
Preprint from https://www.gipp.com/pub/
André Greiner-Petter et al. “Comparative Verification of the Digital Library of
Mathematical Functions and Computer Algebra Systems”. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Cham: Springer International Publishing, Apr. 2022, pp. 87–105. doi:
10.1007/978-3-030-99524-9_5

Comparative Verification
of the Digital Library of Mathematical

Functions and Computer Algebra Systems

André Greiner-Petter1(�) , Howard S. Cohl2 , Abdou Youssef 2,3,
Moritz Schubotz1,4 , Avi Trost5, Rajen Dey6, Akiko Aizawa7 , and Bela Gipp1

1 University of Wuppertal, Wuppertal, Germany,
{greinerpetter,schubotz,gipp}@uni-wuppertal.de

2 National Institute of Standards and Technology,
Mission Viejo, CA, U.S.A., howard.cohl@nist.gov

3 George Washington University, Washington, D.C., U.S.A, ayoussef@gwu.edu
4 FIZ Karlsruhe, Berlin, Germany, moritz.schubotz@fiz-karlsruhe.de

5 Brown University, Providence, RI, U.S.A., avitrost@gmail.com
6 University of California Berkeley, Berkeley, CA, U.S.A., rajhataj@gmail.com

7 National Institute of Informatics, Tokyo, Japan, aizawa@nii.ac.jp

Abstract. Digital mathematical libraries assemble the knowledge of years
of mathematical research. Numerous disciplines (e.g., physics, engineering,
pure and applied mathematics) rely heavily on compendia gathered findings.
Likewise, modern research applications rely more and more on computational
solutions, which are often calculated and verified by computer algebra systems.
Hence, the correctness, accuracy, and reliability of both digital mathematical
libraries and computer algebra systems is a crucial attribute for modern
research. In this paper, we present a novel approach to verify a digital math-
ematical library and two computer algebra systems with one another by
converting mathematical expressions from one system to the other. We use
our previously developed conversion tool (referred to as LACAST) to translate
formulae from the NIST Digital Library of Mathematical Functions to the
computer algebra systems Maple and Mathematica. The contributions of
our presented work are as follows: (1) we present the most comprehensive
verification of computer algebra systems and digital mathematical libraries
with one another; (2) we significantly enhance the performance of the un-
derlying translator in terms of coverage and accuracy; and (3) we provide
open access to translations for Maple and Mathematica of the formulae in
the NIST Digital Library of Mathematical Functions.

Keywords: Presentation to Computation, LaCASt, LaTeX, Semantic La-
TeX, Computer Algebra Systems, Digital Mathematical Library

https://www.gipp.com/pub/
https://doi.org/10.1007/978-3-030-99524-9_5
http://orcid.org/0000-0002-5828-5497
http://orcid.org/0000-0002-9398-455X
http://orcid.org/0000-0001-7141-4997
http://orcid.org/0000-0001-6544-5076
http://orcid.org/0000-0001-6522-3019

2 A. Greiner-Petter et al.

1 Introduction

Digital Mathematical Libraries (DML) gather the knowledge and results from thou-
sands of years of mathematical research. Even though pure and applied mathematics
are precise disciplines, gathering their knowledge bases over many years results in
issues which every digital library shares: consistency, completeness, and accuracy.
Likewise, Computer Algebra Systems (CAS)8 play a crucial role in the modern era
for pure and applied mathematics, and those fields which rely on them. CAS can
be used to simplify, manipulate, compute, and visualize mathematical expressions.
Accordingly, modern research regularly uses DML and CAS together. Nonetheless,
DML [8, 19] and CAS [1, 12, 25] are not exempt from having bugs or errors. Durán
et al. [12] even raised the rather dramatic question: “can we trust in [CAS]?”

Existing comprehensive DML, such as the Digital Library of Mathematical Func-
tions (DLMF) [11], are consistently updated and frequently corrected with errata9.
Although each chapter of the DLMF has been carefully written, edited, validated,
and proofread over many years, errors still remain. Maintaining a DML, such as the
DLMF, is a laborious process. Likewise, CAS are eminently complex systems, and in
the case of commercial products, often similar to black boxes in which the magic (i.e.,
the computations) happens in opaque private code [12]. CAS, especially commercial
products, are often exclusively tested internally during development.

An independent examination process can improve testing and increase trust in the
systems and libraries. Hence, we want to elaborate on the following research question.

How can digital mathematical libraries and computer algebra systems be utilized
to improve and verify one another?

Our initial approach for answering this question is inspired by our previous studies
on translating DLMF equations to CAS [8]. In order to verify a translation tool from
a specific LATEX dialect to Maple10. , we performed symbolic and numeric evaluations
on equations from the DLMF. Our approach presumes that a proven equation in a
DML must be also valid in a CAS. In turn, a disparity in between the DML and
CAS would lead to an issue in the translation process. However, assuming a correct
translation, a disparity would also indicate an issue either in the DML source or
the CAS implementation. In turn, we can take advantage of the same approach to
improve and even verify DML with CAS and vice versa. Unfortunately, previous
efforts to translate mathematical expressions from various formats, such as LATEX [9,
19, 34], MathML [36], or OpenMath [22, 35], to CAS syntax have shown that the
translation will be the most critical part of this verification approach.
8 In the sequel, the acronyms CAS and DML are used, depending on the context, inter-

changeably with their plurals.
9 https://dlmf.nist.gov/errata/ [accessed 09/01/2021]

10 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards and
Technology, nor does it imply that the products so identified are necessarily the best
available for the purpose. All trademarks mentioned herein belong to their respective
owners.

https://dlmf.nist.gov/errata/

1. INTRODUCTION 3

In this paper, we elaborate on the feasibility and limitations of the translation
approach from DML to CAS as a possible answer to our research question. We
further focus on the DLMF as our DML and the two general-purpose CAS Maple
and Mathematica for this first study. This relatively sharp limitation is necessary in
order to analyze the capabilities of the underlying approach to verify commercial CAS
and large DML. The DLMF uses semantic macros internally in order to disambiguate
mathematical expressions [32, 40]. These macros help to mitigate the open issue
of retrieving sufficient semantic information from a context to perform translations
to formal languages [19, 36]. Further, the DLMF and general-purpose CAS have a
relatively large overlap in coverage of special functions and orthogonal polynomials.
Since many of those functions play a crucial role in a large variety of different research
fields, we focus in this study mainly on these functions. Lastly, we will take our
previously developed translation tool LACAST [9, 19] as the baseline for translations
from the DLMF to Maple. In this successor project, we focus on improving LACAST
to minimize the negative effect of wrong translations as much as possible for our
study. In the future, other DML and CAS can be improved and verified following
the same approach by using a different translation approach depending on the data
of the DML, e.g., MathML [36] or OpenMath [22].

In particular, in this paper, we fix the majority of the remaining issues of LACAST [8],
which allows our tool to translate twice as many expressions from the DLMF to the
CAS as before. Current extensions include the support for the mathematical opera-
tors: sum, product, limit, and integral, as well as overcoming semantic hurdles associ-
ated with Lagrange (prime) notations commonly used for differentiation. Further, we
extend its support to include Mathematica using the freely available Wolfram Engine
for Developers (WED)11 (hereafter, with Mathematica, we refer to the WED). These
improvements allow us to cover a larger portion of the DLMF, increase the reliability
of the translations via LACAST, and allow for comparisons between two major general-
purpose CAS for the first time, namely Maple and Mathematica. Finally, we provide
open access to all the results contained within this paper, including all translations
of DLMF formulae, an endpoint to LACAST12, and the full source code of LACAST13.

The paper is structured as follows. Section 2 explains the data in the DLMF.
Section 3 focus on the improvements of LACAST that had been made to make the trans-
lation as comprehensive and reliable as possible for the upcoming evaluation. Section 4
explains the symbolic and numeric evaluation pipeline. Since Cohl et al. [8] only briefly
sketched the approach of a numeric evaluation, we will provide an in-depth discussion
of that process in Section 4. Subsequently, we analyze the results in Section 5. Finally,
we conclude the findings and provide an outlook for upcoming projects in Section 6.

1.1 Related Work

Existing verification techniques for CAS often focus on specific subroutines or func-
tions [6, 7, 13, 21, 25, 26, 30, 31], such as a specific theorems [28], differential
11 https://www.wolfram.com/engine/ [accessed 09/01/2021]
12 https://lacast.wmflabs.org/ [accessed 01/01/2022]
13 https://github.com/ag-gipp/LaCASt [accessed 04/01/2022]

https://www.wolfram.com/engine/
https://lacast.wmflabs.org/
https://github.com/ag-gipp/LaCASt

4 A. Greiner-Petter et al.

equations [23], or the implementation of the math.h library [29]. Most common are
verification approaches that rely on intermediate verification languages [6, 21, 23, 25,
26], such as Boogie [2, 30] or Why3 [5, 26], which, in turn, rely on proof assistants
and theorem provers, such as Coq [4, 6], Isabelle [23, 33], or HOL Light [20, 21,
25]. Kaliszyk and Wiedijk [25] proposed on entire new CAS which is built on top
of the proof assistant HOL Light so that each simplification step can be proven by
the underlying architecture. Lewis and Wester [31] manually compared the symbolic
computations on polynomials and matrices with seven CAS. Aguirregabiria et al. [1]
suggested to teach students the known traps and difficulties with evaluations in CAS
instead to reduce the overreliance on computational solutions.

Cohl et al. [8] developed the aforementioned translation tool LACAST, which trans-
lates expressions from a semantically enhanced LATEX dialect to Maple. By evaluating
the performance and accuracy of the translations, we were able to discover a sign-error
in one the DLMF’s equations [8]. While the evaluation was not intended to verify
the DLMF, the translations by the rule-based translator LACAST provided sufficient
robustness to identify issues in the underlying library. To the best of our knowledge,
besides this related evaluation via LACAST, there are no existing libraries or tools that
allow for automatic verification of DML.

2 The DLMF dataset

In the modern era, most mathematical texts (handbooks, journal publications, mag-
azines, monographs, treatises, proceedings, etc.) are written using the document
preparation system LATEX. However, the focus of LATEX is for precise control of the
rendering mechanics rather than for a semantic description of its content. In contrast,
CAS syntax is coercively unambiguous in order to interpret the input correctly.
Hence, a transformation tool from DML to CAS must disambiguate mathematical
expressions. While there is an ongoing effort towards such a process [18, 27, 37, 38, 39,
41], there is no reliable tool available to disambiguate mathematics sufficiently to date.

The DLMF contains numerous relations between functions and many other
properties. It is written in LATEX but uses specific semantic macros when applicable [40].
These semantic macros represent a unique function or polynomial defined in the DLMF.
Hence, the semantic LATEX used in the DLMF is often unambiguous. For a successful
evaluation via CAS, we also need to utilize all requirements of an equation, such as
constraints, domains, or substitutions. The DLMF provides this additional data too
and generally in a machine-readable form [40]. This data is accessible via the i-boxes
(information boxes next to an equation marked with the icon). If the information
is not given in the attached i-box or the information is incorrect, the translation via
LACAST would fail. The i-boxes, however, do not contain information about branch cuts
(see Section B) or constraints. Constraints are accessible if they are directly attached
to an equation. If they appear in the text (or even a title), LACAST cannot utilize them.
The test dataset, we are using, was generated from DLMF Version 1.1.3 (2021-09-15)
and contained 9,977 formulae with 1,505 defined symbols, 50,590 used symbols, 2,691
constraints, and 2,443 warnings for non-semantic expressions, i.e., expressions without

3. SEMANTIC LATEX TO CAS TRANSLATION 5

semantic macros [40]. Note that the DLMF does not provide access to the underlying
LATEX source. Therefore, we added the source of every equation to our result dataset.

3 Semantic LATEX to CAS translation

The aforementioned translator LACAST was developed by Cohl and Greiner-Petter et
al. [8, 9, 19]. They reported a coverage of 58.8% translations for a manually selected
part of the DLMF to the CAS Maple. This version of LACAST serves as a baseline
for our improvements. In order to verify their translations, they used symbolic and
numeric evaluations and reported a success rate of ∼16% for symbolic and ∼12%
for numeric verifications.

Evaluating the baseline on the entire DLMF result in a coverage of only 31.6%.
Hence, we first want to increase the coverage of LACAST on the DLMF. To achieve this
goal, we first increasing the number of translatable semantic macros by manually defin-
ing more translation patterns for special functions and orthogonal polynomials. For
Maple, we increased the number from 201 to 261. For Mathematica, we define 279 new
translation patterns which enables LACAST to perform translations to Mathematica.
Even though the DLMF uses 675 distinguished semantic macros, we cover ∼70% of
all DLMF equations with our extended list of translation patterns (see Zipf’s law for
mathematical notations [17]). In addition, we implemented rules for translations that
are applicable in the context of the DLMF, e.g., ignore ellipsis following floating-point
values or \choose always refers to a binomial expression. Finally, we tackle the remain-
ing issues outlined by Cohl et al. [8] which can be categorized into three groups: (i)
expressions of which the arguments of operators are not clear, namely sums, products,
integrals, and limits; (ii) expressions with prime symbols indicating differentiation; and
(iii) expressions that contain ellipsis. While we solve some of the cases in Group (iii) by
ignoring ellipsis following floating-point values, most of these cases remain unresolved.
In the following, we elaborate our solutions for (i) in Section 3.1 and (ii) in Section 3.2.

3.1 Parse sums, products, integrals, and limits

Here we consider common notations for the sum, product, integral, and limit operators.
For these operators, one may consider mathematically essential operator metadata
(MEOM). For all these operators, the MEOM includes argument(s) and bound vari-
able(s). The operators act on the arguments, which are themselves functions of the
bound variable(s). For sums and products, the bound variables are referred to as
indices. The bound variables for integrals14 are called integration variables. For limits,
the bound variables are continuous variables (for limits of continuous functions) and
indices (for limits of sequences). For integrals, MEOM include precise descriptions of
regions of integration (e.g., piecewise continuous paths/intervals/regions). For limits,
MEOM include limit points (e.g., points in Rn or Cn for n∈N), as well as information
related to whether the limit to the limit point is independent or dependent on the
direction in which the limit is taken (e.g., one-sided limits).
14 The notion of integrals includes: antiderivatives (indefinite integrals), definite integrals,

contour integrals, multiple (surface, volume, etc.) integrals, Riemannian volume integrals,
Riemann integrals, Lebesgue integrals, Cauchy principal value integrals, etc.

6 A. Greiner-Petter et al.

For a translation of mathematical expressions involving the LATEX commands
\sum, \int, \prod, and \lim, we must extract the MEOM. This is achieved by (a)
determining the argument of the operator and (b) parsing corresponding subscripts,
superscripts, and arguments. For integrals, the MEOM may be complicated, but cer-
tainly contains the argument (function which will be integrated), bound (integration)
variable(s) and details related to the region of integration. Bound variable extraction
is usually straightforward since it is usually contained within a differential expression
(infinitesimal, pushforward, differential 1-form, exterior derivative, measure, etc.),
e.g., dx. Argument extraction is less straightforward since even though differential
expressions are often given at the end of the argument, sometimes the differential
expression appears in the numerator of a fraction (e.g.,

∫ f(x)dx
g(x)). In which case, the

argument is everything to the right of the \int (neglecting its subscripts and super-
scripts) up to and including the fraction involving the differential expression (which
may be replaced with 1). In cases where the differential expression is fully to the right
of the argument, then it is a termination symbol. Note that some scientists use an
alternate notation for integrals where the differential expression appears immediately
to the right of the integral, e.g.,

∫
dxf(x). However, this notation does not appear

in the DLMF. If such notations are encountered, we follow the same approach that
we used for sums, products, and limits (see Section 3.1).

Extraction of variables and corresponding MEOM The subscripts and super-
scripts of sums, products, limits, and integrals may be different for different notations
and are therefore challenging to parse. For integrals, we extract the bound (integra-
tion) variable from the differential expression. For sums and products, the upper
and lower bounds may appear in the subscript or superscript. Parsing subscripts is
comparable with the problem of parsing constraints [8] (which are often not consis-
tently formulated). We overcame this complexity by manually defining patterns of
common constraints and refer to them as blueprints. This blueprint pattern approach
allows LACAST to identify the MEOM in the sub- and superscripts. A more detailed
explanations with examples about the blueprints is available in the Appendix A.

Identification of operator arguments Once we have extracted the bound variable
for sums, products, and limits, we need to determine the end of the argument. We
analyzed all sums in the DLMF and developed a heuristic that covers all the formulae
in the DLMF and potentially a large portion of general mathematics. Let x be the
extracted bound variable. For sums, we consider a summand as a part of the argument
if (I) it is the very first summand after the operation; or (II) x is an element of the
current summand; or (III) x is an element of the following summand (subsequent
to the current summand) and there is no termination symbol between the current
summand and the summand which contains x with an equal or lower depth according
to the parse tree (i.e., closer to the root). We consider a summand as a single logical
construct since addition and subtraction are granted a lower operator precedence than
multiplication in mathematical expressions. Similarly, parentheses are granted higher
precedence and, thus, a sequence wrapped in parentheses is part of the argument if

3. SEMANTIC LATEX TO CAS TRANSLATION 7

it obeys the rules (I-III). Summands, and such sequences, are always entirely part
of sums, products, and limits or entirely not.

A termination symbol always marks the end of the argument list. Termination
symbols are relation symbols, e.g., =, ≠, ≤, closing parentheses or brackets, e.g.,
),], or >, and other operators with MEOMs, if and only if, they define the same
bound variable. If x is part of a subsequent operation, then the following operator
is considered as part of the argument (as in (II)). However, a special condition for
termination symbols is that it is only a termination symbol for the current chain of
arguments. Consider a sum over a fraction of sums. In that case, we may reach a
termination symbol within the fraction. However, the termination symbol would be
deeper inside the parse tree as compared to the current list of arguments. Hence, we
used the depth to determine if a termination symbol should be recognized or not.
Consider an unusual notation with the binomial coefficient as an example

n∑
k=0

(
n

k

)
=

n∑
k=0

∏n
m=1m∏k

m=1m
∏n−k

m=1m
. (1)

∑N
n=1c +2∑N
n=1c+ c

n∑N
n=1c+n2 +N∑N
n=1n +

∑N
k=1k∑N

n=1n+
∑n

k=1k

∑N
n=1c+

∑N
k=1k +n

Fig. 1: Example argu-
ment identifications for
sums.

This equation contains two termination symbols, marked
red and green. The red termination symbol = is obviously
for the first sum on the left-hand side of the equation. The
green termination symbol

∏
terminates the product to the

left because both products run over the same bound variable
m. In addition, none of the other = signs are termination
symbols for the sum on the right-hand side of the equation
because they are deeper in the parse tree and thus do not
terminate the sum.

Note that varN in the blueprints also matches multiple
bound variable, e.g.,

∑
m,k∈A. In such cases, x from above

is a list of bound variables and a summand is part of the
argument if one of the elements of x is within this summand.
Due to the translation, the operation will be split into two
preceding operations, i.e.,

∑
m,k∈A becomes

∑
m∈A

∑
k∈A.

Figure 1 shows the extracted arguments for some example
sums. The same rules apply for extraction of arguments for
products and limits.

3.2 Lagrange’s notation for differentiation and derivatives

Another remaining issue is the Lagrange (prime) notation for differentiation, since it
does not outwardly provide sufficient semantic information. This notation presents
two challenges. First, we do not know with respect to which variable the differentiation
should be performed. Consider for example the Hurwitz zeta function ζ(s,a) [11,
§25.11]. In the case of a differentiation ζ′(s,a), it is not clear if the function should be
differentiated with respect to s or a. To remedy this issue, we analyzed all formulae
in the DLMF which use prime notations and determined which variables (slots) for
which functions represent the variables of the differentiation. Based on our analysis, we

https://dlmf.nist.gov/25.11

8 A. Greiner-Petter et al.

extended the translation patterns by meta information for semantic macros according
to the slot of differentiation. For instance, in the case of the Hurwitz zeta function,
the first slot is the slot for prime differentiation, i.e., ζ′(s,a)= d

dsζ(s,a). The identified
variables of differentiations for the special functions in the DLMF can be considered
to be the standard slots of differentiations, e.g., in other DML, ζ′(s,a) most likely
refers to d

dsζ(s,a).
The second challenge occurs if the slot of differentiation contains complex expres-

sions rather than single symbols, e.g., ζ′(s2,a). In this case, ζ′(s2,a) = d
d(s2)ζ(s2,a)

instead of d
dsζ(s2,a). Since CAS often do not support derivatives with respect to

complex expressions, we use the inbuilt substitution functions15 in the CAS to over-
come this issue. To do so, we use a temporary variable temp for the substitution.
CAS perform substitutions from the inside to the outside. Hence, we can use the
same temporary variable temp even for nested substitutions. Table 1 shows the
translation performed for ζ′(s2,a). CAS may provide optional arguments to calculate
the derivatives for certain special functions, e.g., Zeta(n,z,a) in Maple for the n-th
derivative of the Hurwitz zeta function. However, this shorthand notation is generally
not supported (e.g., Mathematica does not define such an optional parameter). Our
substitution approach is more lengthy but also more reliable. Unfortunately, lengthy
expressions generally harm the performance of CAS, especially for symbolic manipula-
tions. Hence, we have a genuine interest in keeping translations short, straightforward
and readable. Thus, the substitution translation pattern is only triggered if the
variable of differentiation is not a single identifier. Note that this substitution only
triggers on semantic macros. Generic functions, including prime notations, are still
skipped.

Table 1: Example translations for the prime
derivative of the Hurwitz zeta function with
respect to s2.

System ζ′(s2,a)
DLMF \Hurwitzzeta’@{s^2}{a}
Maple subs(temp=(s)^(2),diff(

Zeta(0,temp,a),temp$(1)))
Mathe- D[HurwitzZeta[temp,a],
matica {temp,1}]/.temp->(s)^(2)

A related problem to MEOM of
sums, products, integrals, limits, and
differentiations are the notations of
derivatives. The semantic macro for
derivatives \deriv{w}{x} (rendered
as dw

dx) is often used with an empty
first argument to render the function
behind the derivative notation, e.g.,
\deriv{}{x}\sin@{x} for d

dx sin x.
This leads to the same problem we
faced above for identifying MEOMs.
In this case, we use the same heuris-
tic as we did for sums, products, and limits. Note that derivatives may be written
following the function argument, e.g., sin(x) d

dx . If we are unable to identify any
following summand that contains the variable of differentiation before we reach a
termination symbol, we look for arguments prior to the derivative according to the
heuristic (I-III).
15 Note that Maple also support an evaluation substitution via the two-argument eval

function. Since our substitution only triggers on semantic macros, we only use subs if the
function is defined in Maple. In turn, as far as we know, there is no practical difference
between subs and the two-argument eval in our case.

4. EVALUATION OF THE DLMF USING CAS 9

Wronskians With the support of prime differentiation described above, we are
also able to translate the Wronskian [11, (1.13.4)] to Maple and Mathematica. A
translation requires one to identify the variable of differentiation from the elements
of the Wronskian, e.g., z for W {Ai(z),Bi(z)} from [11, (9.2.7)]. We analyzed all
Wronskians in the DLMF and discovered that most Wronskians have a special
function in its argument—such as the example above. Hence, we can use our previously
inserted metadata information about the slots of differentiation to extract the variable
of differentiation from the semantic macros. If the semantic macro argument is a
complex expression, we search for the identifier in the arguments that appear in both
elements of the Wronskian. For example, in W {Ai(za),ζ(z2,a)}, we extract z as the
variable since it is the only identifier that appears in the arguments za and z2 of the
elements. This approach is also used when there is no semantic macro involved, i.e.,
from W {za,z2} we extract z as well. If LACAST extracts multiple candidates or none,
it throws a translation exception.

4 Evaluation of the DLMF using CAS
Digital Library of Mathematical Functions Constraint Blueprints

=- \pm\frac12

Numeric Test
Value Filter

LaCASt
Translator

Symbolic
Evaluator

2,509 (≈ 37.9%)

1,910 (≈ 28.9%)

Workflow

Constraints
Success
Failure

Mathematica

1,357 (≈ 51.8%)

1,784 (≈ 51.4%)

1

2
−
1

2

698 (≈ 26.7%)

784 (≈ 22.6%)

1,084 (≈ 26.3%)

1,235 (≈ 26.2%)

∈ ℂ ∖ [1,∞) 1/2

Numeric
Evaluator

Test Def.

EQR
H

S

LH
S

𝐋 − 𝐑 = 0

Test Values
𝑒2𝑖𝜋/3

𝑒−5𝑖𝜋/6

𝑒𝑖𝜋/6

𝑒−𝑖𝜋/3

©Wolfram Research, Inc.

©Maplesoft, Inc.

1
.2

.1

𝑘: integer
𝑛: nonnegative integer

𝑘: integer
𝑛: nonnegative integer

LHS RHS

LHS 𝑛
𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!

EQ RHS

EQ𝑛!

𝑛 − 𝑘 ! 𝑘!
=

𝑛
𝑛 − 𝑘

1
.2

.1

𝑛
𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!
=

𝑛
𝑛 − 𝑘 1

.2
.1

𝑛
𝑘

:
binomial
coefficient

!: factorial
𝑘: integer

𝑛: nonnegative
integer C

as
e

A
n

al
yz

er

Substitutions

𝑛,𝑚, 𝑘, ℓ, 𝑙, 𝑖, 𝑗, 𝜖, 𝜀 ∈ {1,2,3}

±1/2

±1/2

±3/2

±3/2

2

−2

Constraints
𝑥, 𝛼, 𝛽 > 0

−𝜋 < ph 𝑧 < 𝜋

𝑥, 𝑦, 𝑎, 𝑏, 𝑐,
𝑟, 𝑠, 𝑡, 𝛼, 𝛽 ∈ ℝ

Case Filter

Fig. 2: The workflow of the evaluation engine and the overall results. Errors and
abortions are not included. The generated dataset contains 9,977 equations. In total,
the case analyzer splits the data into 10,930 cases of which 4,307 cases were filtered.
This sums up to a set of 6,623 test cases in total.

For evaluating the DLMF with Maple and Mathematica, we follow the same
approach as demonstrated in [8], i.e., we symbolically and numerically verify the
equations in the DLMF with CAS. If a verification fails, symbolically and numerically,
we identified an issue either in the DLMF, the CAS, or the verification pipeline.
Note that an issue does not necessarily represent errors/bugs in the DLMF, CAS,
or LACAST (see the discussion about branch cuts in Section B). Figure 2 illustrates
the pipeline of the evaluation engine. First, we analyze every equation in the DLMF
(hereafter referred to as test cases). A case analyzer splits multiple relations in a single
line into multiple test cases. Note that only the adjacent relations are considered,
i.e., with f(z)=g(z)=h(z), we generate two test cases f(z)=g(z) and g(z)=h(z)
but not f(z)=h(z). In addition, expressions with ± and ∓ are split accordingly, e.g.,
i±i =e∓π/2 [11, (4.4.12)] is split into i+i =e−π/2 and i−i =e+π/2. The analyzer utilizes

https://dlmf.nist.gov/1.13.E4
https://dlmf.nist.gov/9.2.E7
https://dlmf.nist.gov/4.4.E12

10 A. Greiner-Petter et al.

the attached additional information in each line, i.e., the URL in the DLMF, the
used and defined symbols, and the constraints. If a used symbol is defined elsewhere
in the DLMF, it performs substitutions. For example, the multi-equation [11, (9.6.2)]
is split into six test cases and every ζ is replaced by 2

3z3/2 as defined in [11, (9.6.1)].
The substitution is performed on the parse tree of expressions [19]. A definition is
only considered as such, if the defining symbol is identical to the equation’s left-hand
side. That means, z = (3

2ζ)3/2 [11, (9.6.10)] is not considered as a definition for ζ.
Further, semantic macros are never substituted by their definitions. Translations for
semantic macros are exclusively defined by the authors. For example, the equation [11,
(11.5.2)] contains the Struve Kν(z) function. Since Mathematica does not contain
this function, we defined an alternative translation to its definition Hν(z)−Yν(z) in
[11, (11.2.5)] with the Struve function Hν(z) and the Bessel function of the second
kind Yν(z), because both of these functions are supported by Mathematica. The
second entry in Table 3 in the Appendix D shows the translation for this test case.

Next, the analyzer checks for additional constraints defined by the used symbols
recursively. The mentioned Struve Kν(z) test case [11, (11.5.2)] contains the Gamma
function. Since the definition of the Gamma function [11, (5.2.1)] has a constraint
ℜz >0, the numeric evaluation must respect this constraint too. For this purpose,
the case analyzer first tries to link the variables in constraints to the arguments
of the functions. For example, the constraint ℜz > 0 sets a constraint for the first
argument z of the Gamma function. Next, we check all arguments in the actual test
case at the same position. The test case contains Γ(ν+1/2). In turn, the variable z
in the constraint of the definition of the Gamma function ℜz>0 is replaced by the
actual argument used in the test case. This adds the constraint ℜ(ν+1/2)>0 to the
test case. This process is performed recursively. If a constraint does not contain any
variable that is used in the final test case, the constraint is dropped.

In total, the case analyzer would identify four additional constraints for the test
case [11, (11.5.2)]. Table 3 in the Appendix D shows the applied constraints (including
the directly attached constraint ℜz>0 and the manually defined global constraints
from Figure 3). Note that the constraints may contain variables that do not appear
in the actual test case, such as ℜν+k+1>0. Such constraints do not have any effect
on the evaluation because if a constraint cannot be computed to true or false, the
constraint is ignored. Unfortunately, this recursive loading of additional constraints
may generate impossible conditions in certain cases, such as |Γ(iy)| [11, (5.4.3)]. There
are no valid real values of y such that ℜ(iy)>0. In turn, every test value would be
filtered out, and the numeric evaluation would not verify the equation. However, such
cases are the minority and we were able to increase the number of correct evaluations
with this feature.

To avoid a large portion of incorrect calculations, the analyzer filters the dataset
before translating the test cases. We apply two filter rules to the case analyzer. First,
we filter expressions that do not contain any semantic macros. Due to the limitations
of LACAST, these expressions most likely result in wrong translations. Further, it filters
out several meaningless expressions that are not verifiable, such as z = x in [11,
(4.2.4)]. The result dataset flag these cases with ‘Skipped - no semantic math’. Note
that the result dataset still contains the translations for these cases to provide a

https://dlmf.nist.gov/9.6.E2
https://dlmf.nist.gov/9.6.E1
https://dlmf.nist.gov/9.6.E10
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.2.E5
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/5.2.E1
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/5.4.E3
https://dlmf.nist.gov/4.2.E4

4. EVALUATION OF THE DLMF USING CAS 11

complete picture of the DLMF. Second, we filter expressions that contain ellipsis16

(e.g., \cdots), approximations, and asymptotics (e.g., O(z2)) since those expressions
cannot be evaluated with the proposed approach. Further, a definition is skipped if it is
not a definition of a semantic macro, such as [11, (2.3.13)], because definitions without
an appropriate counterpart in the CAS are meaningless to evaluate. Definitions of
semantic macros, on the other hand, are of special interest and remain in the test set
since they allow us to test if a function in the CAS obeys the actual mathematical
definition in the DLMF. If the case analyzer (see Figure 2) is unable to detect a
relation, i.e., split an expression on <, ≤, ≥, >, =, or ≠, the line in the dataset is also
skipped because the evaluation approach relies on relations to test. After splitting
multi-equations (e.g., ±, ∓, a = b = c), filtering out all non-semantic expressions,
non-semantic macro definitions, ellipsis, approximations, and asymptotics, we end up
with 6,623 test cases in total from the entire DLMF.

After generating the test case with all constraints, we translate the expression to
the CAS representation. Every successfully translated test case is then symbolically
verified, i.e., the CAS tries to simplify the difference of an equation to zero. Non-
equation relations simplifies to Booleans. Non-simplified expressions are verified
numerically for manually defined test values, i.e., we calculate actual numeric values
for both sides of an equation and check their equivalence.

4.1 Symbolic Evaluation
The symbolic evaluation was performed for Maple as in [8]. However, we use the
newer version Maple 2020. Another feature we added to LACAST is the support of
packages in Maple. Some functions are only available in modules (packages) that
must be preloaded, such as QPochhammer in the package QDifferenceEquations17.
The general simplify method in Maple does not cover q-hypergeometric functions.
Hence, whenever LACAST loads functions from the q-hyper-geometric package, the
better performing QSimplify method is used. With the WED and the new support for
Mathematica in LACAST, we perform the symbolic and numeric tests for Mathematica
as well. The symbolic evaluation in Mathematica relies on the full simplification18. For
Maple and Mathematica, we defined the global assumptions x,y∈R and k,n,m∈N.
Constraints of test cases are added to their assumptions to support simplification.
Adding more global assumptions for symbolic computation generally harms the
performance since CAS internally uses assumptions for simplifications. It turned
out that by adding more custom assumptions, the number of successfully simplified
expressions decreases.

4.2 Numerical Evaluation
Defining an accurate test set of values to analyze an equivalence can be an arbitrarily
complex process. It would make sense that every expression is tested on specific values
according to the containing functions. However, this laborious process is not suitable
16 Note that we filter out ellipsis (e.g., \cdots) but not single dots (e.g., \cdot).
17 https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/

QPochhammer [accessed 09/01/2021]
18 https://reference.wolfram.com/language/ref/FullSimplify.html

[accessed 09/01/2021]

https://dlmf.nist.gov/2.3.13
https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://reference.wolfram.com/language/ref/FullSimplify.html

12 A. Greiner-Petter et al.

for evaluating the entire DML and CAS. It makes more sense to develop a general set
of test values that (i) generally covers interesting domains and (ii) avoid singularities,
branch cuts, and similar problematic regions. Considering these two attributes, we
come up with the ten test points illustrated in Figure 3. It contains four complex
values on the unit circle and six points on the real axis. The test values cover the
general area of interest (complex values in all four quadrants, negative and positive
real values) and avoid the typical singularities at {0,±1,±i}. In addition, several
variables are tied to specific values for entire sections. Hence, we applied additional
global constraints to the test cases.

ℑ

ℜ

Test Values

−1
2−3

2−2 1
2

3
2 2

e
iπ
6

e
2iπ
3

e
−iπ

3
e

−5iπ
6

Special Test Values
n,m,k,ℓ,l,i,j,ϵ,ε∈{1,2,3}

Global Constraints
x,α,β>0

−π<ph(z)<π
x,y,a,b,c,r,s,t,α,β∈R

Fig. 3: The ten numeric test values in the com-
plex plane for general variables. The dashed line
represents the unit circle |z| = 1. At the right,
we show the set of values for special variable
values and general global constraints. On the
right, i is referring to a generic variable and not
to the imaginary unit.

The numeric evaluation engine
heavily relies on the performance of
extracting free variables from an ex-
pression. Unfortunately, the inbuilt
functions in CAS, if available, are
not very reliable. As the authors ex-
plained in [8], a custom algorithm
within Maple was necessary to
extract identifiers. Mathematica
has the undocumented function
Reduce‘FreeVariables for this
purpose. However, both systems,
the custom solution in Maple and
the inbuilt Mathematica function,
have problems distinguishing free variables of entire expressions from the bound
variables in MEOMs, e.g., integration and continuous variables. Mathematica some-
times does not extract a variable but returns the unevaluated input instead. We
regularly faced this issue for integrals. However, we discovered one example without
integrals. For EulerE[n,0] from [11, (24.4.26)], we expected to extract {n} as the
set of free variables but instead received a set of the unevaluated expression itself
{EulerE[n,0]}19. Since the extended version of LACAST handles operators, including
bound variables of MEOMs, we drop the use of internal methods in CAS and extend
LACAST to extract identifiers from an expression. During a translation process, LACAST
tags every single identifier as a variable, as long as it is not an element of a MEOM.
This simple approach proves to be very efficient since it is implemented alongside the
translation process itself and is already more powerful as compared to the existing
inbuilt CAS solutions. We defined subscripts of identifiers as a part of the identifier,
e.g., z1 and z2 are extracted as variables from z1+z2 rather than z.

The general pipeline for a numeric evaluation works as follows. First, we replace
all substitutions and extract the variables from the left- and right-hand sides of
the test expression via LACAST. For the previously mentioned example of the Struve
function [11, (11.5.2)], LACAST identifies two variables in the expression, ν and z.
According to the values in Figure 3, ν and z are set to the general ten values. A
numeric test contains every combination of test values for all variables. Hence, we
generate 100 test calculations for [11, (11.5.2)]. Afterward, we filter the test values
19 The bug was reported to and confirmed by Wolfram Research Version 12.0.

https://dlmf.nist.gov/24.4.E26
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.5.E2

5. RESULTS 13

that violate the attached constraints. In the case of the Struve function, we end up
with 25 test cases.

In addition, we apply a limit of 300 calculations for each test case and abort
a computation after 30 seconds due to computational limitations. If the test case
generates more than 300 test values, only the first 300 are used. Finally, we calculate
the result for every remaining test value, i.e., we replace every variable by their value
and calculate the result. The replacement is done by Mathematica’s ReplaceAll
method because the more appropriate method With, for unknown reasons, does not
always replace all variables by their values. We wrap test expressions in Normal
for numeric evaluations to avoid conditional expressions, which may cause incorrect
calculations (see Section 5.1 for a more detailed discussion of conditional outputs).
After replacing variables by their values, we trigger numeric computation. If the
absolute value of the result (i.e., the difference between left- and right-hand side of the
equation) is below the defined threshold of 0.001 or true (in the case of inequalities),
the test calculation is considered successful. A numeric test case is only considered
successful if and only if every test calculation was successful. If a numeric test case
fails, we store the information on which values it failed and how many of these were
successful.

5 Results

The translations to Maple and Mathematica, the symbolic results, the numeric com-
putations, and an overview PDF of the reported bugs to Mathematica are available
online on our demopage. In the following, we mainly focus on Mathematica because
of page limitations and because Maple has been investigated more closely by [8]. The
results for Maple are also available online. Compared to the baseline (≈31%), our
improvements doubled the amount translations (≈62%) for Maple and reach ≈71%
for Mathematica. The majority of expressions that cannot be translated contain
macros that have no adequate translation pattern to the CAS, such as the macros for
interval Weierstrass lattice roots [11, §23.3(i)] and the multivariate hypergeometric
function [11, (19.16.9)]. Other errors (6% for Maple and Mathematica) occur for
several reasons. For example, out of the 418 errors in translations to Mathematica,
130 caused an error because the MEOM of an operator could not be extracted, 86
contained prime notations that do not refer to differentiations, 92 failed because of
the underlying LATEX parser [39], and in 46 cases, the arguments of a DLMF macro
could not be extracted.

Out of 4,713 translated expressions, 1,235 (26.2%) were successfully simplified
by Mathematica (1,084 of 4,114 or 26.3% in Maple). For Mathematica, we also
count results that are equal to 0 under certain conditions as successful (called
ConditionalExpression). We identified 65 of these conditional results: 15 of the
conditions are equal to constraints that were provided in the surrounding text but not
in the info box of the DLMF equation; 30 were produced due to branch cut issues (see
Section B); and 20 were the same as attached in the DLMF but reformulated, e.g.,
z∈C\(1,∞) from [11, (25.12.2)] was reformulated to ℑz≠0∨ℜz<1. The remaining
translated but not symbolically verified expressions were numerically evaluated for
the test values in Figure 3. For the 3,474 cases, 784 (22.6%) were successfully verified

https://dlmf.nist.gov/23.3.i
https://dlmf.nist.gov/19.16.9
https://dlmf.nist.gov/25.12.E2

14 A. Greiner-Petter et al.

numerically by Mathematica (698 of 2,618 or 26.7% by Maple20). For 1,784 the
numeric evaluation failed. In the evaluation process, 655 computations timed out
and 180 failed due to errors in Mathematica. Of the 1,784 failed cases, 691 failed
partially, i.e., there was at least one successful calculation among the tested values.
For 1,091 all test values failed. Table 3 in the Appendix D shows the results for three
sample test cases. The first case is a false positive evaluation because of a wrong
translation. The second case is valid, but the numeric evaluation failed due to a bug
in Mathematica (see next subsection). The last example is valid and was verified
numerically but was too complex for symbolic verifications.
5.1 Error Analysis

The numeric tests’ performance strongly depends on the correct attached and utilized
information. The first example in Table 3 in the Appendix D illustrates the difficulty
of the task on a relatively easy case. Here, the argument of f was not explicitly
given, such as in f(x). Hence, LACAST translated f as a variable. Unfortunately, this
resulted in a false verification symbolically and numerically. This type of error mostly
appears in the first three chapters of the DLMF because they use generic functions
frequently. We hoped to skip such cases by filtering expressions without semantic
macros. Unfortunately, this derivative notation uses the semantic macro deriv. In
the future, we filter expressions that contain semantic macros that are not linked to
a special function or orthogonal polynomial.

As an attempt to investigate the reliability of the numeric test pipeline, we can run
numeric evaluations on symbolically verified test cases. Since Mathematica already
approved a translation symbolically, the numeric test should be successful if the
pipeline is reliable. Of the 1,235 symbolically successful tests, only 94 (7.6%) failed
numerically. None of the failed test cases failed entirely, i.e., for every test case, at
least one test value was verified. Manually investigating the failed cases reveal 74 cases
that failed due to an Indeterminate response from Mathematica and 5 returned
infinity, which clearly indicates that the tested numeric values were invalid, e.g.,
due to testing on singularities. Of the remaining 15 cases, two were identical: [11,
(15.9.2)] and [11, (18.5.9)]. This reduces the remaining failed cases to 14. We evaluated
invalid values for 12 of these because the constraints for the values were given in
the surrounding text but not in the info boxes. The remaining 2 cases revealed a
bug in Mathematica regarding conditional outputs (see below). The results indicate
that the numeric test pipeline is reliable, at least for relatively simple cases that
were previously symbolically verified. The main reason for the high number of failed
numerical cases in the entire DLMF (1,784) are due to missing constraints in the
i-boxes and branch cut issues (see Section B in the Appendix), i.e., we evaluated
expressions on invalid values.

Bug reports Mathematica has trouble with certain integrals, which, by default,
generate conditional outputs if applicable. With the method Normal, we can suppress
20 Due to computational issues, 120 cases must have been skipped manually. 292 cases

resulted in an error during symbolic verification and, therefore, were skipped also for
numeric evaluations. Considering these skipped cases as failures, decreases the numerically
verified cases to 23% in Maple.

https://dlmf.nist.gov/15.9.E2
https://dlmf.nist.gov/18.5.9

6. CONCLUSION 15

conditional outputs. However, it only hides the condition rather than evaluating
the expression to a non-conditional output. For example, integral expressions in [11,
(10.9.1)] are automatically evaluated to the Bessel function J0(|z|) for the condition21

z ∈ R rather than J0(z) for all z ∈ C. Setting the GenerateConditions22 option
to None does not change the output. Normal only hides z ∈ R but still returns
J0(|z|). To fix this issue, for example in (10.9.1) and (10.9.4), we are forced to set
GenerateConditions to false.

Setting GenerateConditions to false, on the other hand, reveals severe errors
in several other cases. Consider

∫∞
z

t−1e−tdt [11, (8.4.4)], which gets evaluated to
Γ(0,z) but (condition) for ℜz >0∧ℑz =0. With GenerateConditions set to false,
the integral incorrectly evaluates to Γ(0,z)+ln(z). This happened with the 2 cases
mentioned above. With the same setting, the difference of the left- and right-hand
sides of [11, (10.43.8)] is evaluated to 0.398942 for x, ν = 1.5. If we evaluate the
same expression on x, ν = 3

2 the result is Indeterminate due to infinity. For
this issue, one may use NIntegrate rather than Integrate to compute the integral.
However, evaluating via NIntegrate decreases the number of successful numeric
evaluations in general. We have revealed errors with conditional outputs in (8.4.4),
(10.22.39), (10.43.8-10), and (11.5.2) (in [11]). In addition, we identified one critical
error in Mathematica. For [11, (18.17.47)], WED (Mathematica’s kernel) ran into
a segmentation fault (core dumped) for n > 1. The kernel of the full version of
Mathematica gracefully died without returning an output23.

Besides Mathematica, we also identified several issues in the DLMF. None of the
newly identified issues were critical, such as the reported sign error from the previous
project [8], but generally refer to missing or wrong attached semantic information.
With the generated results, we can effectively fix these errors and further semantically
enhance the DLMF. For example, some definitions are not marked as such, e.g.,
Q(z)=

∫∞
0 e−ztq(t)dt [11, (2.4.2)]. In [11, (10.24.4)], ν must be a real value but was

linked to a complex parameter and x should be positive real. An entire group of
cases [11, (10.19.10-11)] also discovered the incorrect use of semantic macros. In
these formulae, Pk(a) and Qk(a) are defined but had been incorrectly marked up as
Legendre functions going all the way back to DLMF Version 1.0.0 (May 7, 2010). In
some cases, equations are mistakenly marked as definitions, e.g., [11, (9.10.10)] and
[11, (9.13.1)] are annotated as local definitions of n. We also identified an error in
LACAST, which incorrectly translated the exponential integrals E1(z), Ei(x) and Ein(z)
(defined in [11, §6.2(i)]). A more explanatory overview of discovered, reported, and
fixed issues in the DLMF, Mathematica, and Maple is provided in the Appendix C.

6 Conclusion
We have presented a novel approach to verify the theoretical digital mathematical
library DLMF with the power of two major general-purpose computer algebra systems
Maple and Mathematica. With LACAST, we transformed the semantically enhanced
21 J0(x) with x∈R is even. Hence, J0(|z|) is correct under the given condition.
22 https://reference.wolfram.com/language/ref/GenerateConditions.html [accessed

09/01/2021]
23 All errors were reported to and partially confirmed by Wolfram Research. See Appendix C

for more information.

https://dlmf.nist.gov/10.9.1
https://dlmf.nist.gov/10.9.1
https://dlmf.nist.gov/10.9.4
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.22.39
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/11.5.2
https://dlmf.nist.gov/18.17.47
https://dlmf.nist.gov/2.4.E2
https://dlmf.nist.gov/10.24.E4
https://dlmf.nist.gov/10.19.E10
https://dlmf.nist.gov/9.10.E10
https://dlmf.nist.gov/9.13.E1
https://dlmf.nist.gov/6.2.i
https://reference.wolfram.com/language/ref/GenerateConditions.html

16 A. Greiner-Petter et al.

LATEX expressions from the DLMF to each CAS. Afterward, we symbolically and
numerically evaluated the DLMF expressions in each CAS. Our results are auspicious
and provide useful information to maintain and extend the DLMF efficiently. We
further identified several errors in Mathematica, Maple [8], the DLMF, and the
transformation tool LACAST, proving the profit of the presented verification approach.
Further, we provide open access to all results, including translations and evaluations24.
and to the source code of LACAST25.

The presented results show a promising step towards an answer for our initial
research question. By translating an equation from a DML to a CAS, automatic
verifications of that equation in the CAS allows us to detect issues in either the DML
source or the CAS implementation. Each analyzed failed verification successively
improves the DML or the CAS. Further, analyzing a large number of equations from
the DML may be used to finally verify a CAS. In addition, the approach can be
extended to cover other DML and CAS by exploiting different translation approaches,
e.g., via MathML [36] or OpenMath [22].

Nonetheless, the analysis of the results, especially for an entire DML, is cumber-
some. Minor missing semantic information, e.g., a missing constraint or not respected
branch cut positions, leads to a relatively large number of false positives, i.e., unverified
expressions correct in the DML and the CAS. This makes a generalization of the
approach challenging because all semantics of an equation must be taken into account
for a trustworthy evaluation. Furthermore, evaluating equations on a small number
of discrete values will never provide sufficient confidence to verify a formula, which
leads to an unpredictable number of true negatives, i.e., erroneous equations that
pass all tests. A more sophisticated selection of critical values or other numeric tools
with automatic results verification (such as variants of Newton’s interval method)
potentially mitigates this issue in the future. After all, we conclude that the approach
provides valuable information to complement, improve, and maintain the DLMF,
Maple, and Mathematica. A trustworthy verification, on the other hand, might be
out of reach.

6.1 Future Work
The resulting dataset provides valuable information about the differences between
CAS and the DLMF. These differences had not been largely studied in the past
and are worthy of analysis. Especially a comprehensive and machine-readable list
of branch cut positioning in different systems is a desired goal [10]. Hence, we will
continue to work closely together with the editors of the DLMF to improve further
and expand the available information on the DLMF. Finally, the numeric evaluation
approach would benefit from test values dependent on the actual functions involved.
For example, the current layout of the test values was designed to avoid problematic
regions, such as branch cuts. However, for identifying differences in the DLMF and
CAS, especially for analyzing the positioning of branch cuts, an automatic evaluation
of these particular values would be very beneficial and can be used to collect a
comprehensive, inter-system library of branch cuts. Therefore, we will further study
the possibility of linking semantic macros with numeric regions of interest.
24 https://lacast.wmflabs.org [accessed 01/01/2022]
25 https://github.com/ag-gipp/LaCASt [accessed 04/01/2022]

https://lacast.wmflabs.org
https://github.com/ag-gipp/LaCASt

6. CONCLUSION 17

Acknowledgements

We thank Jürgen Gerhard from Maplesoft for providing access and support for Maple.
We also thank the DLMF editors for their assistance and support. This work was
supported by the German Research Foundation (DFG grant no.: GI 1259/1) and the
German Academic Exchange Service (DAAD grant no.: 57515245).

References

[1] Juan M. Aguirregabiria, Anibal M. Hernández, and Martin Rivas. “Are We Careful
Enough when Using Computer Algebra?” In: Computers in Physics 8.1 (1994), pp. 56–
61. doi: 10.1063/1.4823260.

[2] Mike Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented Pro-
grams”. In: Formal Methods for Components and Objects. Springer Berlin Heidelberg,
2006, pp. 364–387. doi: 10.1007/11804192_17.

[3] Eric Temple Bell. “Exponential Polynomials”. In: The Annals of Mathematics 35.2
(Apr. 1934), p. 258. issn: 0003486X. doi: 10.2307/1968431. JSTOR: 1968431.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq´Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2004. isbn: 978-3-
642-05880-6.

[5] François Bobot et al. “Why3: Shepherd Your Herd of Provers”. In: Boogie 2011:
First International Workshop on Intermediate Verification Languages (May 2011),
pp. 53–64. url: https://hal.inria.fr/hal-00790310/document.

[6] Sylvain Boulmé et al. “On the way to certify Computer Algebra Systems”. In:
Electronic Notes in Theoretical Computer Science 23.3 (1999). CALCULEMUS 99,
Systems for Integrated Computation and Deduction (associated to FLoC’99, the 1999
Federated Logic Conference), pp. 370–385. issn: 1571-0661. doi: 10.1016/S1571-
0661(05)80609-7.

[7] Jacques Carette and Michael Kucera. “Partial evaluation of Maple”. In: Science of
Computer Programming 76.6 (June 2011), pp. 469–491. doi: 10.1016/j.scico.2010.12.
001.

[8] Howard S. Cohl, André Greiner-Petter, and Moritz Schubotz. “Automated Symbolic
and Numerical Testing of DLMF Formulae Using Computer Algebra Systems”. In:
Intelligent Computer Mathematics CICM. Vol. 11006. Springer, 2018, pp. 39–52. doi:
10.1007/978-3-319-96812-4_4.

[9] Howard S. Cohl et al. “Semantic Preserving Bijective Mappings of Mathematical
Formulae Between Document Preparation Systems and Computer Algebra Systems”.
In: Intelligent Computer Mathematics CICM. Springer, 2017, pp. 115–131. doi:
10.1007/978-3-319-62075-6_9.

[10] Robert M. Corless et al. “"According to Abramowitz and Stegun" or arccoth needn’t be
uncouth”. In: SIGSAM Bulletin 34.2 (2000), pp. 58–65. doi: 10.1145/362001.362023.

[11] DLMF. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,
Release 1.1.4 of 2022-01-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and
M. A. McClain, eds.

[12] Antonio J. Durán, Mario Pérez, and Juan L. Varona. “The Misfortunes of a Trio
of Mathematicians Using Computer Algebra Systems. Can We Trust in Them?” In:
Notices of the AMS 61.10 (2014), pp. 1249–1252.

https://doi.org/10.1063/1.4823260
https://doi.org/10.1007/11804192_17
https://doi.org/10.2307/1968431
http://www.jstor.org/stable/1968431
https://hal.inria.fr/hal-00790310/document
https://doi.org/10.1016/S1571-0661(05)80609-7
https://doi.org/10.1016/S1571-0661(05)80609-7
https://doi.org/10.1016/j.scico.2010.12.001
https://doi.org/10.1016/j.scico.2010.12.001
https://doi.org/10.1007/978-3-319-96812-4_4
https://doi.org/10.1007/978-3-319-62075-6_9
https://doi.org/10.1145/362001.362023
https://dlmf.nist.gov/

18 A. Greiner-Petter et al.

[13] Daniel Elphick, Michael Leuschel, and Simon Cox. “Partial Evaluation of MATLAB”.
In: Gen. Prog. and Component Eng. Springer, 2003, pp. 344–363. doi: 10.1007/978-3-
540-39815-8_21.

[14] Matthew England et al. “Branch cuts in Maple 17”. In: ACM Comm. Comp. Algebra
48.1/2 (2014), pp. 24–27. doi: 10.1145/2644288.2644293.

[15] F. W. J. Olver et al. NIST Handbook of Mathematical Functions. New York, NY,
USA: Cambridge University Press, 2010. isbn: 9780521140638.

[16] André Greiner-Petter et al. “Comparative Verification of the Digital Library of Math-
ematical Functions and Computer Algebra Systems”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Cham:
Springer International Publishing, Apr. 2022, pp. 87–105. doi: 10.1007/978-3-030-
99524-9_5.

[17] André Greiner-Petter et al. “Discovering Mathematical Objects of Interest - A Study
of Mathematical Notations”. In: WWW. ACM, 2020, pp. 1445–1456. doi: 10.1145/
3366423.3380218.

[18] André Greiner-Petter et al. “Making Presentation Math Computable: Proposing a
Context Sensitive Approach for Translating LaTeX to Computer Algebra Systems”. In:
International Congress of Mathematical Software (ICMS). Vol. 12097. Lecture Notes in
Computer Science. Springer, 2020, pp. 335–341. doi: 10.1007/978-3-030-52200-1_33.

[19] André Greiner-Petter et al. “Semantic Preserving Bijective Mappings for Expressions
Involving Special Functions between Computer Algebra Systems and Document
Preparation Systems”. In: Aslib Journal of Information Management 71.3 (2019),
pp. 415–439. doi: 10.1108/AJIM-08-2018-0185.

[20] John Harrison. “HOL Light: A Tutorial Introduction”. In: Formal Methods in
Computer-Aided Design (FMCAD). Ed. by Mandayam Srivas and Albert Camil-
leri. Vol. 1166. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 265–269. isbn: 978-3-540-49567-3. doi: 10.1007/BFb0031814.

[21] John R. Harrison and Laurent Théry. “A Skeptic’s Approach to Combining HOL
and Maple”. In: Journal of Automated Reasoning 21.3 (1998), pp. 279–294. doi:
10.1023/A:1006023127567.

[22] Jónathan Heras, Vico Pascual, and Julio Rubio. “Using Open Mathematical Docu-
ments to Interface Computer Algebra and Proof Assistant Systems”. In: Intelligent
Computer Mathematics MKM at CICM. Vol. 5625. Lecture Notes in Computer Science.
Springer, 2009, pp. 467–473. doi: 10.1007/978-3-642-02614-0_37.

[23] Thomas Hickman, Christian Pardillo Laursen, and Simon Foster. “Certifying Dif-
ferential Equation Solutions from Computer Algebra Systems in Isabelle/HOL”. In:
(Feb. 4, 2021). arXiv: 2102.02679 [cs, math]. url: http://arxiv.org/abs/2102.02679.

[24] David J. Jeffrey and Arthur C. Norman. “Not Seeing the Roots for the Branches:
Multivalued Functions in Computer Algebra”. In: SIGSAM Bulletin 38.3 (Sept. 2004),
pp. 57–66. doi: 10.1145/1040034.1040036.

[25] Cezary Kaliszyk and Freek Wiedijk. “Certified computer algebra on top of an in-
teractive theorem prover”. In: Towards Mechanized Math. Assist. Springer, 2007,
pp. 94–105. doi: 10.1007/978-3-540-73086-6_8.

[26] Muhammad Taimoor Khan. “Formal Specification and Verification of Computer
Algebra Software”. PhD thesis. Johannes Kepler University Linz, Apr. 2014.

[27] Giovanni Yoko Kristianto, Goran Topić, and Akiko Aizawa. “Utilizing dependency
relationships between math expressions in math IR”. In: Information Retrieval Journal
20.2 (Mar. 2017), pp. 132–167. doi: 10.1007/s10791-017-9296-8.

[28] Laureano Lambán et al. “Verifying the bridge between simplicial topology and algebra:
the Eilenberg-Zilber algorithm”. In: Logic Journal of IGPL 22.1 (Aug. 2013), pp. 39–65.

https://doi.org/10.1007/978-3-540-39815-8_21
https://doi.org/10.1007/978-3-540-39815-8_21
https://doi.org/10.1145/2644288.2644293
https://doi.org/10.1007/978-3-030-99524-9_5
https://doi.org/10.1007/978-3-030-99524-9_5
https://doi.org/10.1145/3366423.3380218
https://doi.org/10.1145/3366423.3380218
https://doi.org/10.1007/978-3-030-52200-1_33
https://doi.org/10.1108/AJIM-08-2018-0185
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1023/A:1006023127567
https://doi.org/10.1007/978-3-642-02614-0_37
https://arxiv.org/abs/2102.02679
http://arxiv.org/abs/2102.02679
https://doi.org/10.1145/1040034.1040036
https://doi.org/10.1007/978-3-540-73086-6_8
https://doi.org/10.1007/s10791-017-9296-8

6. CONCLUSION 19

doi: 10.1093/jigpal/jzt034.
[29] Wonyeol Lee, Rahul Sharma, and Alex Aiken. “On automatically proving the cor-

rectness of math.h implementations”. In: Proc. ACM on Prog. Lang. (POPL) 2.47
(2018), pp. 1–32. doi: 10.1145/3158135.

[30] K. Rustan M. Leino. “Program proving using intermediate verification languages
(IVLs) like Boogie and Why3”. In: ACM SIGAda Ada Letters 32.3 (Nov. 2012),
pp. 25–26. doi: 10.1145/2402709.2402689.

[31] Robert H. Lewis and Michael Wester. “Comparison of Polynomial-Oriented Computer
Algebra Systems”. In: SIGSAM Bull. 33.4 (Dec. 1999), pp. 5–13. doi: 10.1145/500457.
500459.

[32] Bruce R. Miller and Abdou Youssef. “Technical Aspects of the Digital Library of
Mathematical Functions”. In: Ann. Math. Artif. Intell. 38.1-3 (2003), pp. 121–136.
doi: 10.1023/A:1022967814992.

[33] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002. isbn: 3-540-43376-7. doi: 10.1007/3-540-45949-9.

[34] Bernard Parisse. “Compiling LATEX to Computer Algebra-Enabled HTML5”. In:
(July 5, 2017). arXiv: 1707.01271 [cs]. url: http://arxiv.org/abs/1707.01271.

[35] Hélène Prieto, Stéphane Dalmas, and Yves Papegay. “Mathematica as an OpenMath
Application”. In: ACM SIGSAM Bulletin 34.2 (June 2000), pp. 22–26. issn: 0163-5824.
doi: 10.1145/362001.362016.

[36] Moritz Schubotz et al. “Improving the Representation and Conversion of Mathematical
Formulae by Considering their Textual Context”. In: ACM/IEEE JCDL. ACM, 2018,
pp. 233–242. doi: 10.1145/3197026.3197058.

[37] Moritz Schubotz et al. “Semantification of Identifiers in Mathematics for Better Math
Information Retrieval”. In: ACM SIGIR’16. ACM Press, 2016, pp. 135–144. doi:
10.1145/2911451.2911503.

[38] Ruocheng Shan and Abdou Youssef. “Towards Math Terms Disambiguation Using
Machine Learning”. In: Proceedings of the International Conference on Intelligent
Computer Mathematics (CICM). Ed. by Fairouz Kamareddine and Claudio Sacerdoti
Coen. Vol. 12833. Lecture Notes in Computer Science. Timisoara, Romania: Springer,
2021, pp. 90–106. isbn: 978-3-030-81096-2. doi: 10.1007/978-3-030-81097-9_7.

[39] Abdou Youssef. “Part-of-Math Tagging and Applications”. In: Intelligent Computer
Mathematics CICM. Vol. 10383. Lecture Notes in Computer Science. Springer, 2017,
pp. 356–374. doi: 10.1007/978-3-319-62075-6_25.

[40] Abdou Youssef and Bruce R. Miller. “A Contextual and Labeled Math-Dataset
Derived from NIST’s DLMF”. In: Intelligent Computer Mathematics CICM. Vol. 12236.
Lecture Notes in Computer Science. Springer, 2020, pp. 324–330. doi: 10.1007/978-3-
030-53518-6_25.

[41] Richard Zanibbi et al. “Overview of ARQMath 2020: CLEF Lab on Answer Retrieval
for Questions on Math”. In: CLEF. Vol. 12260. Lecture Notes in Computer Science.
Springer, 2020, pp. 169–193. doi: 10.1007/978-3-030-58219-7_15.

https://doi.org/10.1093/jigpal/jzt034
https://doi.org/10.1145/3158135
https://doi.org/10.1145/2402709.2402689
https://doi.org/10.1145/500457.500459
https://doi.org/10.1145/500457.500459
https://doi.org/10.1023/A:1022967814992
https://doi.org/10.1007/3-540-45949-9
https://arxiv.org/abs/1707.01271
http://arxiv.org/abs/1707.01271
https://doi.org/10.1145/362001.362016
https://doi.org/10.1145/3197026.3197058
https://doi.org/10.1145/2911451.2911503
https://doi.org/10.1007/978-3-030-81097-9_7
https://doi.org/10.1007/978-3-319-62075-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
https://doi.org/10.1007/978-3-030-58219-7_15

20 A. Greiner-Petter et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A. MEOM BLUEPRINTS 21

Appendix
A MEOM Blueprints

Table 2: The table contains examples of
the blueprints for subscripts of sums/prod-
ucts including an example expression that
matches the blueprint.

Blueprints Example
numL1 \leq var1 <

var2 \leq numU1 0≤n<k≤10

-\infty < varN < \infty −∞<n<∞
numL1 < varN < numU1 0<n,k<10

numL1 \leq varN < numU1 0≤k<10
numL1 < varN \leq numU1 0<n,k≤10

varN \leq numU1 n,k≤N+5
varN \in numL1 n∈{1,2,3}

varN = numL1 n,k,l=1

In this section, we briefly explain the
MEOM blueprints. Those blueprints
are mathematical expressions with wild
cards which are tied to a specific rule-
based interpretations. If one of our
blueprints matches an expression, we
identified the necessary MEOM ele-
ments, i.e., the argument(s) and bound
variable(s) of the mathematical opera-
tors.

For our MEOM blueprints, we de-
fine three placeholders (wild cards):
varN for single identifiers or a list
of identifiers (delimited by commas),
numL1, and numU1, representing lower
and upper bound expressions, respec-
tively. In addition, for sums and prod-
ucts, we need to distinguish between
including and excluding boundaries, e.g., 1<k and 1≤k. An excluding relation, such
as 0<k<10, must be interpreted as a sum from 1 to 9. Table 2 shows the final set
of sum/product subscript blueprints.

Standard notations may not explicitly show infinity boundaries. Hence, we set the
default boundaries to infinity. For limit expressions we need different blueprints to
capture the limit direction. We cover the standard notations with ‘var1 \to numL*’,
where * is either +, -, ^+, ^- or absent and the different arrow-notations where \to
can be either \downarrow, \uparrow, \searrow, or \nearrow, specifying one-sided
limits. Note that the arrow-notation (besides \to) is not used in the DLMF and thus,
has no effect on the performance of LACAST in our evaluation.

The blueprint approach can be easily extended to new patterns, which helps to
maintain LACAST and support more expressions. In fact, the blueprint approach is flex-
ible enough to parse more complex situations, such as multi-line subscript expressions.
However, there are scenarios in which the blueprint approach is not enough to perform
a translation. Consider the divisor sum

∑
(p−1)|2n1/p [11, (24.10.1)], where the sum

is over all p such that p−1 divides 2n. A proper translation needs to acknowledge
that p−1 rather than p divides 2n. Hence, a translation to Mathematica potentially
manipulates the p in the argument of the sum, to adjust this. A proper transla-
tion could be Sum[1/(p+1), {p, Divisors[2*n]}]. However, such manipulations
quickly increase in complexity and require symbolic computation when reaching a
certain level. This is currently out of scope for LACAST. Note that blueprints could also
cover several scenarios with ellipsis, such as in

∑
1<n1<···<nk<m. However, a proper

analysis of expressions with ellipsis is still an open issue for LACAST.

https://dlmf.nist.gov/24.10.E1

22 A. Greiner-Petter et al.

B Why Branch Cuts Matter

Problems that we regularly faced during evaluation are issues related to multi-valued
functions. Multi-valued functions map values from a domain to multiple values in a
codomain and frequently appear in the complex analysis of elementary and special
functions. Prominent examples are the inverse trigonometric functions, the complex
logarithm, or the square root. A proper mathematical description of multi-valued
functions requires the complex analysis of Riemann surfaces. Riemann surfaces are
one-dimensional complex manifolds associated with a multi-valued function. One
usually multiplies the complex domain into a many-layered covering space. The
correct properties of multi-valued functions on the complex plane may no longer be
valid by their counterpart functions on CAS, e.g., (1/z)w and 1/(zw) for z,w∈C and
z≠0. For example, consider z,w∈C such that z≠0. Then mathematically, (1/z)w

always equals 1/(zw) (when defined) for all points on the Riemann surface with fixed
w. However, this should certainly not be assumed to be true in CAS, unless very
specific assumptions are adopted (e.g., w ∈ Z,z > 0). For all modern CAS26, this
equation is not true. Try, for instance, w=1/2. Then (1/z)1/2−1/z1/2≠0 on CAS,
nor for w being any other rational non-integer number.

The resulting ranges of multi-valued functions are referred to as branches, and
the curves which separate these branches are called branch cuts. The restricted range
which is associated with the range typically adopted using real numbers, is often
referred to as the principal branch. In order to compute multi-valued functions, CAS
choose branch cuts for these functions so that they may evaluate them on their
principal branches. Branch cuts may be positioned differently among CAS [10], e.g.,
arccot(−1

2) ≈ 2.03 in Maple but is ≈ −1.11 in Mathematica. This is certainly not
an error and is usually well documented for specific CAS [14, 24]. However, there
is no central database that summarizes branch cuts in different CAS or DML. The
DLMF as well, explains and defines their branch cuts carefully but does not carry
the information within the info boxes of expressions. Due to complexity, it is rather
easy to lose track of branch cut positioning and evaluate expressions on incorrect
values. For example, consider the equation [11, (12.7.10)]. A path of z(ϕ)=eiϕ with
ϕ∈ [0,2π] would pass three different branch cuts. An accurate evaluation of the values
of z(ϕ) in CAS require calculations on the three branches using analytic continuation.
LACAST and our evaluation frequently fall into the same trap by evaluating values
that are no longer on the principal branch used by CAS. To solve this issue, we need
to utilize branch cuts not only for every function but also for every equation in the
DLMF [19]. The positions of branch cuts are exclusively provided in the text but not
in the i-boxes. Adding the information to each equation in the DLMF would be a
laborious process because a branch cut position may change according to the used
values (see the example [11, (12.7.10)] from above). Our result data, however, would
provide beneficial information to update, extend, and maintain the DLMF, e.g., by
adding the positions of the branch cuts for every function.
26 The authors are not aware of any example of a CAS which treats multi-valued functions

without adopting principal branches.

https://dlmf.nist.gov/12.7.10
https://dlmf.nist.gov/12.7.10

C. OVERVIEW OF BUG REPORTS AND DISCOVERED ISSUES 23

C Overview of Bug Reports and Discovered Issues

Throughout the development of LACAST and especially during the research on this
paper, we identified several issues in the DLMF, Maple, and Mathematica. Some of
these issues are severe while most of them are minor problems. With this section,
we want to take the opportunity to conclude the progress of LACAST as a verification
approach and summarize the more prominent issues we discovered over the time.
Please note that some of these issues (especially in regard of the DLMF and Maple)
have been reported before and even published in previous publications.

C.1 Digital Library of Mathematical Functions

Since LACAST was always developed in collaboration with developers of the DLMF,
numerous of minor fixes, tweaks, and updates have been implemented over the time.
Most of them are not worth noting with a few exceptions. The first error in the
DLMF that we discovered with the help of LACAST [19] was the sign error in [11,
(14.5.14)]

Q−1/2
ν (cos θ)=−

(π

2sin θ

)1/2 cos
((

ν+ 1
2
)
θ
)

ν+ 1
2

. (2)

This error also appeared in the original Handbook of Special Functions [15, p. 359]
and was fixed with DLMF version 1.0.16 in September 2017.

An entire group of equations [11, (10.19.10-11)] used semantic macros incorrectly
and therefore yielded to wrong links and annotations visible in the attached infor-
mation box next to the equation in the DLMF. In these formulae, Pk(a) and Qk(a)
are defined but had been incorrectly marked up as Legendre functions going all the
way back to DLMF version 1.0.0. This error has been fixed due to our feedback with
DLMF version 1.0.27 in June 2020.

Minor discovered issues include a missing comma in the constraint [11, (10.16.7)]
2ν ≠ −1,−2,−3,... which was also missing in the DLMF book [15, p. 228] (fixed
with v. 1.0.19), unmarked [11, (2.4.2)] or erroneously marked definitions in [11,
(9.10.10)] and in [11, (9.13.1)] (all remain unsolved), and wrong annotations of ν
as complex parameter and x as real while real value and positive real, respectively,
would be correct in [11, (10.24.4)] (remain unsolved). Additionally, due to LACAST,
the ambiguous semantic macro \Wron for Wronskians has been revised so that the
variable which is differentiated against is precisely specified in 72 occasions [8].

C.2 Maple

Via LACAST, we discovered a bug in Maple’s 2016 simplify procedure. For the
equation [11, (7.18.4)]

dn

dzn

(
ez2

erfcz
)

=(−1)n2nn!ez2
inerfc(z), n=0,1,2,..., (3)

where e is the base of the natural logarithm, erfc(z) is the complementary error
function, and inerfc(z) the repeated integrals of the complementary error function,
LACAST correctly generated the following translation:

https://dlmf.nist.gov/14.5.14
https://dlmf.nist.gov/10.19.E10
https://dlmf.nist.gov/10.16.7
https://dlmf.nist.gov/2.4.2
https://dlmf.nist.gov/9.10.10
https://dlmf.nist.gov/9.13.1
https://dlmf.nist.gov/10.24.4
https://dlmf.nist.gov/7.18.4

24 A. Greiner-Petter et al.

þ LACAST translation of equation (3) to Maple

1 diff (exp(z^2)* erfc (z), [z$(n)]) = (-1)^(n)*(2)^(n)*
factorial (n)*exp(z^2)* erfc (n, z)

Redundant parentheses removed to improve readability.

Maple 2016 falsely returns 0 when we call the simplify procedure for the trans-
lated left-hand side of the equation. Maplesoft has confirmed this defect in Maple 2016
in private communications [19]. Although an updated behavior occurred in Maple
2018 and 2020, the error still persists today. Maple version 2020.2 automatically
evaluates the left-hand side of equation (3) to the rather complex expression

n∑
k=0

1√
π

(
n

k

)(k∑
m=0

ez2
Bk,m

(
(2)1z,...,(2−k+m)k−m+1z1−k+m

))
(

−G1,2
2,3

(
z;

0,1
2

0,−1
2 + n

2 − k
2 ,n

2 − k
2

)
2n−k+(1−n+k)n−k

√
πzn−k−1

)
z1−n+k,

(4)

where Gm,n
p,q

(
z;a1,...,ap

b1,...,bq

)
is the Meijer G-function [11, (16.17.1)], Bn,k(x1,...,xn−k+1)

the incomplete Bell polynomials [3], and (x)n the Pochhammer’s symbol [11, (5.2.4)].
For small n and z, the difference of left- and right-hand side of equation (3) is indeed
almost zero up to the machine accuracy. For large absolute values of z, however, the
difference increases quickly. Figure 4 plots the difference of left- and right-hand side
of equation (3) for n=0 and z ∈ [−2,2]. For |z|>4, the difference is already larger
then 1.0. This might be produced by accumulated round-off errors because smaller
values are calculated with greater precision in floating-point arithmetics.

Fig. 4: The difference of the left- and right-hand side of equation (3) evaluated in
Maple for n=0 and z∈ [−2,2].

https://dlmf.nist.gov/16.17.1
https://dlmf.nist.gov/5.2.4

C. OVERVIEW OF BUG REPORTS AND DISCOVERED ISSUES 25

C.3 Mathematica

As we pointed out in Section 5.1, we discovered some trouble with integrals in
Mathematica and confusing behavior with rational numbers. After discussing these
cases with Mathematica developers, some of them have been confirmed as bugs.
Other cases, however, were the results of our testing methodology. First, we take a
look at the confirmed errors. The most crucial report was about [11, (18.17.14)]

xα+µL
(α+µ)
n (x)

Γ(α+µ+n+1) =
∫ x

0

yαL
(α)
n (y)

Γ(α+n+1)
(x−y)µ−1

Γ(µ) dy. (5)

For this equation, we calculated the difference of the left- and right-hand side as usual

xα+µL
(α+µ)
n (x)

Γ(α+µ+n+1) −
∫ x

0

yαL
(α)
n (y)

Γ(α+n+1)
(x−y)µ−1

Γ(µ) dy (6)

and computed numerical test values for this difference. In particular, we identified
the four variables x, n, α, and µ. As described in Figure 3 (Section 4.2) in the paper,
n is defined as a special variable bind to the numeric values {1,2,3}, x and α are
positive real values of our general test values, i.e., x,α∈{1

2 ,3
2 ,2}, and µ is not further

limited, i.e., µ∈
{

±1
2 ,±3

2 ,±2,e
iπ
6 ,e

2iπ
3 ,e

−iπ
3 ,e

−5iπ
6

}
. This resulted in 270 test value

combinations which are further limited by the attached (local) constraints in the
DLMF [11, (18.17.14)]: µ>0,x>0. Since x was already constraint to positive real
values with our global constraints, the second local constraint has no additional effect.
For µ, we must note that we also removed invalid comparisons. For example, e

2iπ
3 >0

throws an error in Mathematica due to the invalid comparison with an imaginary
number. Hence, µ>0 filtered out imaginary numbers and negative real values. Here,
we ended up with {1

2 ,3
2 ,2}. Additionally, we see equation 5 contains Γ(α+µ+n+1),

Γ(α+n+1), and Γ(µ). The definition of the Gamma function in the DLMF [11,
(5.2.1)] contains the additional constraint ℜz > 0 where z is the argument of the
Gamma function. Hence, we retrieved three additional constraints for equation 5:
ℜ(α+µ+n+1)>0, ℜ(α+n+1)>0, and ℜ(µ)>0. However, none of the constraints
further reduced our test value set. Conclusively, we end up with 81 (=34) test value
combinations: n∈{1,2,3} and x,α,µ∈{1

2 ,3
2 ,2}.

Interestingly, for rational inputs (fractions) of test values, the difference was zero.
For example, evaluating the difference on x,a,µ= 3

2 and n=2 returns zero. However,
the same test with floating point numbers, i.e., x,a,µ = 1.5 and n = 2, result in a
fatal segmentation fault27 causing Mathematica to crash.
27 A segmentation fault is an access violation of protected memory. For example, an operating

system can prevent a program A to change the memory of another program B and sends a
segmentation fault to A. This signal generally causes program A to abnormally terminate,
unless special error handling was implemented.

https://dlmf.nist.gov/18.17.14
https://dlmf.nist.gov/18.17.14
https://dlmf.nist.gov/5.2.1

26 A. Greiner-Petter et al.

þ Segmentation Fault Example in Mathematica v. 12.1.1

1 In[1] := expr = - Integrate [((x - y)^(-1 + mu)*y^a*
LaguerreL [n, a, y])/ (Gamma [1 + n + a]* Gamma [mu]
), {y, 0, x}] + (x^(a + mu)* LaguerreL [n, a + mu,

x])/ Gamma [1 + n + a + mu];
2
3 In[2] := ReplaceAll [expr, {n -> 2, x -> 3/2, a -> 3/2, mu

-> 3/2}]
4 Out[2] = 0
5
6 In[3] := ReplaceAll [expr, {n -> 2, x -> 1.5, a -> 1.5, mu

-> 1.5}]
7 Segmentation fault (core dumped)

This issue was reported28 and later fixed29 with Mathematica version 12.2 (re-
leased November 2020). The developers told us this issue can be traced back to
version 10.4 (released March 2016).

We further identified errors in the variable extraction procedure in Mathematica.
For example, for [11, (24.4.26)]

En(0)=−En(1)=− 2
n+1(2n+1−1)Bn+1, (7)

we expected to extract just n as the free variable. We reduced the issue to a minimal
working example just for the most left-hand side of the equation.

þ False Variable Extraction in Mathematica v. 12.0

1 In[1] := Reduce ‘ FreeVariables [EulerE [n, 0]]
2 Out[1] = { EulerE [n, 0]}

This particular error was confirmed and has been fixed30. However, since the proce-
dure Reduce‘FreeVariables is not a publicly documented function in Mathematica,
the method remain unstable. Especially in mathematical operators with bounded
variables, such as sums, products, integrals, and limits, the procedure tend to generate
inaccurate results.

In regard of the outlined issues with the GenerateConditions flag in integrals,
most problematic cases were the result of using ReplaceAll to set numeric values
for variables. Consider, for example [11, (10.43.8)]∫ x

0
e±tt−νIν(t)dt=−e±xx−ν+1

2ν−1 (Iν(x)∓Iν−1(x))∓ 2−ν+1

(2ν−1)Γ(ν) . (8)

28 Case ID: 4664157
29 The fix was communicated to us via a new case ID: 4776927
30 Case ID: 4373302

https://dlmf.nist.gov/24.4.26
https://dlmf.nist.gov/10.43.8

C. OVERVIEW OF BUG REPORTS AND DISCOVERED ISSUES 27

First, LACAST splits the expression in two test cases by resolving ± and ∓. For the
first case, i.e., ± is replaced by + and ∓ by −, Mathematica automatically evaluates
the test expression, i.e., the difference of left- and right-hand side of the equation:(∫ x

0
ett−νIν(t)dt

)
−
(

−exx−ν+1

2ν−1 (Iν(x)−Iν−1(x))− 2−ν+1

(2ν−1)Γ(ν)

)
(9)

with the GenerateConditions set to None for the integral to

exx−ν(−x+2ν)Iν(x)
−1+2ν

+ exx1−ν(−I−1+ν(x)+Iν(x))
−1+2ν

+

exx1−νI1+ν(x)
−1+2ν

+ 21−ν

(−1+2ν)Γ(z) + 2ν
√

πνsec(πν)
Γ
(3

2 −ν
)
Γ(1+2ν)

.

(10)

This happens because CAS automatically perform some computations on their inputs
unless we prevent it (e.g., via Hold). However, evaluating this expression now on
x, ν =1.5 returns 0.398942 rather than the expected zero. For x, ν = 3

2 , the return
value is infinity (i.e., indeterminate). The issue was acknowledged by the developers,
who explained that the last term causes the behaviour, because

2ν
√

πν sec(πν)
Γ
(3

2 −ν
)
Γ(1+2ν)

(11)

is Infinity/Infinity for ν =3/2. A workaround to this issue is to use Limit rather
than ReplaceAll to evaluate the expression on specific values.

þ Limit Workaround for equation 9

1 In[2] := N[ReplaceAll [expr, { Rule [x,3/2], Rule [nu,3 /2]}]]
2 Out[2] = Indeterminate
3
4 In[3] := Limit [expr, { Rule [x,3/2], Rule [nu,3 /2]}]
5 Out[3] = 0

expr is the input of equation (9).

To the best of our knowledge, this issue still persists31. If this behavior is intended
(or even desired) is up for debate. Yet, it is another characteristic of CAS to keep
track of. The same workaround was suggested for [11, (11.5.2)] and [11, (11.5.8-10)].
In case of [11, (10.9.1)]

J0(z)= 1
π

∫ π

0
cos(zcosθ)dθ, (12)

the right-hand side of the equation was evaluated to BesselJ[0,z] by Mathematica
for GenerateConditions -> False. Which is correct. However, without this flag (or
set to None), Mathematica returns BesselJ[0, Abs[z]] if z∈R.
31 As of 9/9/2021

https://dlmf.nist.gov/11.5.2
https://dlmf.nist.gov/11.5.8-10
https://dlmf.nist.gov/10.9.1

28 A. Greiner-Petter et al.

þ Conditional Flag Influence in Mathematica

1 In[1] := Divide [1,Pi]* Integrate [Cos[z*Sin[θ]], {θ, 0, Pi}
,GenerateConditions -> False]

2 Out[1] = BesselJ [0, z]
3
4 In[2] := Divide [1,Pi]* Integrate [Cos[z*Sin[θ]], {θ, 0, Pi}]
5 Out[2] = BesselJ [0, Abs[z]] if z∈R

While confusing at the first glance, the output is not particularly wrong. Since
J0(z) is even in the second argument and along the Real line, the absolute value is
simply redundant.

In case of [11, (8.4.4)]

Γ(0,z)=
∫ ∞

z

t−1e−tdt=E1(z), (13)

we have not received any feedback from the developers. For the difference between
left- and right-hand side of the first equation

Γ(0,z) −
∫ ∞

z

t−1e−tdt, (14)

Mathematica conditionally returns 0 if ℜ(z)>0 and ℑ(z)=0. We would expect 0
without conditions. Setting the problematic GenerateConditions to False returns
−ln(z).

þ Second Example of Conditional Flag Influence in Mathematica

1 In[1] := Gamma [0,z] - Integrate [(t)^(-1)*Exp[-t], {
t,z,Infinity }]

2 Out[1] = 0 if Re[z] > 0 && Im[z] == 0
3
4 In[2] := Gamma [0,z] - Integrate [(t)^(-1)*Exp[-t], {

t,z,Infinity }, GenerateConditions -> False]
5 Out[2] = -Log[z]

We noticed that another initial computation hook on the input could cause the
issue. For example, if we prevent instant evaluations on the input via Hold and
evaluate the expression on z = i, Mathematica returns 0.+0.i. Without Hold, an
evaluation on the same value returns undefined.

https://dlmf.nist.gov/8.4.4

D. EVALUATION TABLES 29

þ Hold Inputs in Mathematica

1 In[1] := expr = Gamma [0,z] - Integrate [(t)^(-1)*Exp[-t],
{ t,z,Infinity }]

2 Out[1] = 0 if Re[z] > 0 && Im[z] == 0
3
4 In[2] := N[ReplaceAll [expr, {z -> I}]]
5 Out[2] = Undefined
6
7 In[3] := expr = Hold [Gamma [0,z] - Integrate [(t)^(-1)*Exp[

-t], { t,z,Infinity }]]
8 Out[3] = Hold [Gamma [0,z] - Integrate [(t)^(-1)*Exp[-t], {

t,z,Infinity }]]
9

10 In[4] := N[ReleaseHold [ReplaceAll [expr, {z -> I}]]]
11 Out[4] = 0. + 0. i

All cases were handled by the Mathematica team with the case ID 4664157.

D Evaluation Tables

In this section, we provide three additional tables for our evaluation and translation
results. Table 3, provides three examples of our evaluations on the DLMF with
different degrees of complexity. The first entry [11, (1.4.8)], for example, illustrates the
difficulty of translating formulae from LATEX to CAS syntaxes even on a semantically
enriched dataset like the DLMF. Often, the arguments of a function in derivative
notations are omitted since they can be deduced from the variable of differentiation.
For example, d2 f

dx2 the argument of the function f(x) is omitted. However, in this
case LACAST is unable to correctly interpret f as a function and presumed it to be
a variable. Unfortunately, not only caused this error a wrong translation but also
produced a false positive evaluation because the symbolic simplification returned
0=0 for

D[f, {x, 2}] == D[D[f, x], x]. (15)

The other two examples in Table 3, even though more complex, illustrate the capability
of LACAST and our evaluation pipeline.

Additionally, Table 5 and 6 show the number of translated and evaluated expres-
sions for each chapter of the DLMF. For reference, Table 4 shows the full name of each
chapter and the total number of displayed formulae according to the released dataset
by Youssef and Miller [40]. The actual number of functions may vary compared
to Table 5, because Youssef and Miller did not split multi-equations, and ± or ∓.
Hence, our final dataset consists of 10,930 formulae. Additionally, as described in
our paper, we filter out non-semantic expressions, non-semantic macro definitions,
ellipsis, approximations, and asymptotics. We ended up with 6,623 test cases. A
more comprehensive table and all data is available at https://lacast.wmflabs.org. For

https://dlmf.nist.gov/1.4.E8
https://lacast.wmflabs.org

30 A. Greiner-Petter et al.

overview reasons, Table 6 only shows the results for translations to Mathematica.
For Maple, see our website.
Table 3: The table shows three sample cases of our evaluation pipeline from the DLMF.
The translation shows the performed translations to Mathematica. The numeric
column contains the number of successfully computed test cases. The constraints
column contains all applied constraints including global constraints from Figure 3.

[11, (1.4.8)] d2f
dx2 = d

dx

(df
dx

)
Translation

✘

D[f, {x, 2}] == D[D[f, x], x](A correct translation requires the
argument for f, such as D[f[x], {x, 2}] == D[D[f[x], x], x] .)

Symbolic Numeric Variables Constraints Test Values

✓ ✓(30/30) f ✘, x ✓
x∈R,

ℜ(x)>0

x∈
{1

2 ,
3
2 ,2
}

,

f∈
{

± 1
2 ,± 3

2 ,±2,e2iπ/3,

eiπ/6,e−iπ/3,e−5iπ/6}

[11, (11.5.2)] Kν(z)= 2(1
2 z)ν

√
πΓ(ν+ 1

2)

∫∞
0 e−zt(1+t2)ν− 1

2 dt

Translation
✓

StruveH[\[Nu],z]-BesselY[\[Nu],z]==Divide[2*(Divide[1,2]*z)

^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[-z*

t]*(1+(t)^(2))^(\[Nu]-Divide[1,2]),{t,0,Infinity},

GenerateConditions->None]

Symbolic Numeric Variables Constraints Test Values

✓ ✘(10/25) ν,z ✓

−π<ph(z)<π,
ℜ(z)>0,

ℜ(ν+ 1
2)>0,

ℜ(ν+k+1)>0,
ℜ(−ν+k+1)>0,
ℜ(n+ν+ 3

2)>0

ν,z∈
{

1
2 ,3

2 ,2,

eiπ/6,e−iπ/3}
[11, (18.5.8)] P

(α,β)
n (x)=2−n

∑n

ℓ=0

(
n+α

ℓ

)(
n+β
n−ℓ

)
(x−1)n−ℓ(x+1)ℓ

Translation
✓

JacobiP[n,\[Alpha],\[Beta],x]==(2)^(-n)*Sum[Binomial[n+\[

Alpha],\[ScriptL]]*Binomial[n+\[Beta],n-\[ScriptL]]*(x-1)

^(n-\[ScriptL])*(x+1)^\[ScriptL],{\[ScriptL],0,n},

GenerateConditions->None]

Symbolic Numeric Variables Constraints Test Values

✘ ✓(81/81) n,α,β,x ✓

n∈{1,2,3},
x,α,β ∈R,
x,α,β >0

n∈{1,2,3},

α,β,x∈
{

1
2 ,3

2 ,2
}

https://dlmf.nist.gov/1.4.E8
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/18.5.E8

D. EVALUATION TABLES 31

Table 4: Summary of DLMF chapters with corresponding 2-letter codes (2C), chapter
numbers (C#), chapter names of the DLMF chapters, and the total number of
displayed formulas (i.e., without inline formulae) per chapter according to [40] (F).

2C C# Chapter Name F
AL 1 Algebraic and Analytic Methods 571
AS 2 Asymptotic Approximations 349
NM 3 Numerical Methods 296
EF 4 Elementary Functions 513
GA 5 Gamma Function 161
EX 6 Exponential, Logarithmic, Sine, and Cosine Integrals 100
ER 7 Error Functions, Dawson’s and Fresnel Integrals 137
IG 8 Incomplete Gamma and Related Functions 240
AI 9 Airy and Related Functions 230
BS 10 Bessel Functions 696
ST 11 Struve and Related Functions 149
PC 12 Parabolic Cylinder Functions 177
CH 13 Confluent Hypergeometric Functions 372
LE 14 Legendre and Related Functions 283
HY 15 Hypergeometric Function 198
GH 16 Generalized Hypergeometric Functions & Meijer G-Function 99
QH 17 q-Hypergeometric and Related Functions 181
OP 18 Orthogonal Polynomials 502
EL 19 Elliptic Integrals 464
TH 20 Theta Functions 113
MT 21 Multidimensional Theta Functions 59
JA 22 Jacobian Elliptic Functions 258
WE 23 Weierstrass Elliptic and Modular Functions 167
BP 24 Bernoulli and Euler Polynomials 188
ZE 25 Zeta and Related Functions 171
CM 26 Combinatorial Analysis 201
NT 27 Functions of Number Theory 132
MA 28 Mathieu Functions and Hill’s Equation 353
LA 29 Lamé Functions 205
SW 30 Spheroidal Wave Functions 114
HE 31 Heun Functions 120
PT 32 Painlevé Transcendents 286
CW 33 Coulomb Functions 146
TJ 34 3j, 6j, 9j Symbols 64
FM 35 Functions of Matrix Argument 62
IC 36 Integrals with Coalescing Saddles 137

Σ 8,494

32 A. Greiner-Petter et al.

Table 5: Overview of translations for DLMF chapters. Table headings are 2C: 2-letter
chapter codes; C#: chapter numbers; F: number of formulae; Told: number of translated
expressions using old translator; TMap, TMath: number of translations with improved
translator—Map for Maple and Math for Mathematica; MMap, MMath: number of
failed translations due to missing macro translation; E: number of other errors in
the translation process. Best five performances are colored. Chapter codes are linked
with our result page https://lacast.wmflabs.org.

2C C# F Told TMap TMath MMap MMath E
AL 1 227 60 (26.4%) 102 (44.9%) 103 (45.4%) 79 78 46
AS 2 136 33 (24.3%) 65 (47.8%) 65 (47.8%) 51 51 20
NM 3 53 36 (67.9%) 40 (75.5%) 40 (75.5%) 8 8 5
EF 4 569 353 (62.0%) 494 (89.3%) 564 (99.1%) 58 4 1
GA 5 144 38 (26.4%) 130 (93.5%) 139 (96.5%) 7 3 2
EX 6 107 21 (19.6%) 56 (52.3%) 77 (72.0%) 50 29 1
ER 7 149 35 (23.5%) 101 (67.8%) 120 (80.5%) 47 28 1
IG 8 204 84 (41.2%) 160 (78.4%) 163 (79.9%) 39 36 5
AI 9 235 36 (15.3%) 180 (76.6%) 179 (76.2%) 46 47 9
BS 10 653 143 (21.9%) 392 (60.0%) 486 (74.4%) 243 135 32
ST 11 124 48 (38.7%) 121 (97.6%) 112 (90.3%) 3 12 0
PC 12 106 33 (31.1%) 79 (74.5%) 90 (84.9%) 23 9 7
CH 13 260 126 (48.5%) 252 (96.9%) 254 (97.7%) 3 1 5
LE 14 238 166 (69.7%) 230 (96.6%) 229 (96.2%) 5 6 3
HY 15 206 148 (71.8%) 198 (96.1%) 197 (95.6%) 3 4 5
GH 16 53 20 (37.7%) 23 (43.4%) 25 (47.2%) 27 1 27
QH 17 175 1 (0.6%) 53 (30.3%) 124 (70.8%) 112 35 16
OP 18 468 132 (28.2%) 235 (50.2%) 288 (61.5%) 203 149 31
EL 19 516 103 (20.0%) 252 (48.8%) 416 (80.6%) 250 84 16
TH 20 128 52 (40.6%) 98 (76.6%) 98 (76.6%) 8 8 22
MT 21 32 0 (0.0%) 0 (0.0%) 0 (0.0%) 30 30 2
JA 22 264 115 (43.6%) 232 (87.9%) 238 (90.2%) 27 21 5
WE 23 164 7 (4.3%) 19 (11.6%) 34 (20.7%) 125 112 18
BP 24 175 31 (17.7%) 117 (67.2%) 148 (84.6%) 35 15 12
ZE 25 154 28 (18.2%) 124 (80.5%) 120 (77.9%) 26 30 4
CM 26 136 31 (22.8%) 78 (57.3%) 87 (64.0%) 54 42 7
NT 27 79 5 (6.3%) 26 (32.9%) 15 (19.0%) 38 49 15
MA 28 267 52 (19.5%) 97 (36.3%) 110 (41.2%) 138 125 32
LA 29 111 11 (9.9%) 23 (20.7%) 22 (19.8%) 79 80 9
SW 30 71 14 (19.7%) 19 (26.8%) 26 (36.6%) 47 39 6
HE 31 35 29 (82.8%) 22 (62.8%) 15 (42.8%) 9 16 4
PT 32 67 43 (64.2%) 57 (85.1%) 57 (85.1%) 0 0 10
CW 33 108 21 (19.4%) 14 (13.0%) 11 (10.2%) 80 86 11
TJ 34 57 0 (0.0%) 1 (1.8%) 37 (64.9%) 46 4 16
FM 35 46 0 (0.0%) 0 (0.0%) 0 (0.0%) 36 36 10
IC 36 106 12 (11.3%) 24 (22.6%) 24 (22.6%) 79 79 3

Σ 6,623 2,067 (31.2%) 4,114 (62.1%) 4,713 (71.2%) 2,114 1,492 418

https://lacast.wmflabs.org
https://lacast.wmflabs.org/wiki/Results_of_Algebraic_and_Analytic_Methods
https://lacast.wmflabs.org/wiki/Results_of_Asymptotic_Approximations
https://lacast.wmflabs.org/wiki/Results_of_Numerical_Methods
https://lacast.wmflabs.org/wiki/Results_of_Elementary_Functions
https://lacast.wmflabs.org/wiki/Results_of_Gamma_Function
https://lacast.wmflabs.org/wiki/Results_of_Exponential,_Logarithmic,_Sine,_and_Cosine_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Error_Functions,_Dawson\T1\textquoteright s_and_Fresnel_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Incomplete_Gamma_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Airy_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Bessel_Functions
https://lacast.wmflabs.org/wiki/Results_of_Struve_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Parabolic_Cylinder_Functions
https://lacast.wmflabs.org/wiki/Results_of_Confluent_Hypergeometric_Functions
https://lacast.wmflabs.org/wiki/Results_of_Legendre_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Hypergeometric_Function
https://lacast.wmflabs.org/wiki/Results_of_Generalized_Hypergeometric_Functions_and_Meijer_G-Function
https://lacast.wmflabs.org/wiki/Results_of_q-Hypergeometric_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Orthogonal_Polynomials
https://lacast.wmflabs.org/wiki/Results_of_Elliptic_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Theta_Functions
https://lacast.wmflabs.org/wiki/Results_of_Multidimensional_Theta_Functions
https://lacast.wmflabs.org/wiki/Results_of_Jacobian_Elliptic_Functions
https://lacast.wmflabs.org/wiki/Results_of_Weierstrass_Elliptic_and_Modular_Functions
https://lacast.wmflabs.org/wiki/Results_of_Bernoulli_and_Euler_Polynomials
https://lacast.wmflabs.org/wiki/Results_of_Zeta_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Combinatorial_Analysis
https://lacast.wmflabs.org/wiki/Results_of_Functions_of_Number_Theory
https://lacast.wmflabs.org/wiki/Results_of_Mathieu_Functions_and_Hill\T1\textquoteright s_Equation
https://lacast.wmflabs.org/wiki/Results_of_Lam%C3%A9_Functions
https://lacast.wmflabs.org/wiki/Results_of_Spheroidal_Wave_Functions
https://lacast.wmflabs.org/wiki/Results_of_Heun_Functions
https://lacast.wmflabs.org/wiki/Results_of_Painlev%C3%A9_Transcendents
https://lacast.wmflabs.org/wiki/Results_of_Coulomb_Functions
https://lacast.wmflabs.org/wiki/Results_of_3j,6j,9j_Symbols
https://lacast.wmflabs.org/wiki/Results_of_Functions_of_Matrix_Argument
https://lacast.wmflabs.org/wiki/Results_of_Integrals_with_Coalescing_Saddles

D. EVALUATION TABLES 33

Table 6: Overview of symbolic and numeric evaluations for DLMF chapters as in Ta-
ble 5. Table headings are TMath: number of successfully translations to Mathetmatica;
Ssuccess, Sfail: number of successful and failed symbolic verifications (for translated
expressions only) respectively; Nsuccess, Nfail: number of successful and remaining
failed numeric (for failed symbolical tests only) respectively. P, T: number of partial
(at least one test was successful) and total failed numeric tests. Best five performances
are colored. Chapter codes are linked with our result page https://lacast.wmflabs.org.

2C C# TMath Ssuccess Sfail Nsuccess Nfail [P / T] A E
AL 1 103 34 (33.0%) 69 14 (20.3%) 40 [9 / 31] 11 4
AS 2 65 6 (9.2%) 59 4 (6.8%) 38 [6 / 32] 7 9
NM 3 40 5 (12.5%) 35 0 (0.0%) 29 [8 / 21] 6 0
EF 4 564 304 (53.9%) 260 110 (42.3%) 146 [55 / 91] 2 0
GA 5 139 65 (46.8%) 74 30 (40.5%) 20 [9 / 11] 13 9
EX 6 77 18 (23.4%) 59 23 (39.0%) 32 [6 / 26] 4 0
ER 7 120 45 (37.5%) 75 21 (28.0%) 43 [13 / 30] 9 1
IG 8 163 65 (39.9%) 98 22 (22.4%) 44 [19 / 25] 16 15
AI 9 179 69 (38.5%) 110 30 (27.3%) 58 [38 / 20] 14 7
BS 10 486 115 (23.7%) 371 90 (24.2%) 151 [57 / 94] 92 18
ST 11 112 36 (32.1%) 76 21 (27.6%) 33 [8 / 25] 10 11
PC 12 90 18 (20.0%) 72 13 (18.0%) 43 [15 / 28] 12 3
CH 13 254 69 (27.2%) 185 23 (12.4%) 95 [59 / 36] 45 21
LE 14 229 30 (13.1%) 199 59 (29.6%) 92 [54 / 38] 41 5
HY 15 197 53 (26.9%) 144 23 (16.0%) 77 [52 / 25] 29 6
GH 16 25 2 (8.0%) 23 1 (4.3%) 10 [7 / 3] 9 2
QH 17 124 6 (4.8%) 118 13 (11.0%) 57 [52 / 5] 39 5
OP 18 288 101 (35.1%) 185 45 (24.3%) 68 [31 / 37] 52 12
EL 19 416 51 (12.2%) 365 18 (4.9%) 264 [49 /215] 61 15
TH 20 98 1 (1.0%) 97 33 (34.0%) 40 [25 / 15] 24 0
MT 21 0 - - - - - -
JA 22 238 30 (12.6%) 206 22 (10.7%) 131 [39 / 92] 51 0
WE 23 34 4 (11.8%) 30 2 (6.7%) 23 [9 / 14] 2 3
BP 24 148 23 (15.5%) 125 78 (62.4%) 33 [22 / 11] 14 0
ZE 25 120 48 (40.0%) 72 22 (30.5%) 22 [6 / 16] 22 3
CM 26 87 19 (21.8%) 68 44 (64.7%) 18 [10 / 8] 5 1
NT 27 15 6 (40.0%) 9 3 (33.3%) 6 [3 / 3] 0 0
MA 28 110 7 (6.4%) 103 3 (2.9%) 48 [13 / 35] 33 17
LA 29 22 0 (0.0%) 22 0 (0.0%) 21 [1 / 20] 0 1
SW 30 26 0 (0.0%) 26 0 (0.0%) 19 [2 / 17] 5 1
HE 31 15 2 (13.3%) 13 0 (0.0%) 8 [0 / 8] 5 0
PT 32 57 3 (5.3%) 54 0 (0.0%) 41 [2 / 39] 8 5
CW 33 11 0 (0.0%) 11 0 (0.0%) 11 [2 / 9] 0 0
TJ 34 37 0 (0.0%) 37 14 (37.8%) 10 [5 / 5] 13 0
FM 35 0 - - - - - -
IC 36 24 0 (0.0%) 24 3 (12.5%) 13 [1 / 12] 1 6

Σ 4,713 1,235 (26.2%) 3,474 784 (22.6%) 1,784 [687 / 1,097] 655 180

https://lacast.wmflabs.org
https://lacast.wmflabs.org/wiki/Results_of_Algebraic_and_Analytic_Methods
https://lacast.wmflabs.org/wiki/Results_of_Asymptotic_Approximations
https://lacast.wmflabs.org/wiki/Results_of_Numerical_Methods
https://lacast.wmflabs.org/wiki/Results_of_Elementary_Functions
https://lacast.wmflabs.org/wiki/Results_of_Gamma_Function
https://lacast.wmflabs.org/wiki/Results_of_Exponential,_Logarithmic,_Sine,_and_Cosine_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Error_Functions,_Dawson\T1\textquoteright s_and_Fresnel_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Incomplete_Gamma_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Airy_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Bessel_Functions
https://lacast.wmflabs.org/wiki/Results_of_Struve_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Parabolic_Cylinder_Functions
https://lacast.wmflabs.org/wiki/Results_of_Confluent_Hypergeometric_Functions
https://lacast.wmflabs.org/wiki/Results_of_Legendre_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Hypergeometric_Function
https://lacast.wmflabs.org/wiki/Results_of_Generalized_Hypergeometric_Functions_and_Meijer_G-Function
https://lacast.wmflabs.org/wiki/Results_of_q-Hypergeometric_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Orthogonal_Polynomials
https://lacast.wmflabs.org/wiki/Results_of_Elliptic_Integrals
https://lacast.wmflabs.org/wiki/Results_of_Theta_Functions
https://lacast.wmflabs.org/wiki/Results_of_Multidimensional_Theta_Functions
https://lacast.wmflabs.org/wiki/Results_of_Jacobian_Elliptic_Functions
https://lacast.wmflabs.org/wiki/Results_of_Weierstrass_Elliptic_and_Modular_Functions
https://lacast.wmflabs.org/wiki/Results_of_Bernoulli_and_Euler_Polynomials
https://lacast.wmflabs.org/wiki/Results_of_Zeta_and_Related_Functions
https://lacast.wmflabs.org/wiki/Results_of_Combinatorial_Analysis
https://lacast.wmflabs.org/wiki/Results_of_Functions_of_Number_Theory
https://lacast.wmflabs.org/wiki/Results_of_Mathieu_Functions_and_Hill\T1\textquoteright s_Equation
https://lacast.wmflabs.org/wiki/Results_of_Lam%C3%A9_Functions
https://lacast.wmflabs.org/wiki/Results_of_Spheroidal_Wave_Functions
https://lacast.wmflabs.org/wiki/Results_of_Heun_Functions
https://lacast.wmflabs.org/wiki/Results_of_Painlev%C3%A9_Transcendents
https://lacast.wmflabs.org/wiki/Results_of_Coulomb_Functions
https://lacast.wmflabs.org/wiki/Results_of_3j,6j,9j_Symbols
https://lacast.wmflabs.org/wiki/Results_of_Functions_of_Matrix_Argument
https://lacast.wmflabs.org/wiki/Results_of_Integrals_with_Coalescing_Saddles

34 A. Greiner-Petter et al.

Listing 1.1: Use the following BibTeX code to cite this article
@inproceedings { GreinerPetter2022 ,

author = { Andr \’{e} Greiner - Petter and Howard S.~ Cohl
and Abdou Youssef and Moritz Schubotz
and Avi Trost and Rajen Dey
and Akiko Aizawa and Bela Gipp },

title = { Comparative Verification of the Digital
Library of Mathematical Functions and
Computer Algebra Systems },

year = {2022} ,
month = {Apr .},
booktitle = { International Conference on Tools and

Algorithms for the Construction and Analysis
of Systems (TACAS)},

publisher = { Springer International Publishing },
address = { Cham },
pages = {87 - -105} ,
doi = {10.1007/978 -3 -030 -99524 -9 _5}

}

	Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems

