
Preprint from https://www.gipp.com/pub/

A. Greiner-Petter et al. “Making Presentation Math Computable:
Proposing a Context Sensitive Approach for Translation LaTeX to Com-
puter Algebra Systems”. In: Mathematial software – ICMS 2020.
Vol. 12097. Springer, 2020

Making Presentation Math Computable:

Proposing a Context Sensitive Approach for

Translating LaTeX to Computer Algebra Systems

André Greiner-Petter1, Moritz Schubotz1,2, Akiko Aizawa3, and
Bela Gipp1

1University of Wuppertal, Wuppertal, Germany
(andre.greiner-petter@zbmath.org, {last}@uni-wuppertal.de)

2FIZ-Karlsruhe, Berlin, Germany ({first.last}@fiz-karlsruhe.de)
3National Institute of Informatics, Tokyo, Japan ({last}@nii.ac.jp)

July 15, 2020

Abstract

Scientists increasingly rely on computer algebra systems and digital
mathematical libraries to compute, validate, or experiment with mathe-
matical formulae. However, the focus in digital mathematical libraries and
scientific documents often lies more on an accurate presentation of the for-
mulae rather than providing uniform access to the semantic information.
But, presentational math formats do not provide exclusive access to the
underlying semantic meanings. One has to derive the semantic informa-
tion from the context. As a consequence, the workflow of experimenting
and publishing in the Sciences often includes time-consuming, error-prone
manual conversions between presentational and computational math for-
mats. As a contribution to improve this workflow, we propose a context-
sensitive approach that extracts semantic information from a given con-
text, embeds the information into the given input, and converts the se-
mantically enhanced expressions to computer algebra systems.

1 Introduction

The document preparation system LATEX has become a de facto standard1 for
writing scientific papers in STEM disciplines over the last 30 years [1]. Nu-
merous other editors, such as the editor for Wikipedia articles2 or Microsoft
Word [11], entirely or partially support LATEX expressions. LATEX provides a

1https://www.latex-project.org/ [Accessed 03-24-2020]
2https://en.wikipedia.org/wiki/Help:Displaying_a_formula [Accessed 03-24-2020]

1

syntax for printing mathematical formulae that is similar to the way a person
would write the math by hand. Thus, LATEX focuses on the presentation of
formulae but does not explicitly carry their semantic information.

For a human reader, LATEX’s focus on formulae presentation is typically
not a problem since readers can deduce the semantics of the formulae from
the surrounding context and the reader’s prior knowledge. Consider the Euler-
Mascheroni constant represented by the Greek letter γ. Without further in-
formation, γ is just a Greek letter, often used to describe this mathematical
constant but can also be used to represent curve parametrization, among other
things. Based on the context, a human reader can interpret γ correctly and
connect the letter with the semantic background. Computational systems, how-
ever, have issues identifying the correct semantics of formulae if the formulae do
not provide enough context. For example, in LATEX, γ is represented as \gamma.

Explicitly given semantic information in mathematical expressions becomes
increasingly relevant in computational mathematics. Nowadays, many scientists
also compute formulae from their papers [2, 3]. They evaluate specific values,
create diagrams, and search or calculate practical solutions. Computer Alge-
bra Systems (CAS) are software tools that allow for such computations and
visualizations of mathematical expressions. CAS create their representations
(hereafter referred to as CAS input) with the intent of creating an input syntax
that is intuitive and easy to type. CAS input must be unambiguous to CAS.
Otherwise, a CAS is unable to perform computations and visualizations. CAS
input is not standardized; instead, each CAS provider has created its own syntax
that differs from other systems [10]. The workflow of writing a paper, there-
fore, leads to the problem of continually transforming mathematical expressions
from LATEX to CAS input and back. Since LATEX does not carry the semantic
information explicitly, the CAS is unable to parse complex input directly. Thus,
the author must perform the transformation manually, which is time-consuming
and error-prone.

Transformations between CAS input and LATEX are not straightforward and
require substantial knowledge of the internal processes for the CAS [10]. Ta-
ble 1 illustrates the differences in representations exemplified for a Jacobi poly-
nomial [5]. The expression in generic LATEX, i.e., general LATEX without custom
macros, sharply differs from the semantically unique terms in CAS inputs. To
overcome the issue of missing explicit semantic information in LATEX expres-
sions, the National Institute of Standards and Technology (NIST) has developed
a unique set of semantic LATEX macros. NIST uses these macros for the Digital
Library of Mathematical Functions (DLMF) [14] and the Digital Repository of
Mathematical Formulae (DRMF) [4]. Both DLMF and DRMF macros enhance
the search capabilities on the DLMF and DRMF websites and establish info
boxes that provide short descriptions of the symbols, link to their definitions,
and further literature. Table 1 shows that the semantically enhanced LATEX is
closer to the syntax supported by a CAS. In the following, we will refer to se-
mantically enhanced LATEX as semantic LATEX, and general LATEX expressions as
generic LATEX, respectively. In the following, we will propose a context-sensitive
approach to convert the generic LATEX expressions to CAS. The approach will

2

Systems Representations

Rendered Version P
(α,β)
n (cos(aΘ))

Generic LATEX P_n^{(\alpha,\beta)}(\cos(a\Theta))

Semantic LATEX \JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

CAS Maple JacobiP(n,alpha,beta,cos(a*Theta))

CAS Mathematica JacobiP[n,\[Alpha],\[Beta],Cos[a \[CapitalTheta]]]

Table 1: Representations of a Jacobi polynomial in different systems.

take advantage of existing tools and datasets.

1.1 Related Work

To the best of our knowledge, there is no system nor a theoretical concept yet
that allows for translating LATEX expressions to CAS and taking the context of
the expression into account. Existing tools, such as the inbuild import/export
functions of CAS, ignore context information and are therefore limited to simple,
unambiguous cases (e.g., \frac{1}{2} or \cos x) [10].

We previously developed a system called LACAST, that converts semantic
LATEX expressions to the CAS Maple and Mathematica [10]. LACAST is essen-
tially a rule-based engine that performs translations based on manually crafted
patterns. The engine follows a modular concept, which allows for extending the
system without additional coding, e.g., by extending or creating new lists of
translation patterns. Cohl et al. [8] have shown that LACAST is able to identify
errors in digital mathematical libraries and CAS. However, LACAST also does not
consider the context of math formulae, since the necessary semantic information
is encoded in the semantic macros. Moreover, the use of the semantic LATEX
dialect is currently limited to the DLMF and DRMF. Hence, the next step is to
extend the system to work with generic LATEX inputs.

2 Towards a Context-Sensitive Approach

LACAST performs the translation based on parse trees, which are generated by
the Part-of-Math (POM) tagger [7]. Similar to the Part-of-Speech (POS) tag-
gers in natural language processing (NLP), the POM tagger also tags tokens
with additional information. In its current state, the POM tagger does not
consider context information. Thus, the parse tree generated by the POM tag-
ger should not be misunderstood as a syntax tree of equations. Since semantic
LATEX is an extension of generic LATEX, the POM tagger is also able to parse
semantic LATEX expressions. The POM tagger stores the information about
tokens in a manually crafted database, called lexicons. The lexicons contain
possible semantic information for symbols. For example, the lexicon entry for ζ
contains twelve different meanings [7, 10]. Three of the twelve entries are spe-
cial functions: the Weierstrass zeta function, the Riemann zeta function, and

3

the Hurwitz zeta function. Each meaning also provides information about the
structure of the function. For example, the Hurwitz zeta function ζ(s, a) has
two arguments. The first argument is a complex variable, while the second is a
complex parameter.

The semantic information of a mathematical formula is either given in the
context or can be derived from the structure of the formula (e.g., when the
notation of an expression is unambiguous). The lexicons of the POM tagger and
the definitions of the semantic LATEX macros provide a database of standardized
notations of mathematical functions. Hence, this knowledgebase can be used to
derive semantic information from the structure of an expression. To analyze the
textual context, we can use the Mathematical Language Processor (MLP) [6].
The MLP aims to extract the textual descriptions, called definiens, from the
context of a mathematical expression. The MLP focuses on single mathematical
symbols, named identifiers. An identifier might also include the subscript since
a symbol with a subscript is often interpreted as one mathematical object. The
basic approach of the MLP is that candidates of definiens and identifiers are
connected when the distance between them is small, i.e., fewer words appear
between the identifier and its definiens. The score also considers the distance of
identifier-definiens pairs to complex mathematical expressions that contain the
identifier. Schubotz et al. [6] also presented ten patterns of phrases, defined by
domain experts, that introduce a new pair of definiens and identifier, such as
<identifier> (is|are) <definiens>. The authors reported the precision of
p = 0.4860 and the recall of r = 0.2806 for their new machine learning approach.
The concept of the MLP is implemented in a publicly available Java framework
called mathosphere3.

For the Jacobi polynomial from Table 1, P
(α,β)
n (x), mathosphere extracts

four identifier Pn, α, β, and x rather than groups of tokens, such as P
(α,β)
n (x).

Without considering P
(α,β)
n (x) as one mathematical object, it is challenging to

identify α, β, and n as parameters and x as the variable. We addressed this issue
in [12] by identifying so-called Mathematical Objects of Interest (MOI). MOI
represent meaningful groups of tokens rather than single identifiers. In [12], we
developed a search engine to find MOI by a given textual query. For example, the

top-3 results for the search query ‘Jacobi Polynomial ’ were P
(α,β)
n (x), P

(α,β)
n ,

and β > −1 (which is one of the constraints of Jacobi polynomials). The
search engine allows for linking mathematical expressions with textual queries.
The retrieved MOIs are based on the distributions of mathematical formulae
in the corpus of arXiv4 and zbMATH5. Hence, they represent common relevant
expressions for a given textual query.

4

Figure 1: Pipeline of the proposed context-sensitive conversion process. The
project extracts semantic information from real-world documents (2), enhances
the mathematical input expressions with the extracted information (3-4), and
transforms the math into CAS representations in the final step (6-7).

3 Conversion and Evaluation Pipeline

Figure 1 illustrates the pipeline of the proposed system to convert generic LATEX
expressions to CAS. The figure contains numbered badges that represent the dif-
ferent steps in the system. Steps 2-5 represent the conversion pipeline, while
steps 1, 6, and 7 are different ways to evaluate the system. Mathosphere [6]
will serve as the baseline. With MathMLben [9], a benchmark for MathML, we
tested the performance of several LATEX to MathML conversion tools. MathML-
ben provides a manually crafted semantically annotated dataset for 300 math-
ematical formulae. We evaluate mathosphere on this annotated dataset in step
1a.

The conversion pipeline starts with mathosphere (step 2a) to extract identifier-
definiens pairs from the given context. Since mathosphere only considers single
identifiers, we will use the developed search engine in [12] to derive MOIs for
the extracted definiens (step 2b). The identified MOIs can be matched against

3https://github.com/ag-gipp/mathosphere [Accessed 03-24-2020]
4https://arxiv.org [Accessed 03-24-2020]
5https://zbmath.org [Accessed 03-24-2020]

5

complex expressions in the context. Therefore, we end up with MOI-definiens
pairs in step 2c, where the scores are calculated based on the relevance of MOIs
and the original scores generated by mathosphere.

Once we extracted the MOI-definiens pairs, we replace the generic LATEX
expressions by their semantic counterparts (steps 3-4). This can be done based
on the lexicons of the POM tagger and the DLMF Macro definition files, which
both provide information about the argument layout of functions. This infor-

mation is important to identify fixed notations, i.e., P in P
(α,β)
n (x), and the

variables/parameters, i.e., α, β, n, and x in P
(α,β)
n (x). After these steps, we

have the option to evaluate the system in three different ways.
First, we improve the conversion process of LATEX to MathML conversion

tools by considering the extracted MOI-definiens pairs. Thus, we can measure
the improvement of considering the context against the results in the MathML-
ben benchmark tests in [9], which did not use the information from the context.
Second, we evaluate the generated semantic LATEX expressions on the DLMF
dataset. The DLMF is internally written in semantic LATEX, but provides exter-
nal access to the generic LATEX version of each formula. Hence, the DLMF can
be interpreted as a manually annotated dataset of LATEX expressions. Third,
we use the evaluation system of LACAST [8], which uses CAS to check if a trans-
lated equation is still valid after the translation system. The latter is useful
to compare the performance of the conversion from LATEX to CAS with man-
ually (semantic LATEX from the DLMF) and automatically (proposed pipeline)
annotated semantic information.

4 Conclusion

We presented a novel context-sensitive approach to convert mathematical LATEX
expressions to CAS. The proposed pipeline based on existing tools and datasets,
such as MLP [6], POM tagger [7], LACAST [10], and MathMLben [9]. Realizing
the proposed pipeline is part of our current research.

Acknowledgments

This work was supported by the German Research Foundation (DFG grant
GI-1259-1).

References

[1] A. Gaudeul. “Do Open Source Developers Respond to Competition?: The
(La)TeX Case Study”. In: Review of Network Economics 6.2 (2006), p. 9.
doi: 10.2139/ssrn.908946.

6

[2] N. P. Karampetakis and A. I. G. Vardulakis. “Special issue on the use of
computer algebra systems for computer aided control system design”. In:
International Journal of Control 79.11 (Nov. 2006), pp. 1313–1320. doi:
10.1080/00207170600882346.

[3] J. von zur Gathen and J. Gerhard. Modern Computer Algebra (3. ed.)
Cambridge University Press, 2013.

[4] H. S. Cohl et al. “Growing the Digital Repository of Mathematical For-
mulae with Generic LaTeX Sources”. In: Proc. CICM. Ed. by M. Kerber
et al. Vol. 9150. Springer, 2015, pp. 280–287. doi: 10.1007/978-3-319-
20615-8_18.

[5] H. S. Cohl et al. “Semantic Preserving Bijective Mappings of Mathemati-
cal Formulae Between Document Preparation Systems and Computer Al-
gebra Systems”. In: Proc. CICM. Ed. by H. Geuvers et al. Vol. 10383.
Springer, 2017, pp. 115–131. doi: 10.1007/978-3-319-62075-6_9.

[6] M. Schubotz et al. “Evaluating and Improving the Extraction of Math-
ematical Identifier Definitions”. In: Experimental IR Meets Multilingual-
ity, Multimodality, and Interaction - 8th International Conference of the
CLEF Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017,
Proceedings. Ed. by G. J. F. Jones et al. Vol. 10456. Springer, 2017, pp. 82–
94. doi: 10.1007/978-3-319-65813-1_7.

[7] A. Youssef. “Part-of-Math Tagging and Applications”. In: Lecture Notes
in Computer Science. Ed. by H. Geuvers et al. Vol. 10383. Springer, 2017,
pp. 356–374. doi: 10.1007/978-3-319-62075-6_25.

[8] H. S. Cohl, A. Greiner-Petter, and M. Schubotz. “Automated Symbolic
and Numerical Testing of DLMF Formulae Using Computer Algebra Sys-
tems”. In: Proc. CICM. Ed. by F. Rabe et al. Vol. 11006. Springer, 2018,
pp. 39–52. doi: 10.1007/978-3-319-96812-4_4.

[9] M. Schubotz et al. “Improving the Representation and Conversion of
Mathematical Formulae by Considering their Textual Context”. In: Proc.
ACM IEEE JCDL. Ed. by J. Chen et al. Fort Worth, USA: ACM, 2018,
pp. 233–242. doi: 10.1145/3197026.3197058.

[10] A. Greiner-Petter et al. “Semantic Preserving Bijective Mappings for Ex-
pressions involving Special Functions in Computer Algebra Systems and
Document Preparation Systems”. In: Aslib Journal of Information Man-
agement 71.3 (July 2019), pp. 415–439. doi: 10.1108/AJIM-08-2018-
0185.

[11] D. Matthews. “Craft beautiful equations in Word with LaTeX”. In: Nature
570.7760 (June 2019), pp. 263–264. doi: 10.1038/d41586-019-01796-1.

[12] A. Greiner-Petter et al. “Discovering Mathematical Objects of Interest -
A Study of Mathematical Notations”. In: Proceedings of The Web Con-
ference 2020 (WWW’20), April 20–24, 2020, Taipei, Taiwan. Apr. 2020.
doi: 10.1145/3366423.3380218.

7

[14] NIST Digital Library of Mathematical Functions. http://dlmf.nist.
gov/, Release 1.0.25 of 2019-12-15. F. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

8

Listing 1: Use the following BibTeX code to cite this article

@inproceedings{Greiner -Petter2020c ,

author = {Greiner -Petter , Andr\’{e} and Schubotz , Moritz

and

Aizawa , Akiko and Gipp , Bela},

title = {Making Presentation Math Computable:

Proposing a Context Sensitive Approach for

Translation LaTeX to Computer Algebra Systems},

booktitle = {Mathematial software -- ICMS 2020} ,

series = {Lecture Notes in Computer Science},

volume = {12097} ,

publisher = {Springer},

year = {2020}

}

9

