
Cross-Language Source Code Plagiarism Detection using
Explicit Semantic Analysis and Scored Greedy String Tilling

Tomáš Foltýnek1, Richard Všianský1, Norman Meuschke2,3, Dita Dlabolová1, Bela Gipp2,3
 1Mendel University in Brno, Czech Republic, {tomas.foltynek | xvsiansk | dita.dlabolova}@mendelu.cz

2University of Wuppertal, Germany, {meuschke | gipp}@uni-wuppertal.de
3University of Konstanz, Germany

ABSTRACT
We present a method for source code plagiarism detection that is
independent of the programming language. Our method EsaGst
combines Explicit Semantic Analysis and Greedy String Tiling.
Using 25 cases of source code plagiarism in C++, Java, JavaScript,
PHP, and Python, we show that EsaGst outperforms a baseline
method in identifying plagiarism across programming languages.

CCS CONCEPTS
• Information systems~Information retrieval~Specialized
information retrieval

KEYWORDS
Source Code Plagiarism Detection, Explicit Semantic Analysis,
Greedy String Tilling

ACM Reference format:

Tomáš Foltýnek, Richard Všianský, Norman Meuschke, Dita Dlabolová
and Bela Gipp. 2020. Cross-Language Source Code Plagiarism Detection
via Explicit Semantic Analysis and Scored Greedy String Tilling. In Pro-
ceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL’20),
August 1 - 5, Virtual event, China. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3383583.3398594

1 Introduction & Related Work
Source code plagiarism detection (SCPD) is an effective deterrent
to undue reuse of code in programming assignments, which are
common in computer science and related study programs.
Many SCPD methods focus on specific programming languages
by employing approximate string matching to identify similar
programs [1]. Other methods additionally analyze the structure or
semantics of source code [2]. Some methods addressed the cross-
language SCPD task using Latent Semantic Analysis [3].

We presume that plagiarists trying to obfuscate reused code pre-
serve the semantics of the identifiers, comments, and other to-
kens. Thus, we see a semantic analysis as promising for devising
a language-independent SCPD method. Therefore, we adapt Ex-
plicit Semantic Analysis (ESA) [4], a well-established semantic
analysis method, and Greedy String Tiling to the SCPD use case.
ESA models text as concept vectors. The concepts are the topics
in a knowledge base, which is typically Wikipedia or another en-
cyclopedia. The vector components reflect the relevance of the
modeled text for each of the concepts. Greedy String Tiling (GST)
is an algorithm with near-linear complexity to find all individually
longest substring matches in two strings [5].

2 Method
To perform ESA, we used the EsaPlag system [6] and thirty thou-
sand articles from the categories “Computer programming” and
“Fields of mathematics” in the English Wikipedia. Using the title
of articles as concepts, we represented each document, i.e., a com-
puter program, by deriving a concept vector for each term in the
document. To maintain all semantic information of documents,
we only removed line breaks before forming the vectors.
To compute the similarity of documents, we devised the Scored
GST algorithm that determines the longest sequence of semanti-
cally similar terms. Other than GST, Scored GST matches not only
identical elements but all elements whose similarity is above a
threshold. Here, the concept vectors for document terms are the
elements, whose similarity we computed via the cosine measure.
We set the cosine similarity above which we consider concept
vectors a match to 50% and the final score above which we report
results to 5% as this value maximized the F1 score.

3 Experiments
To evaluate our SCPD method, we created a dataset of simulated
source code plagiarism. We implemented a basic programming as-
signment – a calculator supporting basic arithmetic operations –
in the five most common languages on GitHub, i.e., C++, Java, Ja-
vaScript, PHP, and Python. For each language-specific implemen-
tation, we created four plagiarized versions using the following
obfuscation methods: (1) renaming identifiers, (2) renaming iden-
tifiers by converting camelCase to snake_case, (3) restructuring
the code, and (4) reusing half of the code. To test for false posi-
tives, we used unrelated code with no semantic matches.
As a baseline, we used the text matching system Anton [5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JCDL’20, August 1–5, 2020, Virtual event, China.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7585-6/20/06...$15.00.
DOI: https://doi.org/10.1145/3383583.3398594

Figure 1: Similarity scores of the baseline method (Ant) and EsaGst (GST) for programming languages (c = C++, j = Java,
js = Javascript, p = PHP, py = Python), obfuscation methods (1-4), and unrelated documents (X), cf. Section 3.

Anton computes the similarity of documents as the ratio of hashed
5-word chunks occurring in both documents to the chunks in the
first document. Since the score is asymmetric, so are the baseline
results in Figure 1. We used Anton’s default threshold for report-
ing results, i.e., a 20% overlap in chunks.

4 Results and Discussion
Figure 1 shows the results. Cells colored in green indicate correct
detections, i.e., true positive and true negatives. Red fill denotes
false positives and false negatives. Boldface font emphasizes cases,
in which EsaGst identified a case that the baseline missed.
The baseline identified many monolingual cases and some cross-
lingual cases involving syntactically similar languages like Java
and JavaScript and, to a lesser extent, Java and C++.
For syntactically different languages, EsaGSt achieved much bet-
ter results. Particularly, EsaGst yielded high similarity scores for
the documents with a semantic similarity of 100% (x0, x2, x3). For
monolingual plagiarism cases, the average EsaGst score is 99.2%,
and for cross-lingual cases 89.0%. These results show that EsaGst
is more robust to syntactic variations of the programming lan-
guages than the baseline method. Nonetheless, the similarity
scores for cross-lingual cases involving Python are often low due
to syntactic peculiarities of Python. For example, Python’s key-
word elif is expressed by two words (else if) in all other languages.
Moreover, Python is an untyped language, which leads to shorter
word sequences omitting words corresponding to the data types.
This is why Python yielded the highest similarity with Javascript,
which is an untyped language as well.
In our experiments, EsaGst could distinguish plagiarized docu-
ments from unrelated documents in all cases using a reporting
threshold of 5%. However, a limitation of our small-scale test set
is that it does not include non-plagiarized documents on related
programming tasks, which would likely yield higher similarity
scores and potentially false positive detections.

5 Conclusion
This poster presents preliminary results on using ESA and Scored
GST to identify cross-language source code plagiarism in a small
set of test programs. Important questions we plan to investigate
in our future research include: (1) the effect of varying parameters
like the dimensionality of concept vectors, the similarity thresh-
olds, and the minimum substring lengths for GST, (2) the influ-
ence of the ESA knowledgebase dataset, and (3) the results of
EsaGst and more cross-language SCPD methods on a larger, more
diverse test set. The test set should include programs that different
developers implemented for the same task to distinguish plagia-
rized from topically related content.
Despite the limitations of our initial experiments, we see Explicit
Semantic Analysis combined with Scored Greedy String Tiling as
a promising method for revealing semantically equivalent source
code in different programming languages.

REFERENCES
[1] M. Ďuračík, E. Kršák, and P. Hrkút, “Current Trends in Source Code Analysis,

Plagiarism Detection and Issues of Analysis Big Datasets,” Procedia Eng., vol.
192, pp. 136–141, 2017.

[2] A. Caliskan et al., “When coding style survives compilation: De-anonymizing
programmers from executable binaries,” arXiv Prepr. arXiv1512.08546, 2015.

[3] G. Cosma and M. Joy, “An approach to source-code plagiarism detection and
investigation using latent semantic analysis,” IEEE Trans. Comput., vol. 61, no.
3, pp. 379–394, 2012.

[4] E. Gabrilovich and S. Markovitch, “Computing Semantic Relatedness using
Wikipedia-based Explicit Semantic Analysis,” in IJcAI, 2007, vol. 7, pp. 1606–
1611.

[5] R. Všianský, D. Dlabolová, and T. Foltýnek, “Source code plagiarism detection
for PHP language,” Eur. J. Bus. Sci. Technol., vol. 3, no. 2, 2017.

[6] N. Meuschke, N. Siebeck, M. Schubotz, and B. Gipp, “Analyzing Semantic
Concept Patterns to Detect Academic Plagiarism,” in Proceedings of the 6th
International Workshop on Mining Scientific Publications, 2017, pp. 46–53.

Ant GST Ant GST

c 100 100 5 38 61 93 78 100 56 44 0 0 25 83 0 27 17 74 18 82 13 44 0 0 1 74 0 25 0 70 0 72 1 38 0 0 3 62 0 26 1 59 2 61 1 31 0 0 0 53 0 18 0 51 0 52 1 34 0 0

c1 5 38 100 100 5 38 5 37 5 19 0 0 0 27 24 83 0 27 0 26 0 15 0 0 0 25 1 74 0 25 0 24 0 13 0 0 0 26 3 62 0 26 0 25 0 13 0 0 0 18 1 54 0 18 0 17 0 12 0 0

c2 58 93 5 38 100 100 44 93 35 40 0 0 16 74 0 27 28 85 11 74 10 38 0 0 0 70 0 25 3 78 0 71 0 36 0 0 1 59 0 26 5 62 0 59 1 31 0 0 0 51 0 18 2 57 0 51 0 31 0 0

c3 78 100 5 37 46 93 100 100 49 44 0 0 18 82 0 26 12 74 25 83 10 43 0 0 0 71 0 24 0 69 2 73 0 35 0 0 0 61 0 25 0 59 4 61 0 32 0 0 0 51 0 17 0 51 2 53 0 32 0 0

c4 80 56 7 24 51 51 69 56 100 100 0 0 19 40 0 13 14 35 14 39 19 44 0 0 2 35 0 12 1 33 0 34 2 38 0 0 3 29 0 12 2 28 1 29 3 32 0 0 2 25 0 9 1 23 0 25 2 34 0 0

cX 0 1 0 1 0 1 0 1 0 1 100 100 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2

j 24 76 0 24 17 68 18 75 13 29 0 0 100 100 3 36 59 92 72 100 51 60 0 1 27 76 0 25 13 74 19 76 9 38 0 0 32 66 0 25 18 62 23 66 13 35 0 0 1 50 0 18 0 48 0 50 1 31 0 0

j1 0 24 24 76 0 24 0 23 0 10 0 0 3 36 100 100 3 36 3 35 3 24 0 1 0 25 27 77 0 25 0 24 0 13 0 0 0 25 33 66 0 25 0 24 0 14 0 0 0 18 1 50 0 18 0 17 0 12 0 0

j2 16 68 0 24 27 78 11 68 9 25 0 0 55 92 3 36 100 100 42 90 31 51 0 1 12 72 27 25 9 78 2 73 17 36 0 0 32 62 0 25 12 67 6 62 0 32 0 0 0 49 0 18 2 54 0 50 0 31 0 0

j3 18 75 0 23 12 68 25 76 10 29 0 0 72 100 3 35 45 90 100 100 49 61 0 1 19 75 0 24 10 72 26 76 6 37 0 0 23 66 0 24 13 62 31 66 10 35 0 0 0 49 0 17 0 48 1 50 0 31 0 0

j4 19 37 0 12 15 32 14 36 20 30 0 0 76 55 4 22 51 47 74 56 100 100 0 1 14 35 0 12 4 33 9 35 14 38 0 0 20 32 0 13 9 30 14 32 21 36 0 0 2 23 0 9 1 22 0 25 2 32 0 0

jX 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 100 100 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

js 1 53 0 18 0 50 0 51 1 20 0 0 36 60 0 19 18 57 26 59 12 30 0 0 100 100 0 26 49 87 71 100 49 56 0 0 39 66 0 20 18 62 28 64 12 31 0 0 3 52 0 19 3 51 2 53 3 33 0 0

js1 0 18 1 53 0 18 0 17 0 7 0 0 0 19 36 61 0 19 0 18 0 10 0 0 0 26 100 100 0 26 0 24 0 14 0 0 0 20 39 67 0 20 0 19 0 11 0 0 0 19 3 54 0 19 0 18 0 13 0 0

js2 0 50 0 18 4 56 0 50 0 19 0 0 17 58 0 19 36 61 12 56 3 28 0 0 45 87 0 26 100 100 33 88 22 46 0 0 17 62 0 20 39 68 13 61 3 31 0 0 3 52 0 19 5 57 2 53 3 34 0 0

js3 0 52 0 17 0 51 2 52 0 19 0 0 26 60 0 18 13 57 34 59 8 30 0 0 71 100 0 24 35 88 100 100 40 56 0 0 28 66 0 19 14 62 39 66 8 32 0 0 2 52 0 18 2 51 4 53 2 33 0 0

js4 3 25 0 9 2 24 0 23 3 20 0 0 22 28 0 9 6 26 15 27 22 30 0 0 85 52 0 13 42 42 69 52 100 100 0 0 22 29 0 10 6 29 15 28 22 32 0 0 6 25 0 9 5 25 4 26 6 47 0 0

jX 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

p 3 54 0 23 2 52 0 54 3 20 0 0 38 64 0 24 21 60 27 64 16 33 0 0 34 81 0 25 16 76 25 80 11 38 0 0 100 100 1 35 56 92 73 100 51 58 0 0 1 49 1 18 0 47 0 49 0 31 0 0

p1 0 23 3 55 0 23 0 22 0 9 0 0 0 24 39 64 0 24 0 23 0 13 0 0 0 25 34 82 0 25 0 24 0 13 0 0 1 35 100 100 1 35 1 34 1 20 0 0 0 18 1 51 0 18 0 17 0 12 0 0

p2 2 52 0 23 6 54 0 52 2 20 0 0 20 60 0 24 38 64 15 60 7 31 0 0 15 76 0 25 35 84 11 76 3 38 0 0 52 92 1 35 100 100 36 92 26 52 0 0 0 47 0 18 2 51 0 48 0 29 0 0

p3 0 54 0 22 0 52 5 54 0 20 0 0 27 64 0 23 16 60 36 63 11 34 0 0 25 79 0 24 12 75 34 81 7 37 0 0 74 100 1 34 39 92 100 100 43 58 0 0 0 48 0 17 0 46 2 49 0 31 0 0

p4 4 25 0 11 3 25 1 26 4 21 0 0 26 31 0 12 12 29 19 31 27 34 0 0 18 35 0 12 5 35 12 35 19 39 0 0 84 53 2 18 46 48 69 53 100 100 0 0 2 23 0 9 1 22 0 24 2 31 0 0

pX 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 0 0 0 0 0 0 0 0

py 1 43 0 15 0 42 0 42 1 16 0 0 1 44 0 16 0 44 0 44 1 23 0 0 3 59 0 21 3 59 2 59 3 31 0 0 1 45 0 17 0 44 0 45 1 23 0 0 100 100 1 36 55 91 74 100 49 67 0 0

py1 0 15 1 44 0 15 0 14 0 6 0 0 0 16 1 44 0 16 0 15 0 9 0 0 0 21 3 61 0 21 0 20 0 12 0 0 0 17 1 47 0 17 0 16 0 9 0 0 1 36 100 100 1 36 0 34 0 22 0 0

py2 0 42 0 15 2 47 0 41 0 15 0 0 0 43 0 16 2 48 0 43 0 21 0 0 0 58 2 21 4 65 2 57 2 30 0 0 0 44 0 17 2 47 0 43 0 22 0 0 50 91 1 36 100 100 36 91 25 59 0 0

py3 0 42 0 14 0 42 2 43 0 16 0 0 0 45 0 15 0 44 2 44 0 24 0 0 2 60 0 20 2 60 3 60 2 32 0 0 0 46 0 16 0 44 2 46 0 24 0 0 74 100 0 34 40 91 100 100 40 67 0 0

py4 2 21 0 7 2 19 0 19 2 17 0 0 2 21 0 8 2 20 0 21 2 23 0 0 5 28 0 11 5 29 4 28 5 43 0 0 2 21 0 8 2 20 0 21 2 24 0 0 86 50 2 17 48 44 71 50 100 100 0 0

pyX 0 0 0 0 0 0 0 0 0 0 0 1 0 100 100

jXc c1 c2 c3 c4 cX j j1 j2 j3 j4 pyjs js1 js2 js3 js4 jsX p4p p1 p2 p3 pX py1 py2 py3 py4 pyX

Foltynek, T. & Vsiansky, R. & Meuschke, N. & Dlabolova, D. & Gipp, B., “Cross-

Language Source Code Plagiarism Detection using Explicit Semantic Analysis and

Scored Greedy String Tilling,” in Proceedings of the ACM/IEEE Joint Conference on

Digital Libraries (JCDL), Aug. 2020, DOI: 10.1145/3383583.3398594.

@inproceedings{FoltynekVMD20,

title = {Cross-{Language} {Source} {Code} {Plagiarism} {Detection} using

{Explicit} {Semantic} {Analysis} and {Scored} {Greedy} {String} {Tilling}},

doi = {10.1145/3383583.3398594},

booktitle = {Proceedings of the {ACM}/{IEEE} {Joint} {Conference} on {Digital}

{Libraries} ({JCDL})},

author = {Foltynek, Tomas and Vsiansky, Richard and Meuschke, Norman and

Dlabolova, Dita and Gipp, Bela},

month = aug,

year = {2020}

}

RIS:

TY - CONF

TI - Cross-Language Source Code Plagiarism Detection using Explicit Semantic

Analysis and Scored Greedy String Tilling

AU - Foltynek, Tomas

AU - Vsiansky, Richard

AU - Meuschke, Norman

AU - Dlabolova, Dita

AU - Gipp, Bela

C3 - Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL)

DA - 2020/08//

PY - 2020

DO - 10.1145/3383583.3398594

ER -

https://doi.org/10.1145/3383583.3398594
http://www.gipp.com/pub

	poster_final
	cit

