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Abstract11

Unmanned Aerial Vehicles (UAVs) equipped with optical sensors have trans-12

formed remote sensing in vegetation science by providing high-resolution, on-demand13

data, enhancing studies in forestry, agriculture, and environmental monitoring. How-14

ever, accurate radiometric calibration of UAV imagery remains challenging. A com-15

mon practice is using reflectance calibration targets to establish a mapping between16

sensor readings and reflectance values. Using a single calibration target while hold-17

ing the UAV-mounted camera close above it has been criticized as a large portion18

of the hemisphere is invisibly shaded.19

ReflectDetect, the proposed open-source tool, addresses these challenges by al-20

lowing in-flight radiometric calibration through automated detection via two dif-21

ferent approaches. The first approach uses geotagging and leverages high-precision22

coordinates of the reflectance targets, the second is using AprilTag based detection,23

a visual fiducial system frequently used in robotics. These approaches allow setting24

up a reliable calibration system to account for varying environmental conditions,25
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reduce human error, and increase efficiency through a user-friendly command-line26

interface. ReflectDetect’s open-source nature enables users to easily design new cal-27

ibration studies and methods to eventually improve radiometric calibration in UAV28

remote sensing. ReflectDetect is available under the GNU General Public License29

v3.0 on GitHub: https://github.com/reflectdetect/reflectdetect.30

Keywords: UAV, Radiometric calibration, Open-Source, Geotagging, AprilTags.31

1. Introduction32

UAVs have transformed remote sensing in vegetation science by offering centimeter-level33

spatial resolution, on-demand temporal flexibility, and multi-sensor integration that sur-34

pass close-range, airplane-based, and satellite-based methods (Aasen et al., 2018). UAVs35

equipped with optical sensors produce multi-band raster data, enabling relevant applica-36

tions in forestry, agriculture, and environmental studies, such as plant health monitoring,37

biomass estimation, and crop yield prediction, supporting sustainable management prac-38

tices (Maes and Steppe, 2019; Abdulridha et al., 2023; Yang et al., 2024). To effectively39

study these dynamic landscapes, consistent and comparable time-series data are essen-40

tial, which is achieved through accurate radiometric calibration. Calibration methods,41

such as the Empirical Line Method (ELM), convert digital sensor readings by the cam-42

era into meaningful reflectance values, thereby improving data accuracy compared to the43

commonly used single gray reference target method. Nevertheless, challenges remain.44

While some studies report minimal differences in calibration accuracy under stable45

weather conditions, they highlight challenges posed by dynamic conditions, such as vari-46

able cloud cover and lighting, which are common during UAV flights (Daniels et al., 2023).47

Often the Simple Empirical Line Method (Simple ELM), using only a single reflectance48

target, is applied. The Simple ELM requires users to hold their drone, with the camera49

attached, close to the calibration target. If this is done without care, direct shading can50

occur and severely affect the calibration result. However, even when direct shading is51

avoided, the drone covers a large part of the hemisphere, blocking the diffuse and direct52

portions of light that the camera should fully perceive at that moment (Aasen et al., 2018).53

Further, to account for atmospheric and topographic variations, at least two reference54

2

https://github.com/reflectdetect/reflectdetect


targets should be used to cover the desired range of reflectance values, typically 0–50%55

for vegetation (Aasen et al., 2018). Using more than two targets reduces uncertainties56

and helps assess sensor linearity, improving the accuracy of reflectance measurements. To57

avoid these problems for robust calibration, in-flight calibration is suggested (Eltner et al.,58

2022; Shin et al., 2020; Fawcett and Anderson, 2019; Cao et al., 2019; Chakhvashvili et al.,59

2021). The majority of methodologies developed for in-flight radiometric calibration are60

still predominantly manual or semi-automated (Daniels et al., 2023), despite the fact that61

manual and semi-automated methodologies are inherently time-consuming and suscepti-62

ble to error, thereby underscoring the necessity for the development of fully automated63

methodologies. Although approaches such as the one proposed by Ban and Kim (2021),64

using homogeneity and variance filtering for automated reflectance target detection and65

the ELM for calibration—are steps toward automation, they are still semi-automated and66

not open-source, limiting their broader adoption.67

The main contribution of this work is to overcome the aforementioned limitations68

by proposing a fully automated software tool, that improves the usability of in-flight69

radiometric calibration in UAV-based remote sensing. It offers two modules to facilitate70

the detection of custom-built or commercially available reflectance targets. The first71

module harnesses the now frequently used and widely available professional-grade sub-72

centimeter accuracy RTK-GNSS receivers. By geotagging the calibration targets, the first73

module can detect the targets in georeferenced images. While this module integrates well74

in the later stages of the image processing pipeline when raw images have already been75

processed into georeferenced orthophotos, the second module allows for calibration directly76

using the raw images at the start of the pipeline. It uses AprilTags, a visual fiducial system77

that is frequently used in robotics, for target detection (Wang and Olson, 2016). AprilTags78

robustness against false positive detections makes them ideal for UAV applications such79

as visual localization (Wang and Olson, 2016), object tracking (Krogius et al., 2019),80

and in this case, calibration target detection. The possibility for a high frequency at81

which reflectance targets are seen in the collected imagery then allows accounting for the82

variability of light intensity during the flight. In between cases when targets are found83

in the imagery, interpolating the intensities ensures consistent calibration data across84
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varying conditions mid-flight. Packaged in a user-friendly, open-source Command-Line85

Interface (CLI), this solution simplifies the calibration process, reduces human error, and86

enhances efficiency.87

2. System Architecture and Methods88

ReflectDetect enables users to automatically detect reflectance targets within aerial im-89

agery and use the extracted intensities of these targets to calibrate the camera intensity90

readings. ReflectDetect does not evaluate the quality of reflectance targets and does not91

support the user in choosing the appropriate size or other properties of the reflectance92

targets. Therefore, some general knowledge about radiometric calibration is helpful when93

using this tool. The ReflectDetect workflow and functions, written in Python 3 (Van94

Rossum and Drake Jr, 1995), are outlined below. For a comprehensive overview of the95

implemented functions, the user can consult the documentation in the online repository1.96

Example datasets for each module (i.e. geolocation module and AprilTag module) are pro-97

vided for reproducible testing. In the example data, 1.4 x 1.4 m square-shaped reflectance98

targets at 3%, 21% and 56% have been used.99

ReflectDetect uses one of its two modules to detect calibration targets in the imagery,100

then processes the extracted intensities of the calibration targets similarly for both mod-101

ules: First, interpolation is used to find approximate intensity values for images that do102

not contain targets, allowing ReflectDetect to use the ELM for each image separately.103

The calibrated reflectance images are then saved for further analysis.104

2.1 The Geolocation Module105

The geolocation module works on georeferenced orthophotos as band-stacked images and106

leverages user-provided precise geographic coordinates of the calibration targets. In test-107

ing, the photogrammetry software Metashape2 was used to generate stacked and geo-108

referenced orthophotos. This module supports any polygonal target, provided that all109

corner coordinates are accurately measured and supplied. ReflectDetect begins with the110

1https://github.com/reflectdetect/reflectdetect
2Agisoft LLC, St. Petersburg, Russia
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identification of calibration targets within the orthophotos by examining the geotagged111

coordinates of each corner of the reflectance targets. This approach offers the advantage112

of allowing for calibration even when targets are only partially visible or when incomplete113

sets of targets are present.114

By setting a no-data value (e.g., 0, 65535), irrelevant data is excluded during the115

extraction of the target intensity values, for example when a target is only partially116

visible. For each image with visible targets, the system extracts the mean intensity values117

for each spectral band at the target’s location. To save memory during execution, the118

dataset is split into batches of the minimal size that still allows for correct interpolation.119

Algorithm 1 Geolocation Module: Input Validation
1: procedure Geolocation Module(args)
2: Load dataset from args
3: Validate orthophoto and dataset folders
4: Validate target properties and geolocation files
5: Validate the connection between target locations and properties
6: end procedure

Algorithm 2 Geolocation Module: Main Processing
1: procedure Start
2: Load all orthophoto paths
3: Detect targets visible in each photo
4: Split photos into batches based on visibility
5: for each batch in batches do
6: Extract intensities from visible targets
7: Interpolate intensities
8: Fit model using the ELM method
9: Convert orthophotos to reflectance using fitted model

10: Save converted orthophotos
11: end for
12: end procedure

2.2 The AprilTag Module120

By deploying AprilTags containing unique IDs next to the calibration targets in the exper-121

imental scene, each target can be detected using its associated AprilTag. This allows for122

target detection and calibration without the need for preprocessing of images. A detec-123

tor3 based on Wang and Olson (2016) scans each image for AprilTags and ReflectDetect124

3https://github.com/robotpy/mostrobotpy
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associates the detected tags with the calibration targets using the predefined mapping of125

IDs to targets. The tag is positioned adjacent and centered to the side of its associated126

target, making it possible to find the corners of the target using vector math based on the127

known dimensions of the tag and target. Because of this approach, targets are expected128

to be rectangular. Since each target is linked to a unique ID, they can be independently129

detected.130

In the example data, the tag family "tag25h9"4 is used. All tags were printed at A1131

size. These properties are based on some preliminary manual testing, as well as reported132

maximum detection ranges5. While detection errors were not a problem during testing,133

these properties should only be seen as a starting-off point for future research and were134

chosen with only the circumstances of this study in mind.135

Algorithm 3 Apriltag Module: Input Validation
1: procedure Apriltag Module(args)
2: Initialize EXIFTool
3: Load dataset from args
4: Validate dataset folder and images folder
5: Validate target properties and tag size
6: Load apriltag detector and configure tag family
7: end procedure

Algorithm 4 Apriltag Module: Main Processing
1: procedure Start
2: Load all image paths
3: Split images into batches based on number of bands
4: for each batch in batches do
5: Extract intensities from apriltag detection
6: Interpolate intensities
7: Fit model using the ELM method
8: Convert images to reflectance using fitted model
9: Save converted images

10: end for
11: end procedure

2.3 CLI Arguments for Intra-Processing Adjustments136

As recapturing an already executed UAV mission is difficult and labor-intensive, Reflect-137

Detect provides a flexible CLI that allows users to adjust many key parameters to fine-tune138

4https://github.com/AprilRobotics/apriltag-imgs/tree/master/tag25h9
5https://doc.rc-visard.com/latest/en/tagdetect.html
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the detection and calibration process.139

During processing, the user is able to reduce the detected target area (default is to140

80%), focusing on the central region to avoid edge bleeding and improve the accuracy141

of mean Digital Number (DN) extraction. Multiple arguments specific to the AprilTag142

module allow for the correction of incorrectly placed tags, for example, changing the143

expected rotation of a tag or the expected distance between the tag and the target. To144

allow the user to ensure correct detection and calibration of the imagery, a debug mode is145

accessible. If the debug mode is enabled, information about the execution of the workflow146

is displayed and figures with detected targets and bounding boxes, as shown in Figure 1,147

are generated for review. Additionally, debug mode will display a graph of the temporal148

interpolation, as seen in Figure 2.149

Figure 1: Three detected calibration tar-
gets with solid colored bounding boxes.
Dotted lines show the areas where DNs
were extracted. Colored dots indicate
the positions of the corresponding April-
Tags.

Figure 2: Extracted (solid lines) and in-
terpolated (dotted lines) intensities for
two spectral bands across a sequence
of images. The lines show intensity
changes for 3 different calibration tar-
gets during the whole flight.

3. Discussion150

ReflectDetect is an automated dual-module system for radiometric calibration of UAV151

imagery, integrating geolocation and AprilTag detection of reflectance targets. The Geo-152

tagging Module uses geographic metadata embedded within orthophotos to detect cal-153

ibration targets and reliably extracts intensity data. However, this approach depends154

7



on the accuracy of geotagged data, as errors in the geolocation can affect target detec-155

tion and calibration results. The AprilTag Module provides a robust alternative, as their156

detection rates have been thoroughly studied (Wang and Olson, 2016). Our reflectance157

calibrated spectral signatures have been compared against the classic ELM provided by158

e.g. for the Micasense camera series6 and found to be of similar in shape but more robust159

(Figure 3). The variance across 100 spectra that have been obtained from the provided160

example data is highest after the Micasense ELM, most noticable in the red edge and161

NIR band. This is line with the findings of other research (Cao et al., 2019; Fawcett162

and Anderson, 2019, Chakhvashvili et al., 2021) and emphasized the need for in-flight ra-163

diometric calibration that can account for topographic and illumination variability. The164

presented ReflectDetect software now enables other researchers, after printing their own165

set of AprilTags or providing the coordinates of their in-scene calibration targets, to test166

reflectance calibration in different settings and under different illumination dynamics.167

3.1 Advantages of In-Flight Empirical Line Calibration168

During testing, calibration targets were strategically placed to be captured multiple times169

during flights (see example data), to account for irradiance changes throughout the flight.170

When targets are obscured or missing, linear interpolation is used in between detection171

events to ensure consistent calibration over time (Figure 2). Variation in illumination172

intensities during data capture presents a key challenge. To ensure accurate radiometric173

calibration, linear interpolation is used to create a more uniform spectral dataset, im-174

proving the quality of subsequent image analysis. The example data shows that higher175

frequencies of detected reflectance targets reduce intervals between calibration events 2.176

Compared to ELM - and ground-based methods, the presented approach offers several ad-177

vantages, as mentioned by Aasen et al. (2018). It avoids the shading and blocking of the178

hemisphere over the reflectance targets that occurs when the UAV is held directly above179

the targets at low altitude. Additionally, it eliminates the need for a Downwelling Light180

Sensor (DLS)—an irradiance sensor mounted on top of the drone. DLSs can be prob-181

lematic because their angle and the radiation they receive change during flight (Aasen182

6AgEagle Aerial Systems Inc., Kansas, USA
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Figure 3: Multispectral reflectance signatures (line plots) obtained from identical loca-
tions in the provided example data after reflectance calibration. The average of 100
reflectance signatures from the classic Micasense ELM method are compared to the pre-
sented reflectance calibration using the AprilTag module and the Geolocation module.
The variance for each band in each signature is represented as bar plots. Variance is
higher for the classic Micasense ELM, most noticeable in the red edge and NIR band.

et al., 2018). While the ReflectDetect modules effectively automate the calibration pro-183

cess, future work should focus on testing their performance and robustness under diverse184

environmental conditions. This includes investigating whether placing additional April-185

Tag targets at shorter intervals could enhance calibration accuracy, particularly for larger186

study areas. Our software enables researchers to explore these aspects, providing tools to187

test new hypotheses and compare with other radiometric calibration methods.188

3.2 Advantages of open source software and modular extension189

of camera specific calibration functions190

ReflectDetect uses MicaSense-specific calibration functions to correct lens distortions and191

other camera-specific effects inherent in the deployed imaging system. However, many192

other optical sensors are available (Aasen et al., 2018) and each requires a sensor-specific193

calibration procedure to generate robust spectral data that can be compared within and194

across datasets and studies. This comparability is the foundation to scientific progress195
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overall and necessitates a collaborative effort to provide FAIR (Findable, Accessible, Inter-196

operable, and Reusable) research tools for advancing goals in phenotyping (Papoutsoglou197

et al., 2023), ecology (Manzano and Julier, 2021), computational science (Barker et al.,198

2022), and plant pathology (Grünwald et al., 2024). The implementation of open sci-199

ence standards for sharing data, code, and related research outputs has been a topic200

under discussion (Reichman et al., 2011; Serwadda et al., 2018) while the 2016 guidelines201

on sharing data in a "FAIR" manner marked a key point in the reproducibility debate202

(Wilkinson et al., 2016). These guidelines have since been extended to include software203

and protocols, recognizing that much of the scientific process generates such products204

(Barker et al., 2022). With ReflectDetect being open source, it allows researchers us-205

ing different camera systems to develop and integrate their own calibration functions206

tailored to their equipment. This flexible and collaborative approach enables precise cor-207

rections that account for the unique characteristics of various cameras, resulting in more208

accurate reflectance measurements. It further fosters community-driven enhancements of209

ReflectDetect and other tools, benefiting the broader remote sensing community. Reflect-210

Detect is distributed under the GNU General Public License v3.0 and can be found under211

https://github.com/reflectdetect/reflectdetect.212
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A. Appendix301

Figure 4: 3 AprilTags of the tag25h9 family placed next to 3 calibration targets
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