removed papers with fewer than 100 characters of abstract and body text since they provide little
value for text-based analyses. In my work, I exclude log entries with no text, as they do not satisfy
the essential criteria for language model training, and no attributed funclocs, which are necessary
for constructing the process industry graph. Lo et al. mention a trade-off: papers lacking text
may be useful as cite-able nodes in S2ORC but are in general of lower quality. Finally, the authors
decided to remove those papers to improve corpus quality. Including other post-processing, the
final corpus consists of 81.1M papers. In my case, I only have a small number of records available
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(23K-166K, see Table 4.4), removing every short record (<100 chars) would filter out a big part of
my records. Thus, I favor the contribution of low-text documents to the graph connectivity, over
disregarding them.

Tenant A B C D

Text logs 82 013 112 447 166 866 23 448
- no text 1 7 53 200
- no funcloc 4996 22 245 89 180 1759
- no parent item 76 940 110 571 154 997 23 100
- < 100 chars of text 50 749 40 467 83 547 13 791
Funclocs 36 824 35 113 62 290 489
- no text 83 123 2839 1

Table 4.4: Data quality filters. Filters displayed in italic were not applied.

4.3 Graph

After completing the data pre-processing steps, the process industry graphs were constructed as
outlined in Section 3.1. My implementation for creating the graphs can be found in da_data.py.

Table 4.5 presents a statistical analysis of the process industry graphs before the data enrichment,
providing information on the distribution of the various node and edge types. It shows that
the number of direct links between text logs is small (see follows edge type). This highlights the
importance of indirectly connecting text logs via shared function locations. Since every text log of
the graph is associated with at least one funcloc, we observe a high number of reports_about edges.
The functional location trees are quite big for tenants A, B, and C containing between 35K and
62K funclocs. Since every funcloc is part of another funcloc, we observe a is_part_of edge number
similar to the number of funclocs nodes, only excluding the root funclocs. The is_part_of relation
connects more distant text logs over multiple functional locations. Thus, it plays an important role
in increasing the connectivity within the graph. All in all, the process industry graphs for tenants
A, B, and C contain over 100K nodes and edges, while the one from tenant D is much smaller with
around 20K nodes and edges.

Table 4.6 presents a statistical analysis of the process industry graphs after the data enrichment. It
shows a higher number of text log nodes, as text logs that previously had no attributed funclocs
could now be included in the graph. This increase is especially high for tenant C, gaining 30K new
text log nodes. Also, the number of edges increased for all three tenants, multiplying the original
number by a factor of 1.35 for tenant A, by 1.55 for tenant B, and by 1.98 for tenant C.
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Tenant A B C D

Nodes 113 833 125 315 139 974 21 983
- textlog 77 016 90 202 77 686 21 494
- funcloc 36 817 35 113 62 288 489
Edges 119 104 137 685 152 478 22 148
- follows 1053 95 950 98
- reports_about 81 242 102 480 89 298 21 563
- is_part_of 36 809 35 110 62 230 487

Table 4.5: Analysis of process industry graphs before data enrichment

Tenant A B C

Nodes 116 611 131 578 172 166
- textlog 79 794 96 465 109 876
- funcloc 36 817 35 113 62 290
Edges 161 106 213 359 303 351
- follows 1074 104 1197
- reports_about 123 223 178 145 239 924
- is_part_of 36 809 35 110 62 230

Table 4.6: Analysis of process industry graphs after data enrichment

4.4 Graph Embedding Model

To evaluate the effect of the data enrichment, I train graph embedding models for both scenarios,
before and after enrichment. Given the seven process industry graphs presented in the previous
section, this sums up to seven graph embedding models. The code for training the models can be
found in da_graph.py.

Similar to Ostendorff et al. [18], I use PyTorch-BigGraph (PGB) [76] for training the graph embed-
ding models. PGB supports the training on graphs with multiple node and edge types such as the
heterogeneous process industry graph introduced in this work. PGB processes an input graph by
taking a list of edges, each defined by a source and target node, and an edge type. It generates an
embedding for each node, positioning connected nodes close together in the vector space while
pushing apart unconnected ones. As a result, entities with similar neighbor distributions will be
located near each other.

PGB was developed for big social network graphs like Twitter, which made it well-suited to work
with the large citation graph of S2ORC. For graphs with less than 100K nodes, the developers
recommend careful fine-tuning. Looking at the process industry graphs, this is only the case for
tenant D (see Table 4.5). PGB allows not only training on heterogeneous graphs but is also scalable
to an increasing number of text logs in the future, which makes it a good choice for this work.
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Model Parameters Table 4.7 gives an overview of relevant parameters of PGB. I chose the same
configuration as Ostendorff et al.

Parameter Type Default SciNCL Description

operator str none none The transformation to apply to the embedding
of one of the sides of the edge (typically the
right-hand one) before comparing it with the
other one.

dimension int 768 The dimension of the real space the embed-
ding live in.

max_norm float None 1 If set, rescale the embeddings if their norm
exceeds this value.

global_emb bool True False If enabled, add to each embedding a vector
that is common to all the entities of a certain
type. This vector is learned during training.

comparator str cos dot How the embeddings of the two sides of an
edge (after having already undergone some
processing) are compared to each other to pro-
duce a score.

loss_fn str ranking ranking How the scores of positive edges and their
corresponding negatives are evaluated.

num_epochs int 1 20 The number of times the training loop iterates
over all the edges.

num_uniform
_negs

int 50 0 The number of negatives uniformly sampled
from the currently active partition, per posi-
tive edge.

margin float 0.1 0.15 When using ranking loss, this value controls
the minimum separation between positive
and negative scores, below which a (linear)
loss is incured.

lr float 0.01 0.1 The learning rate for the optimizer.

eval_fraction float 0.05 0 The fraction of edges withheld from training
and used to track evaluation metrics during
training.

Table 4.7: PyTorch-BigGraph (PGB) parameters [76]
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Train-Test Split PGB requires as input two edge lists, one for training and one for testing. Since
I have multiple relation types, I create a stratified random split. Ostendorff et al. used 99% of
the data for training and 1% for testing. The authors do not provide the reasons behind this
train-test ratio. Their split resulted in 462M edges for the training and 4.6M edges for the test
set, including 52M nodes2. In the case of Ostendorff et al., a test split of 1% seems reasonable
since it still contains over 4 million edges. However, since I work with smaller datasets, I need
to reevaluate the train-test split ratio. Table 4.8 shows exemplary for tenant A how the number
of nodes and edges changes based on the train-test ratio. The higher the number of edges in the
test split, the higher the number of nodes that were never seen during training. The reason is that
many nodes only have one edge, i.e. they can only appear in one data split. To ensure that most
nodes are seen during training, I set the train-test ratio to 99-1.

Train Test

Ratio Nodes Edges Ratio Nodes Edges

0.99 112 855 117 911 0.01 2089 1193
0.95 108 968 113 147 0.05 8585 5957
0.9 104 035 107 192 0.1 15 597 11 912

Table 4.8: PyTorch-BigGraph (PGB) train-test split for tenant A.

Text Encoder As mentioned in Section 3.2, I initialize the nodes of the graph model with text
embeddings. For text logs, I used their text, and for funclocs, I encoded their short descriptions.
The selection of the text encoder was guided by the following criteria. First, it had to be a German
language model, given the use of German text data. Second, the embedding dimensionality needed
to match that of the graph embedding model to enable node initialization with the generated
text embeddings. Finally, the model had to be widely adopted and well-established in the field.
Using the number of downloads on huggingface as orientation, I chose bi-encoder_msmarco_bert-
base_german3 as the encoder model (over 44K downloads). The developers used GBERT [23] as
the base model and trained it on a machine-translated MSMARCO dataset for German. They
evaluated the model on the germanDPR dataset and achieved state-of-the-art performance for
asymmetric search3. I use the SentenceTransformer library to load the encoder [81].

Hyperparameter Tuning While keeping the parameters of Ostendorff et al., I experimented with
different numbers of epochs ep = {10, 20, 30} and with or without text embedding initialization. I
chose tenant A as an example. I trained embeddings on 99% of the data and tested the remaining
1% (1193 edges) on the link prediction task. Table 4.9 shows the link prediction performance for
tenant A measured in MRR, Hits@1, Hits@10, and AUC (for all metrics, higher is better and the best
value is 100). A definition of the metrics can be found in the PGB documentation4. The results show

2https://github.com/malteos/scincl
3https://huggingface.co/PM-AI/bi-encoder_msmarco_bert-base_german
4https://torchbiggraph.readthedocs.io/en/latest/evaluation.html
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that initializing nodes with text embeddings greatly improves the link prediction performance. For
10 epochs, the MRR score with text embeddings doubled (MRR = 36.17) compared to the MRR
score without (MRR = 16.85). The same goes for the Hits@10 score which increased from 29.72
to 72 points. These evaluation results highlight the importance of initializing node embeddings
with text embeddings for effective training of graph embedding models in the process industry.
Increasing the number of epochs only led to marginal increases. Thus, the number of epochs will
be kept to 20.

TextEmbed Epochs MRR Hits@1 Hits@10 AUC

no 10 16.85 9.39 29.72 61.11
no 20 16.96 9.39 30.47 59.93
no 30 16.21 8.51 30.43 59.93
yes 10 36.17 21.25 72.00 77.70
yes 20 36.48 21.54 72.25 78.75
yes 30 36.58 21.71 72.38 77.87

Table 4.9: Exemplary hyperparameter tuning of PyTorch BigGraph. Link prediction performance
of PyTorch BigGraph embeddings trained on the process industry graph of tenant A with and
without text embedding initialization and for a different number of epochs.

Model Evaluation Table 4.10 shows the link prediction performance of the graph models trained
for the later experiments. The evaluation was done on 1% of their respective edges. Thus, this is
not an evaluation of how well they perform on a shared test set but rather gives an idea of the
general training success. I find that the graph models trained on the enriched process industry
graphs show a better performance on their respective test sets compared to the models without
enrichment. These results were expected since a higher number of edges should make it easier for
the graph model to learn the relations between nodes.

Tenant MRR Hits@1 Hits@10 AUC Edge Count

A 36.48 21.54 72.25 78.75 1193
B 46.87 30.08 81.89 86.64 1378
C 37.70 22.61 76.34 81.19 1526
D 48.11 30.63 82.43 83.78 222

A+ 47.80 33.91 78.21 85.06 1613
B+ 51.80 36.28 83.66 89.30 2136
C+ 53.41 37.79 84.60 89.22 3035

Table 4.10: Evaluation of graph embedding models. Link prediction performance of PyTorch
BigGraph embeddings trained on the process industry graphs before and after data enrichment.
Models were trained with text embedding initialization for 20 epochs.
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Hardware PGB performs all computations on the CPU. The training was done with six CPUs of
the type Intel® Xeon® Processor E5-2690 v4 @2.60GHz. The text encoding with SentenceBERT was
done on a NVIDIA Tesla V100 (16GB).

4.5 Triplet Sampling

Given the learned text log node embeddings, I applied the sampling strategies outlined in Sec-
tion 3.3 to generate triplets for contrastive learning. The code for creating the triplets is provided
in da_triples.py.

For each query document, I sampled two triplets, consisting of one easy negative and one hard
negative. This provides a diverse similarity signal while ensuring broader document coverage,
even within smaller data subsets.

To identify text logs with a similar graph context, i.e., those associated with similar text logs and
functional locations, I performed an Approximate Nearest Neighbor (ANN) search in the text
log embedding space. I used FAISS [77] to create a flat index of text logs keyed by their node
embeddings. By L2 normalizing the embeddings beforehand and using the inner product as a
metric, I utilized cosine similarity as the distance measure. After creating the FAISS index and
populating it with the text log embeddings, I searched the index using text log embedding queries
dQ to find the k nearest neighbors in the embedding space as defined by their cosine distance.

I applied the same strategies for sampling positives and negatives as Ostendorff et al., KNN
sampling for positives and hard negatives, and filtered random sampling for easy negatives. The
sample sizes were set c+ = 2 for positives, c−easy = 1 for easy negatives, and c−hard = 1 for hard
negatives. The KNN parameter k+ = 2 was used for positives, and k−hard = 50 for the hard
negative. With this, the two closest neighbors were chosen as positive documents. Selecting the
closest neighbors is motivated by the low number of direct connections between text logs (see
follows edge type in Table 4.5). The goal is to ensure that text logs are positioned close in the graph
embedding space due to their direct links are included and not skipped by using a higher k+ value.
For the same reason k−hard was set low because the 50th neighbor would already be sufficiently
dissimilar. No further hyperparameter tuning was done for the SciNCL parameters.

Initial experiments indicated that including text sequences, that are too short in the training
significantly degrades the language model performance. Based on this finding I introduced a
minimum text length criterion. Rather than applying it during data pre-processing, I implemented
it after training the graph embedding model, just before triplet sampling. This ensures that the
highest possible number of nodes and edges are preserved for the graph model training. Keeping
short text log nodes and their edges leads to a bigger context for the other text log nodes, i.e.
making the learned node embeddings more meaningful. This is especially important since the
number of edges is quite low compared to a citation graph, making each additional edge valuable.
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Technically, I filtered the text log embedding space before performing the ANN search with FAISS. I
set the minimum sentence length to 100 chars (15-25 words). This approach ensures the robustness
of text embeddings during language model training by capturing sufficient contextual information,
thereby enhancing the model learning process. Table 4.11 shows the number of generated triplets
per tenant.

Tenant A B C D

Queries total 77 016 90 202 77 686 21 494

Queries >= 100 chars 48 621 30 710 45 911 13 348

Triplets (2 per query) 97 242 61 420 91 822 26 696

Queries+ total 79 794 96 465 109 876 -
Queries+ >= 100 chars 52 406 40 729 74 060 -
Triplets+ (2 per query) 104 812 81 458 148 120 -

Table 4.11: Analysis of triplets. Triplets sampled from process industry graph before data enrich-
ment (upper part of table) and after (lower part).

In my experiments, I used a subset of 10K triplets, following Ostendorff et al., who found that
using only 1% of their data (around 7K triplets) still outperforms the state-of-the-art on the SciDocs
benchmark. To ensure each query document is represented with both of its associated triplets,
I randomly sampled query documents rather than individual triplets. Since two triplets are
generated per query document, selecting 5K query documents yields the desired 10K triplets.
The subset was then shuffled to prevent triplets from the same query document from appearing
consecutively. Additionally, I evaluated a combination of triplets from different tenants by creating
a balanced mix, ensuring each tenant contributed an equal number of triplets. The triplets were
shuffled again to maintain a diverse mix during training.

4.6 Language Model

After introducing several German foundation models in Section 2.1, I chose GBERT-base for my
experiments [23]. Since the fine-tuned model will be deployed in production, model size is a critical
factor, which led me to focus solely on base-size models. GBERT-base was found to be the best
base-size model on the SuperGLEBer benchmark, even surpassing its larger counterpart on certain
tasks [27]. Additionally, GBERT-base demonstrated strong performance on document-level tasks in
technical domains, such as the medical field [42], making it well-suited for further document-level
optimization in the process industry.
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The weights from GBERT can be loaded from the Huggingface Hub5. Chan et al. [23] warn that
GBERT’s pre-training data may contain gender, racial, and religious biases. While this is a concern
in contexts like journalism or job applications, it is less relevant in the process industry, where
operations are highly technical and documentation is typically not including personal information.
Thus, GBERT can be applied in process industry settings.

GBERT processes texts up to a maximum of 512 tokens. Texts exceeding this length are truncated,
with only the first 512 tokens considered while the rest are ignored. Since the average document
length in my datasets is rather short (see Table 4.1), this will apply only to a small number of text
logs.

The models were trained on an NVIDIA Tesla V100 (16GB) using the triplet loss formulated in
Equation (3.1). The margin ξ was set to 1 like it was done by Ostendorff et al. [18]. I used Adam
with weight decay [82, 83] as the optimizer and set the learning rate to λ = 2−5. The models
were trained for 2 epochs with a batch size of 6. The pooling strategy is to use the [CLS] token to
represent the document. The code to train the model can be found in da_model.py.

5https://huggingface.co/deepset/gbert-base
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Chapter 5

Evaluation

In this chapter, I evaluate the proposed methodology on a domain benchmark of the process
industry. The benchmark covers a wide range of NLP tasks like text classification, semantic search,
and token classification. I conduct an ablation study by analyzing the influence of different datasets,
fine-tuning an already domain-adapted PLM, and further enriching the training data. I discuss the
results and provide an outlook for future work.

5.1 Process Industry Applications Benchmark

To evaluate whether a language model successfully adapted to the domain-specific language
of a given domain, it needs to be evaluated on domain-specific downstream tasks [43]. The
Process Industry Applications (PIA) benchmark is a private benchmark consisting of various NLP
applications found in the process industry and is used internally by the collaborating company.
The benchmark consists of four document-level and four token-level tasks. While the training
objective presented in Section 3.4 focuses on document-level improvements, I still include the
token-level tasks to assess whether the model learns finer-grained linguistic patterns that could
indirectly enhance performance on those tasks. Table 5.1 gives an overview of the PIA benchmark.

Problem-Solution Classification (PSC) A text classification task that classifies sentences into three
classes (problem, solution, or info). Sentences that contain both problems and solutions were
excluded from the dataset. The info class contains all entries that are not a problem or a solution.
Since the class label distribution is unbalanced (train+val: 0.15, 0.08, 0.77), the F1 score is used as
the evaluation metric.

Priority Classification (PC) A text classification task that classifies entry items into five classes
of criticality (the higher - the more critical the event): 1) nothing, 2) done, 3) low priority, 4) shift
supervisor, and 5) high priority. Since the criticality levels can be ordered, Spearman’s correlation
coefficient is used to estimate how the predicted classes correlate with the assigned levels.

35



Name Task Dataset size # Classes Metric

PSC Problem-solution
classification

text classification,
multiclass

10141 3 F1 macro

PC Priority classifica-
tion

text classification,
multiclass

10000 5 Spearman’s
rank correla-
tion coefficient

RL Record linking next sentence pre-
diction, binary clas-
sification

5212 2 Accuracy

SemS Semantic search semantic search Queries: 205,
Docs: 14,680

- nDCG@10*

PSE Problem-solution
extraction

token classification,
multiclass

731 3 F1 sequential

SSP Sentence Split-
ting

token classification,
binary

1003 2 Accuracy

NER Named-Entity-
Recognition

token classification,
multiclass

2906 6 F1 sequential

fNER Funcloc-NER token classification,
binary

8895 2 F1 sequential

Table 5.1: Process Industry Applications (PIA) benchmark
*nDCG@10 = normalized discounted cumulative gain

Record Linking (RL) Record Linking is a task of the domain-specific Natural Language Infer-
ence (NLI), i.e., the task of determining whether a "hypothesis" (i.e., second entry item) is true
(entailment) or false (contradiction) given a "premise" (i.e., first entry item). In other words, if the
second entry item is locally connected to the first one as a continuation of an event.

Semantic Search (SemS) Given a query, retrieve and rank all documents semantically related to
it. The annotated dataset contains three degrees of query-document relatedness: (score 3) full, i.e.,
a document directly contains a problem/situation described in a query, (score 2) adjacent, i.e., a
document contains term/synonym(s) from a query but a query describes either a part or a more
general concept, (score 1) partial, i.e., a document partially contains the information requested in a
query or the query terms are scattered across the document and do not belong to one concept. To
measure the ranking quality, the normalized discounted cumulative gain is calculated for each
item in the top 10 positions (nDCG@10).

Problem-Solution Extraction (PSE) A token classification task that tags which sequences of
tokens within sentences belong to problem or solution descriptions. Unlike the problem-solution
classification task, it considers sentences containing both problems and solutions within.
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Sentence Splitting (SSP) Given a domain-specific format of the entry items, which often look
like bullet points with a lot of abbreviations, shortenings, and codes, the model needs to learn the
starts and ends of the sentences. The task is implemented as a binary token classification task, i.e.,
start and non-start tokens.

Named Entity Recognition (NER) A domain-specific NER task, where tags may include such
classes as person, product, chemical, cardinal, name, and short code of functional locations.

Funcloc-NER (fNER) A more specific version of NER that tags only specific types of tokens that
refer to the funcloc short codes, e.g., "A12".

Model Training The huggingface library [79] is used to load the model weights into task-specific
models (i.e. AutoModelForSequenceClassification and AutoModelForTokenClassification). The
pre-trained model weights are unfrozen and fine-tuned together with the weights of the classifica-
tion layer. The training parameters are fixed for all tasks (learning rate = 1e-5, weight decay = 0.01,
batch size = 16, number of epochs = 3), i.e., no hyperparameter optimization is applied. For the
semantic search task, the model weights are loaded with the SentenceTransformer library [81] and
no further task-specific training is done. For the base models, I retrieve the document representa-
tion by applying mean pooling, i.e. the mean of all output token embeddings. For the fine-tuned
models, I use the [CLS] token as document representation since it was optimized by the contrastive
learning objective (see Section 3.4).

Evaluation Scores The scores are reported as an average over three seeds. For most of the tasks,
the seeds are used to create different train-val-test splits (60-20-20) as well as to initialize the
classification layer weights. However, since PSC and fNER have a fixed train-test split, the seeds
are only used for the later one. For the SemS task, a single score is reported, since only one test set
is given. For all metrics higher values indicate better performance.

Base Models There are no publicly available German models adapted to the process industry.
Accordingly, I use GBERTbase [23], a German PLM which was pre-trained on a general language
corpus, and GBERTdomain, a domain-adapted version of GBERT provided by the collaborating
company. The domain model was continually pre-trained with the Masked Language Modeling
task on 2.8M records (about 1.5GB) of process industry data (86%) and other domain-related
resources (14%). The domain-related data includes patents and regulations for the chemical and
pharmaceutical industry and machinery.
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5.2 Results and Discussion

In this section, I describe and discuss the experiments done to evaluate the proposed graph-based
domain adaptation methodology (see Figure 3.1). The first experiment analyzes the influence
of fine-tuning a general-domain PLM (GBERTbase) with the proposed methodology. The second
experiment evaluates how fine-tuning on different datasets impacts the model performance on
the benchmark. The third experiment assesses the effect of further fine-tuning an already domain-
adapted model (GBERTdomain). The fourth experiment evaluates if the data enrichment described
in Section 4.2 led to better triplets for contrastive learning and thus, better benchmark scores.

5.2.1 Influence of Contrastive Fine-tuning

Goal This experiment evaluates the general influence of fine-tuning GBERTbase with the proposed
methodology.

Setup I sampled 10K triplets as a mix of all four tenants and fine-tuned GBERTbase with them.
The sample size was chosen based on Ostendorff et al. [18], who found that using only 1% of their
data (around 7K triplets) still outperformed the state-of-the-art on the SciDocs benchmark [17].

Results Table 5.2 presents the performance of the base and the fine-tuned GBERT model across
the eight tasks of the PIA benchmark.

The fine-tuned model outperformed the base model on three tasks (SemS, SSP, fNER) and matched
the performance in one NER. For the Semantic Search (SemS) task, fine-tuning nearly doubled
the score from 9.18 to 17.73 points. The Sentence Splitting (SSP) score increased slightly by 0.7
points. Similarly, the fNER increased by 0.15 points from 94.61 to 94.76 points. For NER, the
reported scores only differ by 0.03 points. While fine-tuning improved the scores for the previously
mentioned tasks, it decreased the performance for the rest. The score for the Problem-Solution
Classification (PSC) task dropped by 1.4 points and for the Priority Classification (PC) task by 1.2
points. For Record Linking (RL) the scores decreased slightly by 0.2 points. For Problem-Solution
Extraction (PSE), the score is 0.7 points lower than the one of the base model. On average, the
fine-tuned model outperformed the base model by 1 point. However, the differences between the
base and the fine-tuned model are often not significant as shown by the standard deviation of the
reported scores. Only the SemS score showed a significant performance increase.
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Document Level Token Level Average
Task PSC PC RL SemS PSE SSP NER fNER

Model / Metric F1 Coef Acc nDCG F1 Acc F1 F1

GBERTbase 69.750.94 47.801.25 95.910.52 9.18 45.212.38 77.933.03 63.220.40 94.610.06 62.951.09
GBERTbase-A-B-C-D 68.320.55 46.571.36 95.700.31 17.73 44.492.58 80.630.19 63.252.33 94.760.07 63.931.06

Table 5.2: Influence of contrastive fine-tuning reported on PIA benchmark. GBERTbase was fine-
tuned on a mix of 10K triplets from all four tenants. SemS is reported as a single score, while the
other scores are reported as averages over 3 seeds. The best results are highlighted in bold.

Discussion Since the model was fine-tuned with a document-level objective, I expected an
improvement in the document-level tasks. However, only the performance for the SemS task
increased while it decreased for PSC, PC, and RL. In the following, I discuss the possible impact of
the funcloc similarity signal on the different tasks.

During the contrastive fine-tuning, the model learned to produce closer text embeddings for text
logs sharing similar funclocs. This objective works well for the semantic search task. For example,
given the query "fix broken pump", we would expect documents related to this issue to be retrieved.
Related documents do not necessarily need to mention the word "pump" but can also only contain
a funcloc code (e.g., "A1") representing a pump. Since the latter misses the semantic meaning, it
is less likely to be retrieved. However, if both text logs share the same functional locations, their
representations were placed closer during contrastive learning. Thus, the second text log is more
likely to be retrieved as well.

For PC, the funcloc similarity signal does not contain any information to help classify text logs in
different priority categories. The additional training of the language model could have introduced
more noise, leading to a worse performance. For PSC, using funcloc similarity as a a training
objective could have made the differentiation between problem and solution documents harder
since they most likely share the same funclocs.

The RL task evaluates whether two text logs are a continuation of an event. This continuation
was depicted in the process industry graph as a "follows" relationship (see Figure 3.2). Since this
relation was considered for learning text log embeddings, I expected an improvement for this
task. However, the RL score did not improve. One reason could be that the "follows" relationship
is under-presented in the process industry graph (see Table 4.5) which reduces its effect on the
triplet sampling. The dominant similarity signal is the shared funclocs. While text logs that are a
continuation of an event are likely to share the same funclocs, more text logs share funclocs but are
not a continuation of each other. This could have made the classification more difficult in such
cases. Finally, considering that GBERTbase already achieved an accuracy of around 96 percent, the
contrastive training could have been too noisy, leading to a performance drop of less than one
percentage point.
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The increased performance for token-level tasks like SSP and fNER was unexpected, considering
the document-level training objective. SSP might have profited from the data pre-processing where
newline and carriage returns were replaced by a period (see Section 4.2), helping the model to
better separate texts of the process industry. The fNER task could have benefited from funcloc
similarity. Optimizing the model to differentiate documents based on shared funclocs could have
enhanced the embeddings of tokens related to these locations (e.g., funcloc codes), improving the
model’s ability to identify these entities.

In benchmarks specialized for evaluating document embeddings like SciDocs [17], text classifica-
tion is usually done by using the document embeddings as a feature for a linear SVM. This allows
a clear interpretation of the quality of embeddings produced by different embedding models. Since
fine-tuning optimizes all the weights of the PLM for the specific downstream task, there is a chance
that the knowledge introduced by the contrastive learning objective is completely overwritten. To
better evaluate the quality of document embeddings for the process industry in the future, the PIA
benchmark could be extended by adding feature-based implementations for the text classification
tasks. The SemS task is the only task that directly evaluates the document embeddings. Thus, it is
the most suited one to measure the impact of the contrastive learning applied in this work.

5.2.2 Influence of Different Datasets

Goal This experiment evaluates the influence of fine-tuning GBERTbase on triplets from single
and multiple tenants.

Setup In addition to the A-B-C-D subset from the previous experiment, I sampled five more
10K subsets: one per tenant and a combined subset excluding tenant D. Tenant D was excluded
from the latter mix as it is the only pharma tenant within the training data, while the benchmark
consists of data from five chemistry tenants and only two from pharma. I fine-tuned GBERTbase on
each of these triplet subsets, resulting in five new models.

Results Table 5.3 presents the performance of the base and fine-tuned GBERT models across the
eight tasks of the PIA benchmark.

Similar to the previous experiment, all fine-tuned models outperformed GBERTbase on the SemS,
SSP, and NER tasks. For SemS, the improvements ranged between 5 to 12 points. For SSP, the
increase was up to 1.2 points over the baseline score of 77.93 points, and for fNER, it was up to
0.15 points over the baseline of 94.61 points. For NER, we observe an increase of up to 0.66 points
over the baseline of 63.22 points in all but one configuration (GBERTbase-A-B-C).

For PSC, RL, and PSE, all fine-tuned models performed worse than GBERTbase. PSC scores were
up to 1.8 points lower than the baseline of 69.75, RL up to 0.6 points lower than 95.91, and PSE up
to 5.9 points lower than 45.21. For PC, three fine-tuned models improved over the baseline while
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the rest had a lower score. Considering the standard deviation, there is no significant increase or
decrease in the tasks besides SemS.

The models fine-tuned on mixed tenant data did not outperform single-tenant models. While the
model fine-tuned on A-B-C-D achieved the second-highest benchmark score (63.93), the model
fine-tuned only on A-B-C achieved the lowest overall score (63.33) of all fine-tuned models. No fine-
tuned model showed superior performance across all benchmark tasks. GBERTbase-A performed the
best on semantic search, GBERTbase-C had the highest SSP score, and GBERTbase-A-B-C-D performed
the best on the fNER task.

Document Level Token Level Average
Task PSC PC RL SemS PSE SSP NER fNER

Model / Metric F1 Coef Acc nDCG F1 Acc F1 F1

GBERTbase 69.750.94 47.801.25 95.910.52 9.18 45.212.38 77.933.03 63.220.40 94.610.06 62.951.09
GBERTbase-A 68.160.58 47.901.83 95.730.42 21.12 41.832.55 80.102.21 63.840.62 94.620.15 64.161.19
GBERTbase-B 68.280.81 47.631.11 95.760.63 17.12 43.150.45 80.402.69 63.490.17 94.670.05 63.810.84
GBERTbase-C 67.940.26 46.931.84 95.280.73 14.07 43.493.32 81.103.03 63.660.45 94.730.07 63.401.39
GBERTbase-D 69.021.07 48.191.03 95.770.86 14.01 42.153.14 80.902.33 63.880.49 94.740.02 63.581.28
GBERTbase-A-B-C 68.710.90 48.873.21 95.420.46 16.51 39.362.85 80.073.07 62.990.33 94.710.04 63.331.55
GBERTbase-A-B-C-D 68.320.55 46.571.36 95.700.31 17.73 44.492.58 80.630.19 63.252.33 94.760.07 63.931.06

Table 5.3: Influence of different datasets reported on PIA benchmark. GBERTbase was fine-tuned on
10K triplets from either single tenants or as a combination from multiple tenants. SemS is reported
as a single score, while the other scores are reported as averages over 3 seeds. The best results are
bold and underlined, second bests are just underlined.

Figure 5.1 shows the vocabulary overlap between the tenant datasets and benchmark datasets.
There is no correlation between the vocabulary overlap and the single-tenant model performance.
For example, tenant C had the highest vocabulary overlap with the semantic search task while
tenant D had the lowest, however, their fine-tuned models got a similar score of around 14 points.

Discussion Although the extent of increase or decrease in performance varied depending on
the dataset used, the same tasks consistently improved (SemS, SSP, fNER) or declined (PSC, RL,
PSE) across all models. This suggests that the training objective itself is likely the reason for
this trend. The only exception is the the Priority Classification (PC) task where three of the six
fine-tuned models outperformed the baseline (A, D, and A-B-C). While the contrastive learning
objective does not actively encode semantics about the priority of text logs, the improved document
representation of the process industry data could have positively influenced the task-specific fine-
tuning. However, this effect is inconsistent as the performance degraded for the other three
cases.
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Figure 5.1: Vocabulary overlap (%) between tenants and benchmark datasets. Vocabularies for
each dataset were created by considering the top 5K most frequent words (excluding stopwords).

The benchmark contains data from multiple tenants. However, the models fine-tuned on multiple
tenants (A-B-C and A-B-C-D) did not outperform the single-tenant models. One reason could
have been that the number of training samples was too small. For, A-B-C-D each tenant only
contributed 2.5K triplets. While the more diverse training signal with data from multiple tenants
can improve the generalization capabilities of the language model, it also introduces more noise
into the training. Increasing the sample size could help the model to better handle the variations in
the training data and become more robust.

The performance differences in single-tenant models could be due to several factors. First, not all
benchmark tasks include data from every tenant, so models fine-tuned on tenants consistently
represented across tasks may have performed better than those trained on less-represented tenants.
Variations in text quality between tenants might have further influenced performance. Finally,
using the same hyperparameters for training the graph models, sampling triplets, and fine-tuning
the language models across all tenants might have favored a specific tenant.

5.2.3 Influence of Domain Model

Goal This experiment evaluates the effect of fine-tuning an already domain-adapted version of
GBERT.

Setup I reduced the number of configurations evaluated for this experiment based on the SemS
score from the previous experiment. The SemS score was chosen since it profited the most from the
contrastive learning. Accordingly, I removed tenants C and D, which achieved the lowest scores on
the SemS task. The domain model was provided by the collaborating company, which continually
pre-trained GBERTbase with the Masked Language Modeling task on 2.8M records (about 1.5GB of
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data) of process industry data and other domain-related resources. I fine-tuned GBERTdomain with
the same 10K triplet subsets used in the previous experiment, resulting in four new models.

Results Table 5.4 shows the results of GBERTdomain and its fine-tuned versions on the PIA
benchmark. GBERTdomain outperforms GBERTbase in six out of the eight downstream tasks. The
average benchmark score is 2 points higher. For the SemS task, the score increased from 9.18 to
16.07 points. Fine-tuning the base model with the contrastive objective matches or outperforms
GBERTdomain on the SemS task by up to 5 points. The new best-performing model on SemS is
GBERTdomain-A-B-C, achieving a score of 25.41, which is an increase of 9.3 points compared to
GBERTdomain and 4.3 higher than the previous best score from GBERTbase-A. GBERTdomain-A-B-C-D

is the only model that performs worse than the domain model on the SemS task. Similar to
fine-tuning the base model, the score for SSP and fNER improved in all configurations over the
domain model. For SSP this increase is up to 2.1 points and for fNER up to 0.1 points. However,
the improvements are insignificant considering the evaluated models’ standard deviation.

Document Level Token Level Average
Task PSC PC RL SemS PSE SSP NER fNER

Model / Metric F1 Coef Acc nDCG F1 Acc F1 F1

GBERTbase 69.750.94 47.801.25 95.910.52 9.18 45.212.38 77.933.03 63.220.40 94.610.06 62.951.09
GBERTbase-A 68.160.58 47.901.83 95.730.42 21.12 41.832.55 80.102.21 63.840.62 94.620.15 64.161.19
GBERTbase-B 68.280.81 47.631.11 95.760.63 17.12 43.150.45 80.402.69 63.490.17 94.670.05 63.810.84
GBERTbase-A-B-C 68.710.90 48.873.21 95.420.46 16.51 39.362.85 80.073.07 62.990.33 94.710.04 63.331.55
GBERTbase-A-B-C-D 68.320.55 46.571.36 95.700.31 17.73 44.492.58 80.630.19 63.252.33 94.760.07 63.931.06

GBERTdomain 70.680.70 48.911.53 95.770.75 16.07 43.993.10 80.173.15 64.920.36 94.780.03 64.411.37
GBERTdomain-A 68.600.68 52.011.40 95.710.44 20.20 40.243.02 80.772.66 64.540.43 94.760.01 64.601.23
GBERTdomain-B 69.380.62 48.601.18 95.130.51 23.79 41.621.75 82.272.45 65.080.48 94.840.05 65.091.01
GBERTdomain-A-B-C 69.391.04 48.711.10 95.300.34 25.41 43.531.97 80.503.02 65.110.33 94.810.00 65.341.11
GBERTdomain-A-B-C-D 68.720.48 47.590.62 95.870.33 14.34 40.352.62 80.933.07 64.510.37 94.880.03 63.401.07

Table 5.4: Influence of domain model reported on PIA benchmark. GBERTdomain was fine-tuned on
10K triplets from either single tenants or as a combination from multiple tenants. SemS is reported
as a single score, while the other scores are reported as averages over 3 seeds. The best results are
bold and underlined, second bests are just underlined.

Discussion Continual pre-training with MLM leads to a better domain language representation
for the process industry, shown by the domain model outperforming the base model. These results
match the ones found in the literature (see Section 2.2), emphasizing why continual pre-training
with MLM is the prevalent domain adaptation approach. While MLM is not a document-level
training objective, the better representation of domain-specific language patterns and words helps
the model to identify relevant documents for a given query in the SemS task.

Nevertheless, fine-tuning the base model with a document-level objective outperforms the domain
model on the SemS task. This finding suggests that a document-level objective like the triplet loss
used in this work, is more suited to improve the document-level domain language representation
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than continual pre-training with MLM. Especially, since the improvement was achieved with a
much smaller training corpus (10K triplets) compared to training with MLM (2.8M records).

Similar to Ostendorff et al. [18] where fine-tuning SciBERT led to better results than fine-tuning the
original BERT model, fine-tuning GBERTdomain leads to the highest SemS score. This shows that
the training effect of MLM-based continual pre-training can be further improved by fine-tuning
with a document-level objective. However, in one case fine-tuning the domain model led to a
worse SemS score which highlights the sensitivity of the training process.

5.2.4 Influence of Data Enrichment

Goal In Section 4.2, I discussed two ways to enrich the process industry data, funcloc retrieval
and context expansion. This experiment evaluates if the data enrichment led to better triplets for
contrastive learning.

Setup The SemS task was used again to reduce the number of configurations considered for eval-
uation. In the second experiment, GBERTdomain-B and GBERTdomain-A-B-C performed the best on the
SemS task. Thus, I only sampled 10K triplets from the enriched data for these two configurations,
tenant B and the mix of A-B-C. I fine-tuned GBERTbase and GBERTdomain, resulting in four new
models.

Results Table 5.5 shows the results of the models trained with data enrichment on the PIA
benchmark. For the SemS task, fine-tuning GBERTbase on the enriched triplets led to better SemS
scores than the models trained on non-enriched triplets. However, when fine-tuning GBERTdomain

only an equivalent performance is found for tenant B and a drop of 0.7 points for the mix of
A-B-C. While the graph embedding models profited from the data enrichment, shown by the
higher evaluation performance (see Table 4.10), this effect did not transfer to the evaluation on
the benchmark. Nonetheless, all fine-tuned models improved over the baselines GBERTbase and
GBERTdomain in the SemS task. GBERTbase-B+ even leads to a new high score on the benchmark
with 65.36, outperforming the previous best model GBERTdomain-A-B-C by a small margin.
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Document Level Token Level Average
Task PSC PC RL SemS PSE SSP NER fNER

Model / Metric F1 Coef Acc nDCG F1 Acc F1 F1

GBERTbase 69.750.94 47.801.25 95.910.52 9.18 45.212.38 77.933.03 63.220.40 94.610.06 62.951.09
GBERTdomain 70.680.70 48.911.53 95.770.75 16.07 43.993.10 80.173.15 64.920.36 94.780.03 64.411.37

GBERTbase-B 68.280.81 47.631.11 95.760.63 17.12 43.150.45 80.402.69 63.490.17 94.670.05 63.810.84
GBERTbase-A-B-C 68.710.90 48.873.21 95.420.46 16.51 39.362.85 80.073.07 62.990.33 94.710.04 63.331.55
GBERTdomain-B 69.380.62 48.601.18 95.130.51 23.79 41.621.75 82.272.45 65.080.48 94.840.05 65.091.01
GBERTdomain-A-B-C 69.391.04 48.711.10 95.300.34 25.41 43.531.97 80.503.02 65.110.33 94.810.00 65.341.11

GBERTbase-B+ 69.560.50 47.930.65 95.350.34 25.16 45.061.66 80.472.51 64.700.37 94.690.16 65.360.89
GBERTbase-A-B-C+ 68.041.35 48.530.61 95.450.46 18.66 44.271.58 80.103.18 63.760.29 94.560.04 64.171.07
GBERTdomain-B+ 69.720.53 48.531.47 95.170.53 23.80 42.323.71 81.373.03 64.920.23 94.740.05 64.611.36
GBERTdomain-A-B-C+ 69.301.00 48.680.50 95.520.49 24.67 41.710.86 80.702.83 64.450.39 94.750.03 64.580.87

Table 5.5: Influence of data enrichment reported on PIA benchmark. GBERTbase and GBERTdomain
were fine-tuned on 10K "enriched" triplets from either single tenants or as a combination from
multiple tenants, the models are marked with a plus (+). SemS is reported as a single score, while
the other scores are reported as averages over 3 seeds. The best results are bold and underlined,
second bests are just underlined. Data enrichment led to a better SemS score in three of four cases.

Discussion Data enrichment yields promising results by further improving performance on
the SemS task. While the previous experiment showed that combining the domain model with
additional fine-tuning amplified the positive results, the strong performance of GBERTbase-B+

suggests that fine-tuning the base model with better training samples can achieve comparable
scores. This is encouraging, as continual pre-training with MLM requires large datasets, which are
often hard to obtain in many domains.

In domains where structural information for documents is not available or not in sufficient quantity,
knowledge extraction methods can be applied to retrieve the desired metadata from the text.
The effectiveness of this approach was shown for the datasets used in this work, by increasing
the number of attributed funclocs by at least 35 percent (see Table 4.6). However, instead of
complementing existing metadata, it can also be used to extract new entity types such as chemicals
or products. Since text logs mentioning the same chemicals or products are most likely similar,
these new entity types can be added to the heterogeneous process industry graph to further
deepen the semantic context of text logs within the graph. Future work could explore this more
sophisticated similarity signal to enhance triplet sampling.

Maintenance reports are filled with abbreviations and codes that only domain experts can under-
stand, which poses a challenge for adapting language models to this type of data due to the lack
of semantic context. To enhance the meaning of funcloc short codes within the text, I inserted
the full semantic name before each code, such as "pump A1" instead of just "A1." However, this
approach can introduce knowledge noise, potentially altering the original meaning, especially if the
semantic name is lengthy. K-BERT [41] suggests a more advanced form of knowledge enrichment
by injecting knowledge triplets into a sentence while limiting the impact of such extra knowledge
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by introducing a vision matrix and soft-positioning. Such advanced knowledge schemes would
allow the injection of even more domain knowledge, making it an interesting choice for future
experiments.

5.3 Broader Discussion

In this section, I answer the research question and conduct a broader discussion of the results.

Research Question This master thesis addresses the research question of "how to transfer and
adapt a graph-based contrastive learning approach (SciNCL [18]) for the domain adaptation of
PLMs for the process industry." Using the assumption that two text logs are similar if they share the
same funclocs, I constructed a heterogeneous process industry graph representing the relationships
between text logs and funclocs. I created graph embeddings to sample similar and dissimilar
text logs in a continuous fashion, and trained a language model using a triplet margin loss to
learn their (dis)similarity. To evaluate whether the proposed methodology improves the document
representations of PLMs for the process industry, I evaluated the models on a domain benchmark.
The experiments show that using the funcloc similarity signal substantially improves the document
representations of the process industry by increasing the nDCG@10 score of the semantic search
task by up to 16 points compared to the baseline GBERTbase. Based on these findings, I can conclude
that SciNCL was successfully transferred to the process industry domain.

Domain Adaptation Building on the results from Ostendorff et al. [18], SciNCL was now suc-
cessfully evaluated in two different languages (English and German) and two different domains
(science and process industry), showing its applicability to different contexts. Especially in this
work, I addressed the challenges of limited available graph data and missing direct links between
documents. Solutions involved extracting additional nodes from the unstructured text, using text
embeddings to support the graph model training in areas where the graph’s structural information
is insufficient, and leveraging heterogeneous graph structures to model document similarity. The
findings of this thesis should motivate the application of SciNCL or similar graph-based domain
adaptation techniques to domains where direct document connections are sparse and large-scale
data is difficult to obtain.

Process Industry The proposed methodology improved the performance of a semantic search
task in the process industry. Enhancing semantic search is crucial for accessing critical operational
insights from unstructured text logs. By improving the efficiency of retrieving relevant maintenance
logs, technicians and engineers can make faster decisions, reducing downtime within an industrial
plant.
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Similarity Signal Encoding document-level similarity enables the integration of additional
knowledge into the language model, beyond just plain text. However, incorporating such specific
similarity semantics can reduce the model’s generalizability across a wider range of downstream
tasks. For instance, in Problem-Solution Classification, this information can have a counterpro-
ductive effect by making it harder to distinguish between problems and solutions that share a
functional location. It is important to recognize these limitations while leveraging the positive
effects for other tasks like semantic search.
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5.4 Limitation and Future Work

This section discusses the main limitations of this work and suggests possible directions for future
improvement.

Privacy and Reproducibility The training and benchmark data are private. Thus, only people
with access to these resources can reproduce the experiments. However, I provide a dummy
example with the submitted code, which can be used to execute the pipeline from graph creation,
over triplet sampling, to model training (see Appendix A).

Hyperparameter Tuning Hyperparameters for graph model training, triplet sampling, and
language model training were largely adopted from Ostendorff et al. [18] to reduce the number of
variables and narrow the scope of this thesis. Most of the fine-tuned models successfully improve
the performance of the base and domain models on the semantic search task. Further optimization
of pipeline parameters could lead to even stronger results on the benchmark.

Benchmark Hyperparameter Tuning The PIA benchmark requires further fine-tuning of the mod-
els for its text and token classification tasks. The training parameters were fixed (see Section 5.1),
since a hyperparameter tuning for seven different tasks for each evaluated model configura-
tion would be out of scope for this thesis. However, optimizing the training parameters for the
benchmark tasks might lead to better results than the ones reported in this work.

SciDocs vs PIA Benchmark SciNCL was evaluated on SciDocs [17], a benchmark specifically
created for evaluating document embeddings. The individual tasks directly use the embeddings
as input, e.g., to predict citations based on the L2 distance between document vectors or as a
feature for a linear SVM to classify documents by their topic. In PIA, only the semantic search task
directly evaluates the document embeddings. The classification tasks are implemented by adding a
classification layer to the model and fine-tuning all model weights for the new task. However, this
makes it hard to separate the contribution of contrastive learning from task-specific fine-tuning. To
better evaluate the quality of document embeddings for the process industry in the future, the PIA
benchmark could be extended by adding feature-based implementations for the text classification
tasks.

Extended Knowledge Graph I constructed a simple knowledge graph representing the relation-
ships between text logs and functional locations (funclocs). The edges were created using funclocs
explicitly attributed to the text logs, supplemented by those extracted from the text. Expanding
knowledge extraction to include other entities, such as chemicals, could enrich the graph with
new types of relations and entities. By embedding text logs within a more complex network of
relationships, the node embeddings generated by a graph embedding model would capture richer
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semantic information, enhancing the identification of similar documents and improving triplet
sampling for contrastive learning.

Further Knowledge-enrichment of Text Data In this thesis, I applied simple knowledge enrich-
ment by inserting the semantic name of a funcloc before its short code within the text, e.g., "pump
A1" instead of just "A1". K-BERT [41] suggests a more advanced form of knowledge enrichment by
injecting knowledge triplets into a sentence while limiting the impact of such extra knowledge
on the original meaning of the sentence by introducing a vision matrix. Applying such advanced
knowledge schemes is likely to have a positive impact on the semantic quality of process industry
text, which is characterized by its shortness and abbreviations.

Similarity Threshold for Triplet Sampling For this work, I sampled the two closest nodes in the
graph embedding space as positive samples. However, the closest nodes can still be quite distant in
the embedding space. Future work could refine the triplet sampling process by applying a cosine
similarity threshold. While this would ensure a minimal similarity of positives, it would also
decrease the number of potential training samples since not every query document has neighbors
within a given similarity threshold. This trade-off needs to be kept in mind.

Scaling of Training Data All reported experiments were conducted using 10K triplets. Although
I performed additional experiments with 50K triplets, these results are not included in this thesis
due to observed lower SemS scores compared to the 10K versions. This finding contrasts with the
results of Ostendorff et al. [18], who reported improved performance on the SciDocs benchmark
with larger training sets. The decline in performance in my experiments may be attributed to
sub-optimal training. Future work should focus on optimizing training strategies for larger sample
sizes.

Combined Learning Objective The domain model was continually pre-trained with the MLM
objective, improving the performance for various downstream tasks. Further fine-tuning the
domain model with a contrastive loss achieves an even better performance on the semantic search
task. However, it also decreases the score for other tasks. Instead of sequentially applying these
training schemes, a combination of both loss functions could yield promising results as shown by
TwHIN-BERT [65]. Since MLM training usually requires large amounts of data, this might also
apply to the combined loss. Future research should experiment with balancing the contribution of
each loss and evaluating its effect on the performance and sampling efficiency.
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Chapter 6

Conclusion

In this thesis, I proposed a graph-aware domain adaptation method aimed at enhancing the
document representations of Pre-trained Language Models (PLMs) for the process industry domain.
The core of this method builds upon SciNCL, a neighborhood contrastive learning technique
originally designed for the scientific domain, which samples similar and dissimilar documents
using citation graph embeddings.

I constructed a process industry graph comprising two types of nodes, functional locations (such as
processing units or machines) and text logs (reports about maintenance activities). The underlying
assumption for contrastive learning is that text logs sharing the same functional location are similar.
A graph embedding model was trained on this industry-specific graph, and embeddings from the
text logs were used to sample similar and dissimilar pairs for contrastive learning. A German PLM
was then trained on these samples using a triplet margin loss.

To answer the research question of "how to transfer and adapt a graph-based contrastive learning
approach (SciNCL) for the domain adaptation of PLMs for the process industry", I evaluated the
proposed methodology on a benchmark of the process industry. While this benchmark contains
various NLP tasks, only the semantic search task directly evaluates the document embeddings.
Thus, it is the most suitable one for assessing the successful transfer of SciNCL to the process
industry. The contrastive fine-tuning was applied to four datasets (A, B, C, and D) and their
combinations. Two data enrichment (+) approaches were evaluated, funcloc retrieval and context
expansion.

All configurations of the proposed methodology outperformed my first baseline GBERTbase on
the semantic search task. As the two baselines, I used GBERTbase, a general-domain model, and
GBERTdomain, continually pre-trained with the MLM objective on 2.8M records of the process
industry.

The best-performing model, GBERTdomain-A-B-C, had a nDCG@10 score of 25.41, 9 points higher
than the domain-adapted model it was trained on. This shows that the efforts of continually
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pre-training with MLM can be combined with the contrastive learning objective to further improve
the representations of documents in the process industry. The second best model, GBERTbase-B+,
had a nDCG@10 score of 25.16, 16 points higher than the general-domain model GBERTbase it was
trained on. Compared to GBERTdomain-A-B-C, it was trained with "enriched" triplets, showing that
improving the triplet quality can lead to similar high scores. Since training with MLM requires
large amounts of data that are not available for every domain, further improving the results by
improving the triplet quality is a promising research direction.

This work makes the following key contributions:

1. Method Transfer and Adaptation: I successfully transferred and adapted SciNCL’s con-
trastive learning methodology from the scientific domain to the process industry domain,
addressing the challenge of short texts, limited direct connections between documents, and a
limited number of edges per node in this new context.

2. Heterogeneous Graph Construction: I introduced a novel heterogeneous graph structure
for the process industry, utilizing functional locations and text logs as nodes and creating
relationships between them, establishing a functional location similarity signal for contrastive
learning.

3. Evaluation in the Process Industry: The methodology was applied to the German language
and evaluated on a domain-specific benchmark for the process industry, demonstrating
improvements in tasks like semantic search.

4. Exploration of Triplet Quality: This thesis highlights the potential for enhancing contrastive
learning through better triplet sampling, which can be a viable solution when large-scale
data for continual pre-training is not available.

In conclusion, the findings of this thesis encourage further exploration of graph-based domain
adaptation techniques, especially for domains where direct document connections are sparse and
large-scale data is difficult to obtain.
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Appendix A

Code and Data

The project code and dummy data were submitted as a ZIP file.

Dummy Data The experiments were done on private industry data which can not be shared.
However, dummy data is provided to give an idea on how to run the code. I created two synthetic
German datasets with ChatGPT1 describing maintenance operations at two different chemical
plants with 100 entries each (see data/da_example). The data does not cover the full complexity
of real process industry data, there might be logical errors and other deviations.

README The README includes a detailed walkthrough for running the project with the
dummy data.

1https://openai.com/index/chatgpt/
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Appendix B

AI Usage Statement

In this thesis, I have used ChatGPT or another AI as follows:

• during brainstorming

• for paraphrasing related work

• for proofreading and optimizing

• for the development of software source texts

• for optimizing and restructuring software source texts

• for creating dummy data

I hereby declare that I have stated all uses completely.
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