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ABSTRACT
For more than four decades, arti!cial intelligence (AI) research
has thrived at the crossroads of academia and industry. However,
the balance of in"uence is increasingly shifting toward industry,
which dominates key components of modern AI research: computa-
tional resources, large datasets, and highly skilled researchers. This
dominance is reshaping research outputs, with industry becom-
ing more in"uential in academic publications. Yet, little empirical
work examines the in"uence of industry on AI research (past or
present). In this thesis, I quantify industry’s presence in top-tier
AI conferences and its citational in"uence on research trajectories.
I analyzed ~57.3K AI papers, ~3.3M citations from AI papers to
other papers, and ~6M citations from other papers to AI papers.
I !nd a striking paradox: although the share of industry-funded
research in top AI conferences has declined by 37 % between 2020
and 2023, its citational in"uence continues to grow. More than
half (54 %) of industry-funded papers published between 2018 and
2023 have a high citational impact, compared to just 3% of non-
industry-funded and 2% of non-funded papers. In addition, I !nd
that industry-funded papers are insular - citing increasingly more
industry-funded papers while contributing fewer papers that bridge
diverse funding sources. Furthermore, I show that the temporal ci-
tation diversity of industry-funded papers have markedly declined,
with bothmedian age and age diversity at all-time lows. My !ndings
raise questions about the scienti!c community’s engagement with
cross-disciplinary and temporally diverse literature, particularly in
the context of industry-funded research. All data and code used in
this thesis are publicly available.1

CCS CONCEPTS
•Computingmethodologies→Arti!cial intelligence; • Social
and professional topics → Surveillance; Governmental regula-
tions; Computing education.

KEYWORDS
Computer Science, Scientometrics, Research Trends, Arti!cial In-
telligence, Research Funding, Big Tech, Monopolisation, Con"ict
of Interest, Echo Chamber, Bias, Ethical AI, Fairness, Diversity,
Transparency

1 INTRODUCTION
Arti!cial Intelligence (AI) has evolved into a "general purpose tech-
nology" comparable to the steam engine, electri!cation, and the
Internet, o#ering transformative opportunities across various in-
dustries [Ahmed and Wahed 2020; Cockburn et al. 2018; Verdegem

1https://github.com/Peerzival/impact-big-tech-funding
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Figure 1: The contribution share of the top !ve industry
funders in AI research across key domains from 2018 to 2023:
Arti!cial Intelligence (AI), Computer Vision (CV), Machine
Learning (ML), Natural Language Processing (NLP), and Web
& Information Retrieval (WIr).

2024]. This evolution holds the potential to reshape the social land-
scape by a#ecting job development, in"uencing hiring decisions,
and addressing global challenges like climate change [Dobbe and
Whittaker 2019]. However, growing concerns about biases and fair-
ness in AI-enabled technologies persist [Ahmed et al. 2023; Boluk-
basi et al. 2016; Nadeem et al. 2020; Righetti et al. 2019; Verdegem
2024]. Engaging a diverse group of researchers in AI development
is crucial for mitigating biases and promoting fairness in AI prac-
tices [Kuhlman et al. 2020; West et al. 2019]. Thus, there is a broad
consensus that the development of AI systems should be inclusive,
ensuring that their bene!ts are widely accessible rather than limited
to a privileged few [Ahmed and Wahed 2020].

The dominance of Big Tech. However, the industrial landscape
of AI is dominated by a small number of extremely powerful com-
panies (see Figure 1), often referred to as Big Tech2 (e.g., Meta,
Google, Amazon, Nvidia, Microsoft, Baidu, Tencent, etc.) [Abdalla
et al. 2023b; Ahmed and Wahed 2020; Montes and Goertzel 2019;

2The terms Big Tech and industry are used interchangeably.
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Riedl 2020; Verdegem 2024]. These companies have access to three
key resources essential for modern AI research: large datasets, the
computational power necessary to run and train advanced ma-
chine/deep learning models, and access to a highly skilled AI work-
force [Ahmed et al. 2023; Montes and Goertzel 2019; Riedl 2020;
Verdegem 2024]. This oligopolistic/monopolistic control over these
critical resources grants a disproportionate amount of power to
a small number of corporations [Ahmed et al. 2023; Montes and
Goertzel 2019], who ultimately shape what we examine (and do
not examine) about AI and the business surrounding it [Whittaker
2021]. As a result, there is growing concern about scienti!c inde-
pendence and the concentration of power in AI research [Abdalla
and Abdalla 2021; Ahmed et al. 2023; Whittaker 2021].

Tensions between commercial and public interests. Whit-
taker [2021] argued that the close ties between the AI research com-
munity and industry do not necessarily compromise researchers
in the domain of AI. However, these connections do mean that the
questions and incentives shaping the !eld are not always within
the control of individual researchers. The trajectory of the !eld —
including which questions are deemed worth pursuing and which
answers lead to grants, awards, and tenure — is disproportionately
in"uenced by the corporate emphasis on resource-intensive AI and
the tech industry’s incentives.

The increasing investment from industry in AI research does
not diminish the potential for signi!cant societal bene!ts. Yet, com-
mercial motives often drive companies to prioritize pro!t-oriented
topics. While such incentives can sometimes align with the public
interest, resulting in bene!cial tools, hardware, or software, this is
not always the case [Ahmed et al. 2023]. The lack of public-minded
alternatives may lead to a scenario similar to that of the pharma-
ceutical industry, where investments tend to overlook the needs of
lower-income groups [Ahmed et al. 2023; Trouiller et al. 2002].

This thesis. Does not aim to debate the advantages or draw-
backs of the industry’s growing presence in AI. Instead, it o#ers a
systematic, quantitative evaluation of industry’s in"uence within
the AI research ecosystem. Using the Scopus database3, I compiled
a new dataset of metadata associated with ~57.3K AI papers pub-
lished at ten top-tier conferences from 2018 to 2023, along with
~3.3M citations from AI papers and ~6M citations to AI papers. Each
citation is detailed by year of publication, funding agency (if any),
and !eld of study for both the papers cited by AI research and
those citing AI research. Analyzing these connections allows for a
in-depth exploration of !ve critical areas:

(1) Evolution of industry presence in AI : Analysis of trends in
industry-funded research over time.

(2) Engagement of the AI community: Examination of the AI
community’s interaction with industry-funded research
and how this engagement has evolved.

(3) Insularity of industry-funded research by funding type: In-
vestigation of whether industry-funded research predomi-
nantly builds on its own !ndings or follows the principles
of responsible research, aligning with responsible research
principles.

3The in-house Scopus database maintained by the German Competence Centre for
Bibliometrics (Scopus-KB), 2024 version.

(4) Insularity of industry-funded research by !eld: Given the
broad social impact of AI, particularly through sub!elds
such as NLP and ML, it is important to assess whether Big
Tech !rms, such as Google, Microsoft, and Tencent, follow
their societal responsibilities. Speci!cally, this analysis ex-
amines whether these companies research engages with a
wide swathe of !elds, particularly in areas relevant to the
societal impact of AI.

(5) Insularity of industry-funded research by citation age: Sus-
tainable and responsible research builds upon broad set of
literature, spanning from various !elds and periods. How-
ever, recent studies have shown a trend towards research
insularity, characterized by a concerning reliance on recent
publications at the expense of foundational work [Bollmann
and Elliott 2020; Nguyen and Eger 2024; Singh et al. 2023;
Verstak et al. 2014; Wahle et al. 2024]. In the context of
AI’s societal impact, such a shift in declining engagement
with older research could undermine the long-term sus-
tainability of the !eld, research in general, and, ultimately,
society. Therefore, this thesis examines trends in citation
age across funding types over time, and explores the extent
to which industry-funded research adheres to principles of
responsible and inclusive research.

In summary, my contributions are three-fold: I (1) introduce a
novel methodology for identifying corporate involvement in re-
search, (2) compiled a new open dataset of ~57.3K AI papers, and
(3) provide a detailed analysis of how deeply the AI community in-
teracts with industry-funded research. It further examines whether
industry-funded work engages with past literature and fosters in-
terdisciplinary collaboration — both critical for responsible AI re-
search.

By drawing upon the compiled dataset, I demonstrate that indus-
try presence in the top AI conferences decreased by 37 % between
2020 and 2023. However, the AI community’s engagement with
industry-funded research has intensi!ed. For example, in 2018, 9 %,
or every ~12th citation from non-industry-funded or non-funded
papers were directed toward industry-funded work. By 2023, this
!gure declined to every ~8th citation (12 %). This intensi!ed engage-
ment resulted in 54 % of industry-funded papers from 2018-2023 had
high citational impact, compared to just 3 % of non-industry-funded
and 2 % of non-funded papers.

These !ndings raises a cause for concern about the integrity and
impartiality of current AI research. Some actions to address these
challenges could include a stricter code of ethics and operation
for AI-related research, enhanced regulation of Big Tech’s role in
research funding, and increased public resources, such as a public
research cloud, public data sets, salaries, and research funding.

2 RELATEDWORK
The !eld of scientometrics, particularly the analysis of citation
patterns, has been a prominent area. Tracing back to the mid-20th
century [de Solla Price 1962], citations and their networks have
been studied from several perspectives, including: author location
Rungta et al. [2022], a$liation [Abdalla et al. 2023b; Sin 2011],
reputation [Collet et al. 2014], as well as demographic attributes
such as gender, race and age [Abdalla et al. 2023a; Ayres and Vars
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2000; Chatterjee and Werner 2021; Llorens et al. 2021; Mohammad
2020c]. Other perspectives include paper length [Falagas et al. 2013]
and quality [Buela-Casal and Zych 2010], !eld of study [Costas et al.
2009], publication language [Lira et al. 2013] and venue [Wahle et al.
2022b], self-citation [Della Sala and Brooks 2008], plagiarism [Gipp
and Meuschke 2011; Wahle et al. 2023a, 2022a] and institutional
diversity [Abdalla et al. 2023b].

Despite AI’s pivotal role in contemporary science, comprehen-
sive scientometric studies of the entire !eld remain sparse. Most
analysis have centered on Natural Language Processing (NLP), a
prominent AI sub!eld. Many researchers have shared open-sourced
datasets that can be used to study the growth and change in NLP
[Mariani et al. 2019; Mohammad 2020a; Wahle et al. 2023b, 2022b].

Recent studies have begun to quantify the presence of indus-
try in AI research. Ahmed et al. [2023] highlights that while AI
originated within academia, industry now dominates its practi-
cal application, further development, and broad rollout. Similarly,
Sevilla et al. [2022] analyzed trends in computational resources,
revealing that industry’s contribution to the largest AI models has
gone from 11 % in 2010 to 96 % by 2021. Ahmed and Wahed [2020]
created a dataset of 171K computer science conference papers to
study industry participation rates over time. They found an upward
trend in industry participation, largely limited to collaborations
between major corporations and top-ranked research institutions
(ranked 1-50 nn QSWorld University Rankings4). Moreover, Klinger
et al. [2022] explored the thematic diversity of AI research, com-
paring academic and industrial contributions. They concluded that
thematic diversity has stagnated, with industry-driven research
being less diverse yet more in"uential than research in academia.

Building upon these existing studies, my thesis examines the
(temporal) citational impact of industry-funded papers on AI re-
search by analyzing a dataset covering papers that are published
in the top-tier AI conferences (published between 2018 and 2023).
Inspired by Abdalla et al. [2023b]; Singh et al. [2023]; Wahle et al.
[2023b], this thesis delves into patterns of citation amnesia within
AI, extending Singh et al. [2023]’s !ndings on citation amnesia in
NLP. It addresses the trends of declining interdisciplinary engage-
ment noted by Wahle et al. [2023b] and situates the observations
of Abdalla et al. [2023b] on industry’s in"uence within the broader
AI context. My thesis takes a deep dive into eight novel research
questions, notably around industry funding trends in AI (Q1), cita-
tion behaviors related to funding types (Q2, Q3, Q6), in"uence and
citational impact of industry-funded research (Q4, Q5), and citation
ages of industry-funded papers (Q7, Q8).

3 METHODOLOGY
To obtain robust data on industry presence in AI research, I em-
ployed the Scopus database for its extensive and inclusive content
coverage [Pranckutė 2021]. Spanning publications from 1902 to
2024, Scopus includes ~69.5M papers and ~2.2B citations, providing
detailed metadata on author a$liations and citation relationships.
Additionally, Scopus includes funding information for ~21M papers.
However, since this funding data relies on the information provided

4www.topuniversities.com/qs-world-university-rankings

Table 1: Overall dataset statistics.
†Lower bound. *Sum of articles in Table 2.

Time range 1902–2024

#papers 69 491 766
#funded papers† 21 047 938
#citations 2 199 264 185
#papers AI* 114 090
#funded papers AI† 45 893
#out-citations from AI 3 308 618
#in-citations to AI 6 012 570

in the publication acknowledgments [Liu 2020], the identi!ed in-
dustry funding a$liations re"ect a lower bound. An overview of
the key dataset statistics is provided in Table 1.

For the analysis of AI sub!elds, I selected !ve key domains: Ar-
ti!cial Intelligence (AI), Computer Vision (CV), Machine Learning
(ML), Natural Language Processing (NLP), andWeb & Information
Retrieval (WIr), based on csranking.org5. From these domains, I in-
cluded two top conferences per domain according to csranking.org
and based on their h5-index rankings. Out of the ten conferences,
eight were successfully matched, while the two unmatched con-
ferences were replaced by those with the third-highest h5-index
in their respective !elds. The !nal list of top-tier AI conferences
contains:

• Advancement of Arti!cial Intelligence (AAAI)
• International Joint Conference on Arti!cial Intelligence

(IJCAI)
• Conference on Computer Vision and Pattern Recognition

(CVPR)
• International Conference on Computer Vision (ICCV)
• International Conference on Machine Learning (ICML)
• International Conference on Learning Representations

(ICLR)
• Association for Computational Linguistics (ACL)
• Empirical Methods in Natural Language Processing

(EMNLP)
• International Conference on Web Search and Data Mining

(WSDM)
• Conference on Research and Development in Information

Retrieval (SIGIR)
Table 2 provides details of the selected top-tier AI conferences.
The introduction of the transformer network architecture in 2017

[Vaswani 2017], an algorithmic technique developed by Google for
training neural networks, marked a signi!cant shift in the develop-
ment of languagemodels. This advancement led to the emergence of
Bidirectional Encoder Representations from Transformers (BERT)
and similar models, accelerating the development of large-scale
pretrained models [Devlin et al. 2019] and contributing to the mo-
nopolization of AI development in the digital economy [Luitse and
Denkena 2021].

To capture the marked impact of transformer-based models on
AI research, I focus on the period from 2018 to the present. This
timeframe aligns with the introduction and widespread adoption of

5https://csrankings.org/#/index?ai&vision&mlmining&nlp&inforet&world

www.topuniversities.com/qs-world-university-rankings
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Table 2: The selected top-tier AI conferences are ordered by
!eld and decreasing h5-index.
*Replacements with the third-highest h5-index.

Field Conference Number of articles h5-index (↑)

AI AAAI 9696 212
IJCAI 10 375 133

CV CVPR 22 866 422
ICCV* 11 691 291

ML ICLR 4407 303
ICML* 19 719 288

NLP ACL 21 654 192
EMNLP 6950 176

WIr SIGIR 5145 90
WSDM* 1587 77

these technologies. However, the Scopus data on the selected con-
ferences only extends to 2023, so I focus on AI publications between
2018 and 2023. This range is both practical and comprehensive for
analyzing funding trends driven by industry during the era of large-
scale pretrained models. The !nal dataset contains 57 319 papers.
Below, I outline my approach for collecting and processing this
data to identify industry funding.

The source code to process my data and reproduce the experi-
ments is available on GitHub (for research purposes only):

https://github.com/Peerzival/impact-big-tech-funding

3.1 Data Collection
To de!ne the scope of Big Tech for the experiments, I constructed a
citation graph that extends two levels deep from the conference pa-
pers listed in top-tier AI conferences. Figure 2 provides an example
of this citation graph. The graph originates from papers presented
at these top-tier conferences (root level) and expands through the
outgoing citations of these papers (level 1). The !nal level (level 2)
includes papers cited by those in the !rst level. From this graph, I
identi!ed corporate funders (CF) contributing to AI research.

This two-level expansion captures both direct and indirect con-
tributors to the !eld, providing a holistic view of the industry in-
"uence on AI research. Many foundational contributions originate
from companies that may not publish directly in these conferences,
but are highly cited for their impactful work. For example, organiza-
tions such as OpenAI, Hugging Face, and Mistral play a pivotal role
in advancing the !eld, even though they may not always present
at these conferences.

This citation-based methodology addresses the limitations of
previous approaches, such as that of Abdalla et al. [2023b], which
emphasized market capitalization by focusing on publicly traded
companies listed on the New York Stock Exchange. By including in-
"uential publicly and non-publicly traded companies, my approach
ensures a more accurate representation of the entities shaping the
AI research landscape.

3.2 Data Processing
The process to reproduce my list of CFs can be described in !ve
steps:

(1) I extracted the names of funding agencies and the frequency
of their occurrences from papers in the citation graph.

(2) For agencies with up to ten occurrences, I manually exam-
ined them to determine whether they were industry-related.
This step is referred to as manual analysis. A funding
agency was classi!ed as CF if it was neither a public nor a
non-pro!t organization.

(3) I standardized the names of the CFs to account for variations
in company names and alternative descriptions of the same
organization (e.g., Amazon, AmazonWeb Services, Amazon
Research).

(4) I used fuzzy matching (Appendix A.1) to search for CFs
in the remaining set of agencies with fewer than ten oc-
currences. As a proxy for industry a$liation, I used the
216 standardized agencies from the third step. This step is
referred to as automatic analysis.

(5) Finally, I merged the results from both the manual and
automatic analyses into a comprehensive list of CFs. Table 3
provides an overview of key dataset statistics.

In total, I processed 78 333 funding agencies and identi!ed 3136
as industry-related. Further details on the standardization process
can be found in Appendix A.1.

Table 3: Industry-related funding agency dataset statistics.
*Sum of manual and automatic analysis.

Attribute Amount

Total funding agencies 78 333
Funding agencies up to ten occurrences 4206
Total industry a$liations* 3136
Industry a$liations (manual analysis) 382
Industry a$liations after standardization 216
Industry a$liations (automatic analysis) 2754

4 EXPERIMENTS
The integration of manually and automatically extracted CFs with
the Scopus database allows an in-depth analysis of industry involve-
ment in AI research across di#erent sub!elds. In the following, I
address eight pivotal questions regarding the role of industry in
various areas of AI research.

Q1. How large is the industry funding in AI? How does
this number vary by research !eld, such as AI, CV, ML, NLP,
and WIr? Has this number stayed roughly the same or has it
changed markedly over the years?

Ans. To quantify industry funding, I cross-referenced funding
agencies of AI paperswith the CF dataset. The percentage of industry-
funded papers (𝐿𝑀𝑁𝐿 ) in a given year 𝑂 is calculated as:

𝐿𝑀𝑁𝐿 (𝑂) =
∑
↓𝐿𝐿 ↔⊋

𝑀𝑁 (𝑃𝑀 ,𝑂)
𝐿 (𝑃𝑀 ,𝑂)

· 100 (1)

https://github.com/Peerzival/impact-big-tech-funding
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Figure 2: Example citation graph to identify funding agencies for the search scope.

here 𝑀𝑁 (𝑃𝑀 ,𝑂) represents the number of industry-funded papers
in !eld 𝑃𝑀 in year 𝑂, and 𝐿 (𝑃𝑀 ,𝑂) is the total number of papers in
that !eld. 𝑁 is the set of all sub!elds in AI.

To gain !ner granularity, I also compute the !eld-speci!c industry
funding percentage (𝑁𝑀𝑁𝐿 ) for each year:

𝑁𝑀𝑁𝐿 (𝑄,𝑂) = 𝑀𝑁 (𝑄,𝑂)∑
↓𝐿𝐿 ↔⊋ 𝐿 (𝑃𝑀 ,𝑂)

· 100 (2)

This metric isolates industry funding trends within individual
sub!elds.

For example, in 2020, if the total number of papers across all
!elds is 5000 and 300 papers in !eld 𝑄 were industry-funded, the
𝑁𝑀𝑁𝐿 for 𝑄 in 2020 would be 𝑁𝑀𝑁𝐿 (𝑄, 2020) = 300

5000 · 100 = 6%.

Results. Figure 5 tracks the evolution of industry involvement
in AI research, with increasing granularity from left to right. The
long-term perspective on industry-funded AI research is shown in
Figure 5(a), while Figure 5(b) narrows the focus to the selected time
frame. Figure 12 in Appendix details industry funding distribution
across the !ve AI sub!elds.

The proportion of industry-funded AI research has increased
markedly, from 0.6 % in 1998 to 7% in 2023 (see Figure 5(a)). A sharp
growth occurred between 2016 (4%) and 2020 (11%), re"ecting a
180 % increase. However, Figure 5(b) shows a decline post-2020, with
the share of industry-funded papers dropped from 11 % in 2020 to
7 % in 2023. The sub!elds most a#ected by this decline were AI and
ML, with ML experiencing a dramatic 100 % reduction in industry
involvement by 2023 (see Figure 12). In contrast, CV, NLP, and WIr
have seen growth in industry presence. NLP remained the leading
!eld in industry-funded research, while CV moved from fourth to
second place by 2023. WIr, the only sub!eld showing consistent
growth, surpassed ML in industry presence by 2023. Interestingly,
ML and CV attract less industry funding than NLP, possibly due to
the increasing demand for language-based technologies in virtual
assistants, chatbots, and translation services.

Between 2018 and 2023, 9 % of all papers published at top-tier AI
related conferences were funded by industry (see Figure 3). Figure 4
shows the percentage of industry-funded papers in an AI sub!eld
out of all industry-funded papers. NLP (33%) and CV (27%) had
the largest share of industry-funded publications, representing key
!elds of industry interest. Observe that despite its growth, WIr (3 %)
lagged behind in attracting industry investment. An alternative
perspective on the distribution of industry-funded publications
across AI sub!elds is provided in Figure 13 within the Appendix.

Overall, 60 % of papers were funded, with industry providing less
funding than other public sources (see Figure 3). Papers funded by
non-pro!t or public organisations make up the largest share across
all sub!elds, except inML. 54 % ofML papers between 2018 and 2023
were not funded, while all other !elds had a funding percentage
above 50 %. The greatest concentration of industry-funded research
occurred in NLP (11 %) and ML (10 %).

Discussion. The results align with Ahmed et al. [2023]’s obser-
vations of increasing industry presence in AI between 2016 and
2020, though my analysis reveals lower percentage values due to
its focus on funding rather than institutional a$liations. Funding
directly shapes research directions [Thelwall et al. 2023], serving
as a more precise indicator of industry in"uence than a$liations
alone.

The decline in industry funding post-2020 does not necessarily
imply a reduced industry presence in AI research. Instead, preprint
platforms such as arXiv show an exponential increase in AI-related
papers [Krenn et al. 2023; Maslej et al. 2023]. This suggests that
industry shifts away from traditional conference publications in
favor of less costly and time-consuming alternatives like preprint
servers (e.g., BERT [Devlin et al. 2019]) or corporate websites (e.g.,
ChatGPT6). The industry’s ability to conduct exclusive research -
owing to their access to critical resources - explains why these pa-
pers remain highly relevant, despite avoiding peer-reviewed venues.

6https://chat.openai.com

https://chat.openai.com
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Figure 3: The percentage distribution of funding types (indus-
try-funded paper, non-industry-funded paper, non-funded
paper), overall and split by AI sub!elds.
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Figure 4: The percentage share of industry-funded papers in
AI sub!elds (2018-2023), in descending order.

The COVID-19 pandemic further accelerated the use of preprint
servers as a rapid publication medium [Smart 2022], while macroe-
conomic pressures such as supply chain disruptions, plummeting
revenues, and rampant in"ation have driven companies to cut costs
[Morgan 2023], possibly in"uencing their reduced investment in
academic conference publications. The potential trend of industry

migration from publishing at top AI conferences to publishing on
preprint servers and own websites is alarming, as the AI research
community depends on industry funding and contributions. Such a
shift may reinforce the perception that preprint publications alone
constitutes good science, potentially devaluing peer review stan-
dards. This trend introduces several challenges, including limited
time for researchers to !lter quality work, promotion of bad sci-
ence due to the lack of peer review standards, and decreased error
correction via errata and retractions [Smart 2022].

Between 2018 and 2023, industry funding concentrated on NLP
and CV, with limited investment in ML and AI (focus on symbolic
techniques). This funding pattern re"ects an industry preference
for AI applications enabled by deep learning, alongside the devel-
opment of infrastructure essential for scalable, safe deep learning
research Klinger et al. [2022]. Non-deep learning AI methods and
broader AI applications remain areas of limited industry interest.
Conversely, WIr has shown steady funding growth, tied to its cen-
tral role in developing search engines and recommendation systems,
key AI application !elds for technology companies.

The high proportion of funded papers - particularly in AI (73 %)
and NLP (64 %) - highlights the !nancial demands of cutting-edge
AI research, exceeding what unfunded individuals or groups can
manage. Public and non-pro!t institutions are the primary support-
ers of AI research, although the rising share of industry funding
in certain !elds re"ects growing corporate interest in the !eld’s
commercial applications. However, as Scopus bases funding infor-
mation on paper acknowledgments, the true industry presence may
be underreported, as disclosures are sometimes omitted [Wang and
Shapira 2015]. Furthermore, funding in AI research extends beyond
the "ow of money from a funder to a recipient. The applied models
created by industry are often those that push the boundaries of
basic research [Ahmed et al. 2023]. Thus, funding includes access
to models, datasets, computational power, and specialised expertise
[Verdegem 2024].

ML remains an outlier, with most of its papers unfunded, likely a
consequence of the !eld’s theoretical and algorithmic focus, which
requires fewer resources compared to experimental work.

Q2. Which funding types do AI papers cite more promi-
nently? How has this citation behaviour changed over time?

Ans. As we know from Q1., 9% of all papers published be-
tween 2018 and 2023 were funded by industry. The key question is
whether industry-funded research attracts more citations than non-
industry-funded and non-funded papers. Industry ownership of key
resources [Ahmed and Wahed 2020; Ahmed et al. 2023; Verdegem
2024] may increase the visibility of these studies, even if their quan-
tity is low. To answer this question, I take into account the di#erent
sizes of the funding types (industry, non-industry, and non-funded)
and normalise the citation data with respect to the size of each
funding type. I introduce a new metric, called the Citation Prefer-
ence Ratio (𝑅𝐿𝑆), which measures whether a paper with a certain
funding type is cited more or less frequently than expected, based
on its availability. In simple terms, a higher CPR indicates that a
paper with a certain funding type is cited more often than its size in
the literature would suggest, implying a positive citation preference
for that type of funding. This metric helps to understand systemic
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Figure 5: The PIFP (a) overall from 1998 to 2023 (b) and from 2018 to 2023.

biases in citation practices that are in"uenced by category volume.
Precisely, the CPR from AI to a funding type 𝑃 is de!ned as follows:

𝑅𝐿𝑆𝑁𝑂 (𝑃 ) =
𝑅 (𝑃 )
𝑇 (𝑃 ) (3)

where 𝑅 (𝑃 ) =
∑
↓𝐿𝐿 ↔𝑃

𝑅 𝐿𝐿→𝐿 , (4)

and 𝑇 (𝑃 ) = #$
%
∑
↓𝐿𝐿 ↔𝑃

∑
↓𝐿𝑀 ↔𝑃

𝑅 𝐿𝐿→𝐿𝑀 &'
(
·
𝑈𝐿

𝑈
(5)

where, 𝑅 (𝑃 ) is the number of citations from all funding types
to funding type 𝑃 , 𝑇 (𝑃 ) is the expected number of citations to 𝑃
proportional to its share of total papers, 𝑅 𝐿𝐿→𝐿𝑀 is the number of
citations from funding type 𝑃𝑀 to funding type 𝑃𝑄 , 𝑁 is the set of all
sub!elds, and 𝑈 is number of papers across all funding types. A
𝑅𝐿𝑆 > 1 shows that the funding type 𝑃 is more often cited by AI
than expected based on its share of available papers, suggesting
a positive citation preference, while a 𝑅𝐿𝑆 < 1 shows that the
funding type 𝑃 is less often cited by AI than expected, implying a
negative citation preference. A 𝑅𝐿𝑆 = 1 shows that citations are
proportional to availability, indicating no citation preference.

Results. Figure 6 shows the CPR of AI to di#erent funding types
over time. The CPR plot of Figure 6 reveals a consistent upward
trend in citation preference towards funded papers (i.e., industry
and non-industry) since 2019. By 2021, the AI community started
citing more industry-funded papers than expected by the number of
papers, showing an increasing reliance on industry-funded research.
Despite this growing trend, non-funded research continued to be
cited more frequently than industry-funded work until 2023. How-
ever, non-funded research’s CPR has been steadily declining since
2019, demonstrating a reduced emphasis on non-funded research.

A marked shift occurred in 2023, when citations to industry-funded
papers surpassed those to non-funded papers, showing a strong
preference for industry-funded research in the current AI commu-
nity. Notably, while non-industry-funded research gains citations,
its CPR remains negative. This behaviour shows that while the AI
community is engaging more with this type of funding, the engage-
ment is gradual and not yet proportional to its publication volume,
re"ecting a gradual integration of non-industry-funded research
into the broader AI discourse.

Discussion. Overall, my analysis shows a marked shift in ci-
tation behaviour within the AI research community over the past
!ve years.

The increasing CPR for both industry-funded and non-industry-
funded papers demonstrates that funding has become essential to
achieve academic visibility in AI research. The marked increase in
the importance of industry-funded research is due to industry’s con-
tribution/development of tools and resources, such as frameworks,
datasets, and models, which become foundational in AI research
and development [Ahmed and Wahed 2020; Ahmed et al. 2023;
Verdegem 2024]. The publications of these tools are frequently cited
when used in academic and industry research alike. One example
is the paper introducing PyTorch, a widely used machine learning
library created by Meta [Paszke et al. 2019], which has accumulated
~49.5K7 citations in !ve years. Thus, the disproportionate citation
of industry-funded papers is less about sheer volume and more
about citational impact, accessibility, and integration.

In response to the growing importance of AI, government agen-
cies and non-pro!t organizations, such as the National Science
Foundation and the European Research Council, have increased
their funding in AI [André 2024]. This shift may have increased
both the quantity and quality of non-industry-funded publications,
7Last updated 12/15/2024
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Figure 6: The Citation Preference Ratio (CPR) of AI towards
industry-funded, non-industry-funded, and non-funded pa-
pers.

leading to rising citation counts. Thus, research without external
funding lags behind in citation metrics, possibly due to its focus
on niche topics that the broader AI community may consider less
relevant.

Q3. To what extent do industry-funded papers cite other
industry-funded papers as opposed to non-industry-funded
and non-funded papers?

Ans. Prior analysis (see Q2.) highlights that industry-funded
research increasingly gets cited by the AI research community,
but how does industry-funded research cite other types of fund-
ing? Does industry-funded research form a self-reinforcing cycle
in which industry-funded research primarily cites other industry-
funded work, potentially creating a shared narrative, i.e., echo
chambers [Cinelli et al. 2021]? To examine this question, I calculate
the di#erence in industry-funded outgoing citation percentage to
a funding type 𝑃 versus the average outgoing citations from vari-
ous funding types to 𝑃 . I rely on the Outgoing Relative Citational
Prominence (𝑉𝑆𝑅𝐿 ) metric by Wahle et al. [2023b] with one key
modi!cation: instead of examining research !elds, I focus on fund-
ing types. If industry-funded research (𝑀𝑁 ) has an ORCP greater
than 0 for 𝑃 , then 𝑀𝑁 cites 𝑃 more often than other funding types
cite 𝑃 on average.

𝑉𝑆𝑅𝐿𝑂𝑃 (𝑃 ) = 𝑊 (𝑃 ) ↗ 𝑋 (𝑃 ) (6)

where 𝑊 (𝑃 ) = 𝑅𝑂𝑃→𝐿∑
↓𝐿𝑀 ↔𝑃 𝑅

𝑂𝑃→𝐿𝑀
, (7)

and 𝑋 (𝑃 ) = 1
𝑈

𝑅∑
𝑀=1

𝑅 𝐿𝐿→𝐿∑
↓𝐿𝑀 ↔𝑃 𝑅

𝐿𝐿→𝐿𝑀
(8)

where 𝑁 is the set of all funding types, 𝑈 is the number of all
funding types, i.e. 3, and 𝑅 𝐿𝐿→𝐿𝑀 represents the number of citations
from funding type 𝑃𝑀 to funding type 𝑃𝑄 .

Results. Figure 7 shows the ORCP scores of industry-funded
papers across funding types, with industry-funded research citing it-
self more than average (𝑉𝑆𝑅𝐿 = 2%). Notably, despite the presence
of extensive non-industry-funded and non-funded research of com-
parable quantity, both of these funding types have an 𝑉𝑆𝑅𝐿 < 0,
implying that industry-funded research cites non-industry-funded
and non-funded work signi!cantly less than how much the other
funding types cite non-industry-funded and non-funded research.

Figures 17 and 18 in the Appendix shows the ORCP scores for
non-industry-funded and non-funded research. Among all funding
types, the highest ORCP to a funding type occurs within the same
funding type, indicating that citations to papers of the same funding
type are more common than cross-type citations. Non-industry-
funded and non-funded research has higher ORCP scores to itself
than industry-funded work has to itself. Additionally, industry-
funded research has the least negative ORCP among the three
funding types when cited by non-industry-funded and non-funded
papers.

Above averageBelow average

Non−Funded

Non−Industry

Industry

−2% −1% 0% 1% 2% 3%

Figure 7: Industry-funded research’s Outgoing Relative Cita-
tional Prominence (ORCP) scores for all funding types.

Discussion. The !ndings show an echo chamber e#ect in
industry-funded research, where citations disproportionately refer-
ence similar work within the same funding ecosystem. Despite this
pattern, the degree of insularity remains moderate, re"ected by an
ORCP of 2 %. Interestingly, all funding types demonstrate a degree
of citation insularity, likely in"uenced by their specialized research
focus. The strong thematic alignment in industry-funded research
may explain the observed tendency towards self-referential citation
practices.

Q4. How well are industry-funded papers cited? How does
the citational impact vary between industry-funded, non-
industry-funded, and non-funded papers?

Ans. Despite being a minority in my dataset, industry-funded
papers may have an out-sized in"uence on the development of
AI research. To assess this e#ect, I examine the citational impact
of industry-funded papers as a measure of in"uence on other re-
searchers (i.e., non-industry and non-funded). I analyze median
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citations, mean citations, and the h5-index [Hirsch 2005] across dif-
ferent funding types. The h5-index serves as a proxy for impact and
in"uence, despite its known limitations in capturing all research
dimensions [Bornmann and Daniel 2007; Costas and Bordons 2007].

Results. Table 4 reveals that funded papers receive more cita-
tions than non-funded papers. Non-industry-funded research has
the highest h5-index (754) and the largest paper volume (29 311),
demonstrating a substantial number of highly cited papers and to-
tal contributions. Conversely, industry-funded research, although
smaller in quantity, achieves a disproportionately high amounts
of citations, as evidenced by a substantial h5-index (503) relative
to the number of papers, re"ecting a focus on high-yield research
outputs.

The h5-index re"ects the number of papers (𝑌) that have received
at least 𝑌 citations within !ve years [Hirsch 2005]. Industry-funded
research stands out, with more than half of its publications (54%)
having high citational impact, compared to only 3 % of non-industry-
funded and 2 % of non-funded papers.

Further comparisons of citation means and medians reveal vari-
ability within funding types. High means coupled with lowmedians
show that while some papers achieve high number of citations,
many do not. Industry-funded research, however, shows consistent
citation patterns, suggesting a steady impact compared to other
funding types, which tend to have more one-hit successes.

Table 4: The total number of AI papers published in the
last !ve years, mean and median number of citations, as
well as h5-index for di"erent funding types are ordered by
decreasing h5-index.

Funding Type Count Median Mean h5-index (↑)
Non-Industry 29 311 24 109.53 754
Industry 933 52 211.91 503
Non-Funded 22 660 5 35.70 346

Discussion. The marked amount of citations to funded papers
shows a connection between research funding and high amount
of citations, demonstrating the crucial role of funding in boosting
research relevance and dissemination in AI research. In particular,
industry-funded research shows a markedly higher citational im-
pact relative to its publication volume compared to other funding
types. This disproportionate high amount of citations may arise
for various reasons, though high citation counts do not necessarily
indicate perfection in every way. Nonetheless, by virtue of their
visibility, highly-cited papers markedly in"uence research and how
early researchers perceive academic writing norms [Wahle et al.
2023b].

Industry-funded papers have a self-citation bias (see Q3.), which
can disproportionately in"uence early-stage researchers towards
topics aligned with industry priorities. These topics are compu-
tationally intensive Maslej et al. [2023], creating incentives for
researchers to pursue industry partnerships in order to gain ac-
cess to exclusive resources and amplify the visibility and impact
of their academic work. However, this dynamic risks shifting AI
research toward pro!t-oriented topics aligned with industry inter-
ests, while marginalizing public needs. To mitigate this imbalance,

public institutions must proactively provide researchers with the
resources necessary to remain independent of industry in"uence.
Establishing a comprehensive public research infrastructure - such
as a public research cloud, public data sets, salaries, and research
funding - empowers researchers to pursue work that aligns with
societal needs. As Ahmed et al. [2023] argue, such infrastructure
is vital not only for supporting independent research, but also for
maintaining the capacity to audit industry output and ensure that
AI advances serve the public interest.

Q5. Which type of funding is most in#uenced by industry-
funded research? How has this in#uence changed over the
years?

Ans. To determine the funding types most a#ected by industry-
funded research, I analyse the citation sources to industry-funded
research by funding type. Thus, I calculate the average percentage
of industry-funded references per paper, i.e., the mean ratio of
citations from papers with a given funding type to industry-funded
papers, relative to the total citations of papers with that funding
type. This approach provides a clear measure of the extent to which
di#erent funding types rely on or interact with industry-funded
research over time.

Results. Figure 8 shows the proportion of outgoing citations to
industry-funded papers per paper and funding type over time. It
also shows the macro average of this proportion across all funding
types. Observe that since 2018, the share of citations referencing
industry-funded research has increased markedly across all funding
types. Non-industry-funded papers showed a particularly strong
growth, with 37% increase in citations to industry-funded work
per paper between 2018 and 2023 after a lower percentage start.
This growth surpasses the growth of industry-funded papers (35 %)
and non-funded papers (34%). Despite this rise in cross-funding-
type engagement, industry-funded papers maintained the highest
proportion of outgoing citations per paper to other industry-funded
research, underlining the self-referential trend of industry-funded
research. However, by 2023, all funding types experienced a slight
decline in the percentage of outgoing citations per paper to industry-
funded papers.

Discussion. The rising proportion of outgoing citations to
industry-funded papers highlights a marked increase in engage-
ment with industry-funded research across funding types. Non-
industry-funded researchers, in particular, shows growing interest
in industry-driven topics and methodologies. It is still unclear why
non-industry-funded research experienced that strong increase
in engagement with industry-funded work. One possible reason
for this engagement is the collaboration between industry and
non-industry entities, with industry often providing cutting-edge
resources and academia providing a platform to identify and re-
cruit talented researchers. This perspective is supported by Klinger
et al. [2022], who highlight signi!cant industry-academia collabora-
tions in AI research, cautioning that such partnerships may narrow
thematic diversity in favor of industry-preferred topics.

The decline in outgoing citations to industry-funded papers by
2023, indicates a shift in research priorities. One can argue that
the increasing interest of policymakers in AI, as noted by Maslej
et al. [2023], has shifted the AI communities attention to more
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Figure 8: The average proportion of industry-funded refer-
ences across various funding types for each paper. Themacro-
average shows the mean percentage of industry-funded ref-
erences per paper over all funding types.

interdisciplinary topics that are less narrow to industry-centric
applications, such as AI ethics and governance.

Q6. Which !elds do industry-funded papers cite? How
diverse are the outgoing citations in these papers, and do
cited !elds vary by funding type?

Ans. To determine whether non-industry-funded and non-
funded research is concentrated around industry-favoured topics, I
analyze outgoing citations by funding type. Speci!cally, I calculate
each funding type’s share of citations directed to various !elds,
de!ned as the percentage of citations to a given !eld from a given
funding type over all citations from a given funding type to any
!eld. For papers associated with multiple !elds, each !eld receives a
citation. I use the !elds pre-classi!ed by Scopus, which classi!es the
!elds based on the aims and scope of the title, and on the content
it publishes. Serial titles are classi!ed by Scopus in-house experts
using the All Science Journal Classi!cation scheme [Scopus 2024].

Results. Figure 9 shows the distribution of citations to the top
ten cited !elds for industry-funded (a), non-industry-funded (b),
and non-funded papers (c). Across all funding types, eight of the ten
most-cited !elds belong to computer science, highlighting a strong
focus on this !eld and a low outgoing citation !eld diversity. The top
ten !elds account for over 70 % of outgoing citations in each funding
type, demonstrating a concentrated interest in these !elds. Notably,
industry-funded research shows the highest concentration, with
77% of citations directed to these top ten !elds, compared to 75%
for non-industry-funded papers and 72 % for non-funded papers.

The top four !elds cited remain consistent across funding types,
constituting more than 50 % of citations within the top ten !elds, in-
dicating a common primary interest across funding types. However,

some variation exists: industry-funded papers show an increased
interest in linguistics, while non-industry-funded and non-funded
papers emphasize AI more prominently. Additionally, non-industry-
funded research shows a stronger orientation towards theoretical
work, contrasting with the industry and non-funded papers empha-
sis on networks and signal processing.

Discussion. The convergence of research !elds across industry-
funded, non-industry-funded, and non-funded research, alongside
the growing engagement with industry-funded work (see Q5.),
demonstrates the market in"uence of industry funding on the
broader research landscape.

Building on the !ndings of Klinger et al. [2022], I show that
industry-funded research exhibits lower thematic diversity com-
pared to non-industry-funded and non-funded research, demon-
strated by the high citation density in the top ten most-cited !elds.
Furthermore, my results re"ect a concentration of industry-funded
work in !elds that are data-hungry and computationally intensive,
such as computer vision and information retrieval (information
systems). In contrast, industry-funded research is less focused on
symbolic techniques and other theoretical aspects discussed in AI.

On the other hand, non-industry-funded and non-funded re-
search shows a relatively strong focus on AI (concentrating on
symbolic techniques) and theoretical !elds such as mathematics.
However, this focus does not necessarily imply that these funding
types neglect data-intensive or computationally demanding !elds.

Q7. On average, how far back in time do we go to cite AI
papers? As in, what is the average age of cited papers? How
does it di"er across di"erent funding types?

Ans. To investigate the temporal patterns in scholarly citations,
I adopt the methodology outlined by Bollmann and Elliott [2020];
Singh et al. [2023]; Wahle et al. [2024]. For each paper within a
speci!c funding type, I analyse the citations to other papers and
calculate how far back in time the cited papers were published.
When a paper 𝑄 cites a paper 𝑂𝑀 , then the age of the citation (𝑍𝑎𝑅)
is the di#erence between the year of publication (𝑋𝑎𝐿 ) of 𝑄 and 𝑂𝑀 :

𝑍𝑎𝑅 (𝑄,𝑂𝑀 ) = 𝑋𝑎𝐿 (𝑄) ↗ 𝑋𝑎𝐿 (𝑂𝑀 ) (9)

I calculate the AoC for each of the citations of a paper and average
them:

𝑏𝑍𝑎𝑅 (𝑄,𝑂𝑀 ) =
1
𝑈

𝑅∑
𝑀

𝑍𝑎𝑅 (𝑄,𝑂𝑀 ) (10)

where 𝑈 denotes the total number of references in paper 𝑄 .
For example, if a paper 𝑄 from 2023 cites two papers, one from

2010 and one from 2020, the𝑏𝑍𝑎𝑅 of paper 𝑄 is 8 years.

Table 5: The mAoC and con!dence intervals for di"erent
funding types are ordered by increasingmAoC.

Funding Type mAoC ± 95% Conf. (↘)
Industry 4.79 ± 0.02
Non-Industry 4.92 ± 0.01
Non-Funded 5.03 ± 0.03



What Impact Does Big Tech Funding Have on AI Research?
A Scholarly Document Analysis

Signal Processing

Computational Theory and Mathematics

Computer Networks and Communications

Artificial Intelligence

Language and Linguistics

Linguistics and Language

Information Systems

Computer Science Applications

Computer Vision and Pattern Recognition

Software

0% 5% 10% 15%

(a) Industry

Signal Processing

Computer Networks and Communications

Computational Theory and Mathematics

Language and Linguistics

Linguistics and Language

Artificial Intelligence

Information Systems

Computer Science Applications

Computer Vision and Pattern Recognition

Software

0% 5% 10% 15%

(b) Non-Industry

Computational Theory and Mathematics

Signal Processing

Computer Networks and Communications

Language and Linguistics

Linguistics and Language

Artificial Intelligence

Information Systems

Computer Science Applications

Computer Vision and Pattern Recognition

Software

0% 5% 10% 15%

(c) Non-Funded

Figure 9: Percentage of outgoing citations from industry-funded papers (a), non-industry-funded papers (b), and non-funded
papers (c) to top ten cited !elds.

Results. Figure 10 shows the distribution of AoCs for all papers
of each funding type and overall across the years after the pub-
lication of the cited paper. For example, the y-axis point for year
0 represents the average percentage of citations papers received
in the same year they were published. The y-axis point for year
1 re"ects the average percentage of citations received in the year
following publication.

Observe that most citations occur for papers published two years
prior (𝑍𝑎𝑅 = 2). For all funding types, the citation patterns show a
similar trend: a sharp increase from year 0 to the peak at 𝑍𝑎𝑅 = 2,
followed by a decline in the years after the peak is reached. This
rapid decline from the peak has a half life of about 2 years. Notably,
non-funded papers have a lower peak value but maintain higher ci-
tation rates in the years after the peak compared to industry-funded
and non-industry-funded papers. Additionally, industry-funded pa-
pers have the highest percentage of citations in the publication year
(age 0), while non-funded papers have the lowest.

Table 5 shows the mean mAoC for papers published between
2018 and 2023, grouped by funding type. Observe how industry-
funded papers has the lowest mean mAoC of 4.79, followed closely
by non-industry-funded papers with a mean mAoC of 4.92, and
non-funded papers at 5.03.

Discussion. Overall, the results show that papers typically re-
ceive the highest number of citations two years after publication,
and their chances of citation fall fast after that. Non-funded papers
receive fewer citations at their peak compared to industry-funded
and non-industry-funded research, but their decline in citations is
more gradual. This dynamic, coupled with the lower mean mAoC
values for industry-funded and non-industry-funded papers, sug-
gests that non-funded research is less fast paced than other types
of funding, likely re"ecting di#erent research priorities.

Non-funded research may be more focussed on foundational or
theoretical contributions that continue to attract citations over time.
In contrast, industry-funded and non-industry-funded research
tends to focus on more recent and rapidly evolving innovations,
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Figure 10: Distribution of AoC for papers in AI (overall and
by funding type).

re"ecting the fast-paced nature of technological advancements and
their disruptional potential. This divergence highlights distinct time
dynamics and the varying impact of funding types on the longevity
of scienti!c contributions.

However, the extent to which these trends have persisted his-
torically remains unclear. Understanding whether industry-funded
research has always had such a low citation age, and how these
citation trends have evolved over time, requires further analysis.
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Q8. What is the distribution of mAoC in industry-funded
papers? How does this distribution vary across years?

Ans. To answer this question, I calculate the mAoC for each
industry-funded paper, as well as the median and mean mAoC for
all industry-funded papers over time. If a paper 𝑄 was published in
year 𝑐 , then𝑏𝑍𝑎𝑅 (𝑄) contributes to the distribution for year 𝑐 .

Results. Figure 11 shows the violin plots for distributions of
mAoC in industry-funded papers across various years. Each plot
highlights the median (marked with a white diamond within the
grey rectangle), representing the recency of citations for that year.
Over time, the median mAoC for industry-funded papers shows
a consistent decline, indicating an increasing focus on citing rel-
atively recent work. The shrinking size of the second and third
quartiles (halves of the grey rectangle), indicates that citations are
increasingly concentrated around the median, re"ecting a narrow-
ing range in citation age.

From 2018 to 2023, the mean mAoC closely follows the median
trend but, remains consistently higher, revealing a right skew in the
data. This skew is due to a number of papers citing much older pa-
pers, which markedly a#ect the mean. Additionally, the decreasing
standard deviation suggesting diminishing citation age diversity,
possibly reinforcing the trend toward citing newer literature.

The violin plots visually capture this evolution. By 2023, the
violin’s density transforms into a spinning tractroid top8. This
transformation re"ects the increasing concentration of mAoC val-
ues near !ve years, with a high fraction of papers clustering tightly
around this point.

Discussion. The results show a decline in citations to older
works within industry-funded papers, accompanied by a reduction
in the temporal diversity of citations. Although the exact causes
of this trend remain uncertain, multiple factors contribute to the
evolving citation dynamics. The substantial impact of transformers
on NLP and ML, as well as academic incentives, shaped by the
preferences of reviewers, institutions, and conferences, can increas-
ingly favor more recent publications. This trend re"ects evolving
priorities within the academic community. The pressures of the
“publish or perish” paradigm further exacerbate this trend, encour-
aging researchers to divide their work into smaller, publishable
units. Additionally, the rise of open-access initiatives and preprint
servers, which provide immediate access to research, has ampli!ed
the tendency to cite newer works.

My results add to (and are consistent with) the mean-citation
age results found by Wahle et al. [2024], who analyzed the mean
citation age of NLP papers from 1990 to 2023. By focusing on AI
publications between 2018 and 2023, my analyses situates those
results in the overall trajectory of how temporal citation patterns
in AI have evolved since the impact of transformer-based models
to the present period.

5 CONCLUDING REMARKS
This work examined the citational impact of Big Tech funding on
AI research through a set of comprehensive analyses of citational
patterns in scienti!c literature. To enable this analysis, I compiled

8Form of the iconic spinning top in the movie Inception.

a unique dataset of metadata that includes ~57.3K AI papers, their
funding agencies (if any), citations to AI papers, and citations by
the AI papers. I analyzed this data using various metrics such as
Citation Preference Ratio, Relative Citational Prominence, and Mean
Age of Citation to show a growing tendency within the AI research
community to engage with industry-funded work. However, this
trend comes at the expense of diversity, as industry-funded research
disproportionately cites itself while neglecting a broader range of
older, potentially foundational work.

My !ndings show a paradox: while the presence of industry-
funded research in top AI conferences is declining, its citational in-
"uence continues to grow. Contributions from non-industry-funded
and non-funded research receive little recognition in industry-
funded research, despite the convergence in research !elds across
funding types. This dynamic re"ects the growing insularity of
industry-funded research. My experiments also show that the di-
versity of age of citations and the percentage of older papers cited
by industry-funded papers have declined. This decline risks losing
valuable insights and principles essential for fostering responsible
and inclusive technological development.

Over the past !ve years, the widespread adoption of AI technolo-
gies has directly and indirectly a#ected billions of lives, sometimes
with markedly negative consequences due to a lack of foresight
in system development. It is well-documented that engaging with
diverse literature, spanning multiple disciplines and time periods,
is critical for creating more inclusive systems. Yet, the observed ten-
dency of industry-funded papers to favor recent, similarly funded
work over diverse and older references signals a move toward an
increasingly insular research culture. If left unaddressed, this trend
could impact the development of technologies that are not bene!cial
for all, but for those with power.

The scienti!c community has a unique responsibility to counter-
act these trends. It is a fallacy to accept (temporal) citation patterns
as inevitable, or to assume that researchers lack agency in their
citation choices. By re"ecting on our reading habits and engaging
with a wider array of literature, we can foster a more diverse and
inclusive scienti!c discourse. Public institutions play a critical role
in this e#ort by improving their funding policy’s and providing
researchers with the tools and support they need to maintain in-
dependence from industry in"uence and promote diverse citation
practices. This collective commitment is essential to ensure that
the development of AI technologies prioritizes public bene!t over
pro!t-driven objectives.

6 LIMITATIONS
6.1 Manual Analysis
The manual analysis has a few limitations. First, because examining
thousands of funding agencies individually is a time-intensive pro-
cess, this analysis only includes only 5% of the extracted funding
agencies. Notably, this 5% covers 74% of all funding occurrences,
providing robust overall representation. Second, identifying CFs
relied on available online information. In cases where insu$cient
data prevented me from con!rming an industry a$liation, I marked
agencies as non-funded, potentially leading to false negatives in the
dataset’s metadata. Third, as this analysis was conducted solely by
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Figure 11: Distribution ofmAoC for industry-funded papers between 2018 and 2023. The standard deviation for each year is
displayed below the respective violin plot. The median (white diamond) and the meanmAoC (dark line) are shown for each
year.

one person, interpretation variability may a#ect data consistency
and quality.

6.2 Automatic Analysis
Identifying CFs through automated, fuzzy text matching with stan-
dardized company names can lead to false positives, where unre-
lated agencies are incorrectly matched. To mitigate this risk of false
positives, a high similarity threshold (90%) was set, although this
conservative threshold could reduce the number of matches and
potentially miss some CFs. However, most funding agency names
included the standardized identi!er (e.g., Google, Google DeepMind,
Google Cloud), minimizing the risk of missing relevant CFs.

6.3 General Limitations
Beyond technical limitations, this thesis faces broader constraints.
Industry involvement in AI research today extends beyond direct
!nancial contributions to include access to models, datasets, com-
putational resources, and specialized expertise [Ahmed et al. 2023;
Montes and Goertzel 2019; Riedl 2020; Verdegem 2024]. This analy-
sis captures industry in"uence solely through funding data from
Scopus, which is based on paper acknowledgments [Liu 2020]. The
extent of funding information in these acknowledgments varies
depending on the details provided in the publications, re"ecting
disciplinary and regional disparities in funding reporting practices
[Pranckutė 2021]. Notably, studies by Liu [2020] and Pranckutė
[2021] identify errors in Scopus funding acknowledgment text and
funding agency !elds. Therefore, the consistency and quality of the
identi!ed industry presence should be taken with a grain of salt.

This research focuses on publications from prominent AI-related
conferences, rather than all AI-related academic publications. Al-
though leading conferences shape the academic research agenda

[Freyne et al. 2010], this selection excludes vibrant, often non-
English AI communities and venues, limiting the generalizability
of my !ndings to the global AI research landscape. Future stud-
ies are needed to explore industry in"uence across diverse sub-
communities and venues worldwide.

Furthermore, this analysis quanti!es in"uence primarily through
citations, a method with inherent limitations. Citation counts alone
lack nuance, as not all citations re"ect the same level of in"uence
[Valenzuela et al. 2015; Zhu et al. 2015]. Additionally, citation pat-
terns are a#ected by biases [Ioannidis et al. 2019; Mohammad 2020b;
Nielsen and Andersen 2021]. This work also examines citation prac-
tices on a large scale, focusing on quantitative trends. Qualitative
aspects may reveal the reasons behind why industry-funded re-
search receives more engagement within the AI community, shows
growing insularity, and cites recent over older literature. Several
factors may contribute to this, such as the volume of recent pub-
lications, the applicability of industry-funded research, and the
technical relevance of industry-funded work.

Another aspect that my analysis did not address is the allocation
of !nancial resources by industry across AI sub!elds and confer-
ences. An analysis of the cash "ows from industry to AI research
and their impact over time could reveal whether !nancial resources
markedly drive in"uential AI research or whether other resources
are key. Exploring the cash "ows, their impact, and their presence
over time is an area I leave to future work.

7 ETHICAL CONSIDERATIONS
This thesis conducts an analysis of scienti!c literature at an ag-
gregate level, using data from the Scopus database. The database
provides metadata such as titles, authors, funding agencies, and
publication years, all of which are used without infringing on copy-
righted content. All of the analyses in this thesis are at aggregate-
level, and not about individual papers or authors.



Max Martin Gnewuch

A critical aspect of this thesis is its reliance on citation counts
as a proxy to characterize funding types. While citations serve as
a convenient metric, this approach raises concerns about poten-
tial misinterpretation or misuse of my !ndings. For example, the
observed high number of outgoing citations to industry-funded
research should not be used as a rationale for diminishing research
funded by non-industry sources or conducted without external
funding. To address the risks of oversimpli!ed interpretations, a
more comprehensive evaluation framework may be bene!cial. Such
a framework would integrate multiple dimensions, including rele-
vance, popularity, resource availability, impact, geographic context,
and temporal trends, thus mitigating the problems of shallow anal-
ysis.
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A APPENDIX
A.1 Details on the Extraction of Companies
I searched for company names and common aliases (e.g., Microsoft,
Microsoft Azure, Microsoft Cloud Computing Research Centre)
using the fuzzywuzzy python package9 with a 90 % threshold.

Table 6: Company name standardization.

Names of funding agencies Std. Name

Microsoft, Microsoft Azure, Microsoft Research Microsoft
Amazon, AWS, Amazon Research Amazon
Google, Google DeepMind, Google Cloud Google
Nvidia, NVIDIA AI Center, NVIDIA Corp Nvidia

A.2 Supplemental Experimental Results
In addition to the primary results presented in this thesis, I describe
supplementary results in the form of additional statistics and plots.

A.2.1 Extended Results on Industry Presence in AI.
Figure 12 shows the FIFP from Q1. for the time frame 2018 to 2023.
Figure 13 shows the percentage of industry-funded papers in an AI
sub!eld out of all industry-funded papers.
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Figure 12: The FIFP from 2018 to 2023.

A.2.2 Extended Results on Citation Preference Ratio.
Figures 14 to 16 shows the CPR of industry-funded, non-industry-
funded, and non-funded papers to di#erent funding types over
time.

A.2.3 Extended Results on Relative Citation Prominence.
Figure 17 shows the ORCP from Q3. for non-industry-funded pa-
pers, and Figure 18 shows the ORCP for non-funded papers.
9https://pypi.org/project/fuzzywuzzy/
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Figure 13: The percentage share of AI sub!elds in papers
funded (2018-2023), in ascending order.
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Figure 14: The Citation Preference Ratio (CPR) of industry-
funded papers towards industry-funded, non-industry-
funded, and non-funded papers.

A.3 AI Usage Card
I report how I used AI assistants such as ChatGPT and Claude for
this work in the following standardized card according to Wahle
et al. [2023c].
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Figure 15: The Citation Preference Ratio (CPR) of non-
industry-funded papers towards industry-funded, non-
industry-funded, and non-funded papers.
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Figure 16: TheCitationPreferenceRatio (CPR) of non-funded
papers towards industry-funded, non-industry-funded, and
non-funded papers.



What Impact Does Big Tech Funding Have on AI Research?
A Scholarly Document Analysis

Above averageBelow average

Non−Funded

Non−Industry

Industry

−3% −2% −1% 0% 1% 2% 3% 4%

Figure 17: Non-industry-funded research’s Outgoing Relative
Citational Prominence (ORCP) scores for all funding types.
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Figure 18: Non-funded research’s Outgoing Relative Cita-
tional Prominence (ORCP) scores for all funding types.
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