
School of Electrical,
Information and Media Engineering

Chair for Technologies and Management of Digital Transformation

Master-Thesis
Coreference Resolution to Improve Data Quality in the Logs of Daily
Operations: Restoring Missing Links Between Problem and Solution

Records

Thomas Ebner
1526180

Electrical Engineering

Wuppertal, 19. October 2022

Supervisor Anastasia Zhukova M.Sc. First reviewer
Second reviewer

Prof. Dr.-Ing. Tobias Meisen
Prof. Dr.-Ing. Bela Gipp

Lehrstuhl für

BERGISCHE
UNIVERSITAT
WUPPERTAL

Fakultät für Elektrotechnik, Informationstechnik
und Medientechnik

Technologien und Management der Digitalen Trans-" t· Campus Freudenberg
,orma ion Rainer-Gruenter-Straße

Univ.-Prof. Dr.-lng. Tobias Meisen

Thema für die Master-Thesis

Kandidat*in: Ebner, Thomas
Matrikel-Nr.: 1526180
Studiengang: Elektrotechnik

42119 Wuppertal

Fachliche*r Ansprechpartner*in: Anastasia Zhukova M. Sc.

Thema: Coreference resolution to improve data quality in the logs of daily operations:
Restoring missing links between problem and solutiori records

Aufgabenstellung:
A common dilemma in industry is finding a solution to a problem that has already been solved in
the past. When problem solutions are not efficiently tracked, it makes it difficult to solve recurring
problems. One way to address this problem in the context of production is for plant operators to
manually create log flies in which they report on events in production. These log flies contain
problem and solution descriptions as weil as other information. In this thesis, the underlying as-
sumption will be validated, if such log flies can be used to suggest solutions to emerging prob-
lems with the help of historical data. This requires related problem and solution descriptions to be
automatically extracted and linked. The task of linking solutions to problems can be viewed as a
coreference resolution task, where a problem is viewed as the antecedent of a solution.
In industrial setups some problems occur that increase the complexity of the coreference resolu-
tion task - such as the procedures for logging the different types of events are not precisely de-
fined, or problems can be created as an information description and later extended by a solution
description: In this work, the research objective is, to give an answered to the research question:
"How can coreference resolution be used for linking solutions to problems?". The result ofthis
thesis is a pipeline that uses coreference resolution as a tool that can be used either as a prepro-
cessing step to link problems and solutions retrospectively, or as a standalone application that
searches for not linked records from the last 8-24 hours at the end of a shift and links them.

Wuppertal, den 19. April 2022

Erstgutachter*in: Prof. Dr.-lng. Tobias Meisen
Zweitgutachter*in: Prof. Dr. Bela Gipp

Prüfungsamt
Kennziffer: 99.. I fit\--\ ET .g \-te:.
Ausgabedatum: Ag .+. Qo;u;i_
Abgabedatum: ;19 .10 _ QcQ62._.

Unterschrift Erstgutachter*in

Unterschrift Prüfungsamt

Eidesstattliche Erklärung
Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst, keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Wuppertal, den 19. Oktober 2022
(Unterschrift)

Einverständniserklärung
Ich bin damit einverstanden, dass meine Thesis wissenschaftlich interessierten Personen oder
Institutionen und im Rahmen von externen Qualitätssicherungsmaßnahmen des Studienganges
zur Einsichtnahme zur Verfügung gestellt werden kann. Korrektur- oder Bewertungshinweise in
meiner Arbeit dürfen nicht zitiert werden.

Wuppertal, den 19. Oktober 2022
(Unterschrift)

III

Kurzfassung
Diese Arbeit leistet einen Beitrag zu einem umfangreicheren Projekt des Solution Recommender
Systems, d.h. ein System schlägt bei einer Problembeschreibung Lösungen vor, die auf zuvor
gelösten ähnlichen Problemen basieren. Das Erlernen korrekter Lösungsvorschläge setzt voraus,
dass die Datenqualität der Datenbasis hoch genug ist, damit ein solches Modell die richtigen
Lösungsvorschläge erlernen kann. Als Datenbasis werden die Logdateien aus dem operativen
Betrieb in der verarbeitenden Industrie in deutscher Sprache verwendet. In dieser Arbeit wird
die Koreferenzauflösung auf Satz- und Absatzebene eingesetzt, um die Datenqualität solcher
Logdateien zu verbessern, d.h. fehlende Verknüpfungen zwischen Problemen und Lösungen
wiederherzustellen.

Zwei verschiedene State-of-the-Art-Modelle zur Koreferenzauflösung werden evaluiert, aus-
gewählt und angepasst: 1) das Feature-basierte neuronale Netzwerk von Clark und Manning ([13,
14]) und 2) das Transformer-basierte neuronale Modell für CDCR von Caciularu et al. [7].

Die Ergebnisse zeigen, dass die Definition der Koreferenzauflösung auf das aktuelle Problem
anwendbar ist. Das leistungsstärkste Modell ist das implementierte Transformer-basierte PR-
CDLM (problem-solution cross-document language model) mit domänenspezifischen Merkmalen
(CoNLL F1 = 76.7). Die Kombination der Transformer-Architektur mit zusätzlichen Merkmalen
zeigt einen signifikanten Vorteil gegenüber reinen Transformer-basierten Modellen (CoNLL F1 =
68.6) und gegenüber reinen Feature-basierten Modellen (CoNLL F1 = 55.8).

Abstract
This thesis contributes to a larger project of the solution recommender system, i.e., given a
problem description, a system suggests solutions based on previously solved similar problems.
To learn correct solution suggestions presupposes that the data quality of the database is high
enough for such a model to learn the correct solution suggestions. As a database, the log files
from daily operations in the processing industry in the German language are used. This thesis
uses coreference resolution on the level of sentences and paragraphs to improve the data quality
of such log files, i.e., to restore missing links between problems and solutions.

Two diverse state-of-the-art models for coreference resolution are evaluated, selected, and
adjusted: 1) the feature-driven neural network by Clark and Manning ([13, 14]) and 2) the
transformer-based neural model for CDCR by Caciularu et al. [7].

The results prove that the coreference resolution definition is applicable to the current domain
problem. The best-performing model is the implemented transformer-based PR-CDLM (problem-
solution cross-document language model) with domain-specific additional features (CoNLL F1 =
76.7). The combination of the transformer architecture with additional features demonstrates a
significant advantage over pure transformer-based models (CoNLL F1 = 68.6), and over pure
feature-based models (CoNLL F1 = 55.8).

IV

Contents
List of Figures VII

List of Tables VIII

1 Introduction 1
1.1 Problem Setting and Motivation . 1
1.2 Research Objective . 2
1.3 Outline . 2

2 Background and Related Work 4
2.1 Coreference Resolution . 4
2.2 Approaches for Coreference Resolution . 6

2.2.1 Within-Document Coreference Resolution 6
2.2.2 Cross-Document Coreference Resolution 8

2.3 Summary . 9

3 Methodology 10
3.1 Scope and Limitation . 10
3.2 Preprocessing . 12
3.3 NeuralCoref . 16

3.3.1 Preprocessing . 16
3.3.2 Model . 20
3.3.3 Implementation and Training . 23

3.4 CDLM . 25
3.4.1 Preprocessing . 26
3.4.2 Model . 27
3.4.3 Implementation and Training . 31

3.5 Summary . 35
3.5.1 Summary of Preprocessing . 36
3.5.2 Summary of Models . 37

4 Evaluation 39
4.1 Metrics . 39

4.1.1 Metrics for Classification Models . 39
4.1.2 Metrics for Coreference Resolution . 42
4.1.3 Summary of Metrics . 45

4.2 NeuralCoref . 45
4.2.1 Results . 45
4.2.2 Limitations . 47

4.3 CDLM . 47
4.3.1 Baselines . 47

V

4.3.2 Results . 50
4.3.3 Limitations . 52

4.4 Results . 52
4.5 Summary . 53

5 Future Work 54
5.1 NeuralCoref Model . 54
5.2 CDLM Model . 55
5.3 End-to-End Prototype . 56

6 Conclusion 57

Bibliography 59

VI

List of Figures
2.1 Basic coreference resolution example. 4
2.2 Coreference example using superscript for mark each cluster, and subscript for

individual mentions in each cluster. 4
2.3 Basic architecture of a coreference resolution system. 5

3.1 Linking solutions to problems: a coreference resolution task. 11
a Possible combinations of problems and solutions in a log file. 11
b Schematic representation of a log file over a period of 72 hours. 11

3.2 Conceptual visualization of the coreference resolution pipeline. 12
3.3 Schematic structure of the log file entries. 13
3.4 General overview of the preprocessing pipeline. 14
3.5 Time required to solve a problem in hours. 15
3.6 NeuralCoref preprocessing pipeline. 17
3.7 Visualization of the parallel feed-forward neural networks of NeuralCoref. 20

a NeuralCoref FFNN for single mentions. 20
b NeuralCoref FFNN for mention-pairs. 20

3.8 Example of NeuralCoref evaluation metric during training. 22
3.9 Schematic representations of how missing shift ids are determined. 26
3.10 Longformer attention patterns. 27
3.11 Visulaization of the CDLM pretraining. 28
3.12 CD-coreference resolution pairwise mention representation. 29
3.13 Visualization of the mention-pair scoring model of CDLM. 29
3.14 Visualization of different agglomerative clustering linkage methods. 30

a Single linkage. 30
b Complete linkage. 30
c Average linkage. 30

3.15 Problem Solution Linking evaluation pipeline. 32
3.16 Implemented CR pairwise mention representation. 34
3.17 Visualization of the neural network of CDLM. 35

4.1 Confusion matrix. 40
4.2 Example precision-recall curve for an imbalanced dataset. 41
4.3 Threshold tuning curve. 42
4.4 Visualization of key and response cluster based on Pradhan et al. [39] 42
4.5 Visualization with the partitions of the key and response cluster based on Pradhan

et al. [39] . 43
4.6 Additional mention-scoring models. 48
4.7 Extraction of the simple and advanced context for the CDLM model. 49

5.1 End-to-end problem-solution linking pipeline. 56

VII

List of Tables
3.1 NeuralCorefs mention-pair table. 18
3.2 Overview of mention features and mentions-pairs features that are extracted for

the NeuralCoref model. 18
a Extracted features during preprocessing for single mentions for the Neural-

Coref model. 18
b Extracted features during preprocessing for mention-pairs for the Neural-

Coref model. 18
3.3 Extracted features for single mentions of the NeuralCoref model. 21
3.4 Extracted features for mention-pairs of the NeuralCoref model. 21
3.5 Datasets used to train the Neuralcoref model. 23
3.6 NeuralCorefs mention-pair table. 24
3.7 Distribution of the instances to train NeuralCoref. 24
3.8 Datasets used to train the CDLM model. 31
3.9 Distribution of the instances to train the CDLM. 31
3.10 Comparison of the Transformers on which the original CDLM model is built upon

and on which the implemented version is built upon. 33
3.11 Summary of preprocessing. 37
3.12 Comparison of the key data of Neuralcoref and CDLM. 37

4.1 Results for Neuralcoref after training. 46
4.2 Variants of the mention-pair scoring model. 47
4.3 Listing of all dataset and context modifications of the CDLM model. 49
4.4 Test results of all modifications of the CDLM model. 50
4.5 Best performing model in comparison with the current state-of-the-art for CDCR. 51
4.6 Results on all variants of the NeuralCoref and CDLM models for coreference

resolution. 52

VIII

1 Introduction
This master thesis addresses how coreference resolution (CR) can be applied at the level of
sentences and paragraphs as a tool for linking problems and solutions of log files created in
an industrial environment in the German language. The introductory chapter begins with the
problem definition and the motivation derived from it (Section 1.1), presents the proposed
research objective pursued in this thesis (Section 1.2), and outlines the remaining chapters
(Section 1.3).

1.1 Problem Setting and Motivation
A common dilemma in the workplace is how to find a solution to a problem that has already been
solved in the past. Knowledge management (KM) has generated considerable interest in business
and management circles due to its capability to deliver strategic results relating to profitability,
competitiveness, and capacity enhancement [10]. Knowledge management is promoted as an
essential and necessary factor for organizational survival and maintenance of competitive strength
[38]. Successful organizations now understand why they must manage knowledge, develop plans
to accomplish the objective, and devote time and energy to these efforts. KM has been described
as a critical driver of organizational performance [6] and one of the essential resources for the
survival and prosperity of organizations [51]. In the age of rapid technological innovation and
change, KM is a crucial enabler for value creation.

One way to address knowledge management in an industrial setting is for plant operators
to manually create log files in which they report on events in production, such as the machines
used in production. Ideally, related problem and solution events are entered into text fields for
this purpose. This would build a database that can be used to refer back to an already found
solution in case of recurring problems. Unfortunately, the procedures for logging the different
types of events are typically not precisely defined, which leads to an inconsistent structure of the
reported events. For example, problem and solution events can be entered into one text field, i.e.,
a distinction between problem and solution is no longer possible. Another issue could be that
problem and solution events are entered separately but are not linked explicitly. In this case,
there is no linked solution to the problem, although a solution exists in the database. It is also
possible to enter problems and solutions in the wrong category altogether, i.e., a problem could
be assigned to the information category. Moreover, it is common in a production environment
that a problem is only solved after a more extended period, e.g., one or two days later.

These issues lead to a decrease in the data quality in the log files, which limits the effective
use of the collected knowledge in the industrial setting. Therefore, the log files’ data quality must
be improved to operate effective KM. Once sufficient data quality is available, the log files can
be used as a database to train a model which suggests suitable solutions to emerging problems.
Such a model can only be trained efficiently using historical data from the log files to learn how
problems and solutions are related in order to propose solutions to problems. For this purpose, a
data set must be prepared that contains only explicitly labeled linked and non-linked problems
and solutions.

Linking solutions to problems can be viewed as a coreference resolution task, where a problem

1

Introduction
Research Objective

is viewed as the antecedent of a solution. Coreference resolution is a well-studied research topic
within Natural Language Processing (NLP), where good results have already been obtained in
various domains and describes the task of resolving anaphoric expressions into their antecedents.
While current state-of-the-art coreference resolution models focus on mentions on word level or
spans of a couple of words [7], the log files typically contain problem and solution events on
the level of sentences and paragraphs. In order to solve the problem with the time-separated
problems and solutions within the framework of coreference resolution, it can be defined that
a document is created for each shift, i.e., one log file corresponds to one document. With this
definition, an approach can be made to link related problems and solutions with the help of
cross-document coreference resolution.

1.2 Research Objective
To train a solution suggestion model, the data quality of the log files must be improved, i.e.,
problem and solutions must be linked explicitly. Motivated by developing a coreference resolution
model to improve data quality in the database of an industrial setting, the following research
question (RQ) was defined:

How can coreference resolution be used to improve data quality in the logs of daily operations,
i.e., restore missing links between problem and solution records?

Therefore, following research tasks (RT) are derived:

1. Create an artificial dataset derived from the logs of daily operations;

2. Preprocess the data to get the data into the necessary input format for the models;

3. Identify state-of-the-art models for within-document and cross-document coreference reso-
lution and develop a problem-solution linking model based on them;

4. Evaluate the developed models.

1.3 Outline
Chapter 1 introduced the task of linking problem and solution datasets (Section 1.1) and presented
the proposed research objective for this thesis (Section 1.2).

Chapter 2 addresses the research tasks by providing fundamental background knowledge
on coreference resolution (Section 2.1) and an overview of the main classical as well as novel
approaches to coreference resolution (Section 2.2) for both within-document coreferences (Section
2.2.1) and cross-document coreferences (Section 2.2.2).

Chapter 3 defines the task in detail and presents the scope and limitations (Section 3.1) of
this thesis. Then it describes the conducted preprocessing of the log files (Section 3.2). Next,
the chapter explains the NeuralCoref model (Section 3.3) and the CDLM model (Section 3.4) in
detail, starting with the specific preprocessing steps, continues with the explanation of the model

2

Introduction
Outline

architecture of the original models and describes how the models are implemented for this thesis.
Finally, the chapter concludes with a summary of the critical points (Section 3.5).

Chapter 4 presents the evaluation metrics used to evaluate a classification model as well
as coreference resolution (Section 4.1), then shows the results and limitations of the trained
NeuralCoref model (Section 4.2) and the CDLM model (Section 4.3), and closes with a summary
(Section 4.5).

Chapter 5 describes which improvements for the NeuralCoref model (Section 5.1) and for the
CDLM model (Section 5.2) can be considered in the future and presents an end-to-end prototype
that represents a complete pipeline to solve coreferences including mention extraction in the log
files (Section 5.3).

Chapter 6 concludes the thesis with a summary.

3

2 Background and Related Work
The background and related work chapter explains the basics of coreference resolution (Section
2.1), followed by an overview of several classic as well as novel state-of-the-art approaches to
solve coreference resolution (Section 2.2), further categorized into within-document coreference
resolution (Subsection 2.2.1) and cross-document coreference resolution (Subsection 2.2.2). Finally,
the chapter concludes with a summary (Section 2.3).

2.1 Coreference Resolution
Knowing who is being talked about in a text is essential to natural language processing (NLP)
[24]. Consider the following passage [30]:

Barack Obama nominated Hillary Clinton as his secretary of state on Monday. He chose
her because she had foreign affairs experience as a former First Lady.

Figure 2.1 Basic coreference resolution example.

The underlined words in this passage are used to refer to the same real-world entity. Linguistic
expressions like "Barack Obama" or "his" are called mentions. A mention can be a noun phrase
(NP), a named entity (NE), or a pronoun, which refers to an entity in the real world known as
the referent [48]. Two or more mentions that refer to the same entity are said to corefer [24].

Linguistic expressions that refer back to another word or phrase are called anaphora. A word
or phrase that gets its meaning from a preceding expression is an anaphor (like "his" and "He" in
Figure 2.1). The preceding expression is called an antecedent ("Barack Obama" in Figure 2.1)
[22]. Not every referring expression is an antecedent. An entity with only a single mention in a
text is called a singleton [24].

Coreference resolution (CR) is the task of determining whether two mentions in a text refer
to the same underlying real-world entity [37]. The set of coreferring mentions is called coreference
chain or a cluster. Thus, the task of coreference resolution comprises two tasks: First, identify
the mentions, and second, cluster them into coreference chains. Alternatively, expressed formally:
"Given a text T, find all entities and the coreference links between them. The task is evaluated
by comparing the predicted links with those in human-created gold coreference annotations on
T " [24].

Referring to the coreference example in Figure 2.1, now using superscript for each cluster and
subscript for individual mentions in the cluster, a CR model would need to extract and cluster
the following mentions:

[Barack Obama]1a nominated [Hillary Clinton]2a as [his]1b [secratary of state]2b on Monday.
[He]1c chose [her]2c because [she]2d had foreign affairs experience as a former [First Lady]2e.

Figure 2.2 Coreference example using superscript for mark each cluster, and subscript for individual
mentions in each cluster.

4

Background and Related Work
Coreference Resolution

A CR algorithm needs to find at least two cluster corresponding to the two entities in the
text:

1. {Barack Obama, his, He}

2. {Hillary Clinton, secretary of state, her, she, First Lady}

Typically, CR requires a preprocessing pipeline comprising a variety of NLP tasks (e.g.,
tokenization, lemmatization, named entity recognition, and part-of-speech tagging). These tasks
are addressed before training the coreference resolution model. Errors made during preprocessing
impact the CR models’ performance, assuming that the provided input is correct. Models trained
with incorrect data are less accurate [15].

Data Preparation

Text
document

Mention Extraction Feature Extraction

Resolution

Classification

Linking

Resolved
Coreferences

Figure 2.3 Basic architecture of a coreference resolution system. The input consists of raw text
documents. In the data preparation stage the mentions are extracted as well as some features of the

mentions. In the resolution stage mention-pairs are classified if they are coreferent or not, and linked to
coreference chains. The output is a file containing the resolved coreferences [15].

The typical architecture of a CR system features data preparation and resolution phases,
as seen in Figure 2.3. For most CR tasks, the input to the system is the raw text of articles.
The data preparation pipeline consists of detecting mentions in the input text, followed by a
feature extraction step, converting each data instance into an expressive feature vector. Extracted
features are dependent on the specific task and could be document features, e.g., the length of
the document or the total mention count; mention features, e.g., named entity type, or pronoun;
or mention-pair features, e.g., mention head match, or mention distance [44]. The resolution
phase consists of classifying these instances as coreferent or not and the linking of mentions into
the final coreference chains [15].

Precisely what counts as mention and what links are annotated differs from task to task and
dataset to dataset. For example, some coreference datasets do not label singletons. Some tasks
use gold mention-detection (i.e., the system is given human-labeled mention boundaries, and
the task is to cluster these gold mentions), which eliminates the need to detect and segment
mentions from running text [24].

5

Background and Related Work
Approaches for Coreference Resolution

2.2 Approaches for Coreference Resolution
This section outlines the major machine learning approaches to CR. Classic coreference algorithms
are distinguished based on whether they make each coreference decision in a way that is entity-
based (i.e., representing each entity in a text), or onlymention-based (i.e., considering each mention
independently), and whether they use ranking models to directly compare potential antecedents
[37]. Novel approaches in CR are based on end-to-end models, outperform the previous state-of-
the-art models, and will be outlined after the classic approaches. Furthermore, the approaches
are divided into CR for within-document (WD) (Subsection 2.2.1) and cross-document (CD)
(Subsection 2.2.2) approaches.

2.2.1 Within-Document Coreference Resolution
Most CR research is conducted for within-document tasks. Particularly in the early approaches,
only individual documents were considered. This subsection deals with classical approaches to
CR that classically consider only single documents.

Soon et al. [49] proposed the mention-pair model, one of the simplest and most influential
architectures [24]. It combines a binary classifier that, given a pair of mentions, a candidate
anaphor, and a candidate antecedent, distinguishes whether it is a coreference or not, with fast
heuristic procedures to merge the decision of the classifier in the decoding phase [52]. While earlier
classifiers used hand-built features, more recent classifiers use neural representation learning [11].
Despite the advantage of simplicity, the mention-pair model has two significant weaknesses. (1)
The classifier is not trained to decide between two likely antecedents, which is better, as it does
not directly compare candidate antecedents to each other. (2) Each classifier decision is made
entirely locally to the pair, without being able to take into account other mentions of the same
entity, as the classifier is looking only at mentions, not entities.

Instead of considering the CR problem as a pairwise binary classification task between all
possible antecedents, mention-ranking models directly score candidate antecedents to each other
for their likelihood of coreference rather than comparing partial coreference clusters, choosing the
highest-scoring antecedent for each anaphor [15]. The candidate antecedent may be any mention
before a given target mention in the document or NA, indicating that the target mention has no
antecedent [24]. This approach limits errors caused by the lack of global contextual information.
However, during the classification phase, this approach may still encounter contradictions by
considering each target mention and the corresponding anaphora separately. These contradictions
must later be solved in the linking process.

Both the mention-pair and mention-ranking models make their decisions about mentions. By
contrast, entity-based models link each mention not to a previous mention but to a previous entity
(cluster of mentions). Generally, entity-based classifiers have the same features as mention-pair
classifiers. The difference is that an entity feature’s value considers the specific values of all
mentions in a partial entity. Hence, this type of model can often overcome contradictions in the
linking process [15]. A mention-ranking model can be turned into an entity-ranking model simply
by having the classifier make its decisions over clusters of mentions instead of the individual
mentions [42].

6

Background and Related Work
Approaches for Coreference Resolution

Cluster-ranking models can overcome local linking contradictions using entity-level information.
The models take a pair of mention clusters instead of a pair of mentions as input. These partial
entities are incrementally built of coreferring mentions. Each cluster starts with a single mention
and iteratively builds coreferential clusters [15]. Wiseman et al. [55] used recurrent neural
networks (RNNs) to extract entity-level representations of mentions. At each new link, the
representation of a mention is reevaluated by running a RNN over the cluster mentions in order.
Clark and Manning [14] further improved the performance of cluster-ranking models using a
pooling-based cluster-pair encoder. Each mention from cluster c1 pairs with each mention
of cluster c2. The pairs are run through a mention-pair encoder, and the resulting matrix of
mention-pair representations is max- and average-pooled for a final cluster-pair representation
[15].

As with many other NLP tasks, the use of neural networks to learn non-linear models of CR is
now a common practice. End-to-end models solve the subtasks of CR together in a single model.
The end-to-end objective allows related subtasks to have a common optimization goal, leading
to the models achieving better overall results than pipeline systems. The system is enabled to
learn from pairwise interactions between tasks. Therefore, the system avoids cascading errors
and provides more information for tasks traditionally at the beginning of the pipeline and would
not have access to the results of later tasks [15].

Lee at al. [26] proposed an end-to-end neural model that jointly learns which text spans
are mentiones and how to best link them. They produced vector embeddings of text spans
utilizing a bidirectional long short-term memory (LSTM) network [21], capturing the spans’
representation in the context of the whole sentence. The antecedent and mention scores for each
span pair are computed from the same learned span representations, allowing for the error signal
of both tasks to be used for one common optimization goal. As all spans (up to a maximum
number of tokens) are considered potential mentions, this model is computationally intensive.
The authors later improved their system by adapting a span-ranking architecture to capture
better entity-level information [27]. Also, the system uses an antecedent pruning mechanism for
reducing computational complexity, computing less expensive antecedents and cluster scores for
longer-distance span links.

Joshi et al. [23] proposed a model based on the model by Lee at al. improved with BERT
embeddings [17], both for base and large variants. BERT is a pre-trained transformer network
[53], which set for various NLP tasks new state-of-the-art results, including question answering,
sentence classification, and sentence-pair regression. They present two variants of their model:
(1) the independent variant uses non-overlapping segments, each of which acts as an independent
instance for BERT, and (2) the overlap variant splits the document into overlapping segments to
provide the model with context beyond 512 tokens. When facing the 512 limit for context tokens
for BERT, using independent BERT instances on non-overlapping segments proved to be the
best-performing option, as opposed to using overlapping segments to provide the model with
context beyond 512 tokens.

7

Background and Related Work
Approaches for Coreference Resolution

2.2.2 Cross-Document Coreference Resolution
Significant progress has been made in within-document coreference. However, the more significant
problem of cross-document (CD) coreference has not received as much attention. This subsection
outlines some of the progress made in CDCR in recent years.

Beltagy et al. [4] have proposed a long-range language model called Longformer to overcome
the model’s shortcomings by Joshi et al. The Longformer extends the capabilities of earlier
transformers [53] to process long sequences using a sparse self-attention architecture. The model
showed improved performance on both long-document and multi-document tasks. In the case of
multiple documents, instead of encoding documents separately, the model allows concatenating
the documents into a long sequence of tokens and encoding them jointly.

Barhom et al. [3] developed a model for cross-document coreference resolution (CDCR), as
most CR research has focused on its within-document variant, despite the importance of the
task. They propose an algorithm that incrementally constructs the final clustering configuration.
A vector representation is computed for each mention, containing the mention span, the context
surrounding the mention, and some additional features extracted from the given mention and
text. The mention representations are fed to a mention pair scorer that predicts whether the
mentions belong to the same cluster. Finally, they apply agglomerative clustering where the
cluster merging score is based on the predicted pairwise mention scores. This model outperforms
the previous state-of-the-art event coreference model on ECB+ while providing this corpus’s first
entity coreference result. Furthermore, they show that all the representation elements, including
the mention span itself, its context, and the relation to other mentions, contribute to the model’s
success.

Caciularu et al. [7] improved the model developed by Barhom et al. They introduced a
new pretraining approach geared for multi-document language modeling, incorporating two key
ideas into the masked language modeling self-supervised objective. First, instead of considering
documents in isolation, they pretrain over sets of multiple related documents, encouraging the
model to learn CD relationships. Second, they improve over current long-range transformers
by introducing dynamic global attention with access to the entire input to predict masked
tokens. The CDLM (Cross-Document Language Model) is a new general language model for
multi-document settings that can be quickly adapted to downstream tasks. They show through
extensive analysis that both ideas are essential for the success of CDLM and work in synergy to
set new state-of-the-art results for several multi-text tasks.

Cattan et al. [9] highlight the need for a more realistic evaluation of the CDCR task. In
particular, existing work (e.g., Barhom et al. [3]) often reports performance using gold-annotated
datasets instead of predicted mentions by the model. The contribution of mention prediction
significantly impacts the model performance and should be considered during the evaluation.
They argue that an end-to-end training approach is more realistic for real-world data.

8

Background and Related Work
Summary

2.3 Summary
CR is a well-established NLP research topic and describes the task of linking mentions in a
text that corefer, i.e., refer to the same entity, resulting in a set of coreference clusters. To
resolve coreferences, typically, two individual tasks must be performed: First, identifying the
mentions, and second, clustering them into coreference chains. The major learning-based models
for CR are mention-based, entity-based, mention-ranking, and cluster-ranking models. Novel
coreference systems tend to be end-to-end architectures, as these models outperform the previous
state-of-the-art models. The introduction of the transformer-based BERT model, in particular,
has fundamentally changed the approaches taken to solve coreferences. While significant progress
has been made in within-document coreference, the larger problem of CD coreference has not
received as much attention. In recent years, some promising CDCR models have been presented.
However, it must be taken into account that the results may be overestimated, as in most cases,
they are evaluated with gold mentions instead of predicted mentions.

9

3 Methodology
While current state-of-the-art coreference resolution models are focused on mentions on word
level or spans of a couple of words [7], the goal of this thesis is to develop a coreference resolution
model that will be able to deal with larger spans of text, i.e., on the level of sentences and
paragraphs. The state-of-the-art models cannot simply be adopted, and similar results expected.
This thesis attempts to determine whether CR also works for sentences or paragraphs of log files.

The methodology chapter defines the research task and determines the scope and limitations
of this thesis (Section 3.1). It then describes the data preprocessing conducted on the log files
(Section 3.2), and then continues to explain the models applied to solve the task in detail (Section
3.3 and Section 3.4) and finally concludes with a summary of the key points (Section 3.5).

3.1 Scope and Limitation
This thesis uses log files from an industrial production environment as a database created in the
German language. The log files are created at different machines, sites, and companies. They
contain descriptions of problems, solutions, and additional information occurring in production.
Problems that occur randomly during production must be entered manually into the log files by
user input. Solutions must also be entered manually once a problem has been solved. Information
reports can be various events, from instructions, and administrative notes, to quality remarks.
All kinds of individual descriptions inside the log files are called entry items.

Ideally, the solution to a problem is linked manually to the solved problem when the solution
entry item is created. Unfortunately, several circumstances cause solutions not always to be
explicitly linked to the related problem. For example, problem and solution events can be entered
together in one text field, so it is no longer possible to distinguish between problem and solution.
Another issue is that the link between a problem and a solution is not made during user input.
It is also possible that a problem or a solution is entered in the wrong category altogether, i.e., a
problem could be assigned to the information category. In addition, every problem and every
solution is of varying complexity, and there is no uniform standard in which form a description
must be provided. Therefore, the descriptions vary in length, from single words to several
sentences, i.e., a paragraph. All these issues lead to a decrease in the data quality in the log files.

With the help of these log files, the underlying assumption will be validated if such log files
can be used to suggest solutions to emerging problems using historical data. This objective
requires an improvement in the data quality of these log files. Data quality increases when related
problems and solutions are extracted and then linked. Therefore, linking solutions to problems
can be viewed as a CR task, where a problem is defined as an antecedent of a solution (the
solution is the anaphora in this example). In such log files occur several combinations of problems
and solutions. In the context of the CR task, the following definitions are made (compare Figure
3.1a).

a. The simplest case is when there is only one problem with one linked solution. In this case,
it is defined that a problem is an antecedent of a solution, i.e., a coreference chain of size 2.

b. A problem can also have multiple solutions, i.e., anaphora. This case implies that a

10

Methodology
Scope and Limitation

solution can have both problems and solutions as antecedents. In the industrial production
environment, a problem has been solved after N attempts, i.e., a coreference chain of size
N .

c. A solution can also have no antecedent, i.e., the solution has no linked problem. No problem
was reported in this case, but there is still a solution in the log files. Defined in the context
of a CR task, the solution without a linked problem is equivalent to a singleton.

d. Similar to the previous case, there can also be the reverse scenario, i.e., a problem does not
have an anaphora. This case means that a problem has not been solved or the solution has
not been reported. In the CR setting, this problem is also a singleton.

P

∅ P

S

S

P S S

∅

a b

c d

a Possible combinations of problems and
solutions in a log file.

Solution
Problem

Information

Information

Solution
Solution

Information
Problem

72 hours

t

b Schematic
representation of a log file
over a period of 72 hours.

Figure 3.1 Linking solutions to problems: a coreference resolution task. Figure 3.1a shows a schematic
overview of what kind of coreference chains can be formed with the problems and solutions of a log file. ø
means there is no linked problem or solution. Figure 3.1b shows a schematic overview of a log file which

are defined as documents for the task.

Figure 3.1b illustrates a schematic representation of a log file over 72 hours. The period of 72
hours is defined as the maximum time difference between problems and solutions that are tried
to be linked. Section 3.2 explains why the time limit of 72 hours is chosen.

This thesis aims to develop a pipeline that uses CR as a tool that can be used either as a
preprocessing step to link problems and solutions retrospectively or as a standalone application
that searches for not linked records in a given time frame and links them.

For this thesis, the problem, solution, and information labels are already given. Problems
and solutions are defined as mentions. Information texts are considered as the context of the
mentions. As the labels are already given, the first step of a typical CR pipeline, i.e., the mention
extraction, is out of the scope of this thesis.

The general idea of the CR pipeline is visualized in Figure 3.2. The input to the pipeline
consists of the raw log files. First, some preprocessing is conducted, like formatting and setting
the cluster ids of coreferent problems and solutions. No mention extraction has to be conducted
as the mentions are already given. Second, in the data preparation stage, the features of the
mentions are extracted. Mention features are, for example, the creation time of the mention or
where in the document the mention occurs. The feature extraction is either conducted during

11

Methodology
Preprocessing

Preprocessing

Data Preparation

Log files

Feature Extraction

Resolution

Mention-pair
Scoring

Clustering
Resolved

Coreferences

Figure 3.2 Conceptual visualization of the coreference resolution pipeline. The input consists of the raw
log files. Fist, some general preprocessing is conducted. Second, as the mentions are already given, no
mention extraction has to be done. Hence, only the feature extraction is conducted. Third, in the

resolution stage, depending on the score assigned by a mention-pair scoring model the cluster are formed.
Finally, the output are the resolved coreferences, i.e., linked solutions and problems.

preprocessing or as the first step of the CR model. Third, in the resolution stage, mention pairs
are formed. Mention-pairs are possible combinations of all problems and solutions. Hence, a
mention-pair could also consist of two problems or two solutions. The mention-pairs are scored
using a mention-pair scoring model. The model’s score is the likelihood that two mentions are
coreferent. The clustering of the mentions is also part of the resolution stage. Depending on the
score of the mention pairs, the mentions are clustered or not. Finally, the pipeline’s output is a
file with the resolved coreferences, i.e., the linked problems and solutions of the log files.

Two models are developed to solve the research task. First, a classic state-of-the-art algorithm
for coreference resolution by Clark and Manning ([13, 14]) is adapted. In particular, the
NeuralCoref model by HuggingFace is adapted [57], as it can be modified with relatively little
effort to suit the research task. NeuralCoref is designed to strike a good balance between accuracy
and speed/simplicity, using a constrained number of features and a simple feed-forward neural
network. The model is explained in detail in section 3.3 and is referred to as the NeuralCoref
model in the further course of the thesis.

Second, a model based on the transformer-based cross-document language model (CDLM) by
Caciularu et al. [7] is implemented. The CDLM is currently state-of-the-art for cross-document
coreference resolution and is an improvement of the Event-Entity-CDCR by Barhom et al. [3].
CDLM is trained over sets of multiple documents instead of considering documents in isolation,
using a long-range transformer and dynamic global attention that has access to the entire input
to predict masked tokens. The model is explained in detail in section 3.4 and referred to as the
CDLM model.

3.2 Preprocessing
The dataset for this thesis consists of log files generated using the Shiftconnector. Shiftconnector
is a software developed by eschbach GmbH for logging events in an industrial production
environment. These log files originate from three different companies and a total of nine different
sites. The data was collected between 17/02/2014 and 08/06/2022. All entry items are assigned
to three categories problem, solution, and information. The category information includes
everything that does not represent a problem or a solution. In total there are 14.411 problem,
22.932 solution, 287.056 information entry items. The related problem and solution pairs comprise
a total of 14.396 clusters. A cluster is either a simple problem-solution pair or a combination of

12

Methodology
Preprocessing

several problems and solutions, i.e., a coreference chain.

Solution
Information
Information

Problem
Information

Solution
Solution

tenant_id
chain_id
datetime

type
text

funcloc
shift_id

1AA2bc-DE34F
AB12c3
2021-12-08 07:25:48
Problem
Machine B has too little fluid.
AAA-123-BCD-444-EEE-FGH
2021-12-08_05:00:00

Figure 3.3 Schematic structure of the log file entries. Each entry item has additional meta information
included. To create the gold annotated datasets the type and the chain_id are used.

Figure 3.3 illustrates the available meta data for each entry item (i.e., problem, solution and
information) of the log files: tenant_id, chain_id, datetime, type, text, funcloc, and shift_id.

• The tenant_id is used to uniquely identify the site where the entry item was made.
Problem-solution pairs are only possible when they have the same tenant_id, i.e., recorded
at the same site.

• The chain_id is the cluster id of the coreference chain. Each problem-solution pair (or
cluster) has the same chain_id assigned. The chain_id extracted from the log files is
modified from a combination of letters and digits to a numerical value during preprocessing.

• The datetime is the exact time the entry item was saved in the log files. This value is
later used to determine the time difference between two mentions.

• The type is the assignment of the categories problem, solution, or information. These
categories would need to be recognized and assigned in the mention extraction phase.

• The text contains the user-written text of the individual entry items. These are the
specific problem and solution descriptions that would need to be extracted in the mention
extraction phase. The content varies in length from single words to several sentences.

• The funcloc describes the functional location of the entry item. A functional location
is an organizational unit that structures objects of an enterprise according to functional,
process-oriented, or spatial aspects. Thus, the functional location is used to describe where,
for example, a problem has occurred on a machine.

• The shift_id assigns each entry item to a specific shift. All entries with the same shift_id
belong to the same shift. A shift is defined as a document in the context of this thesis.

Figure 3.4 shows the essential preprocessing pipeline for this thesis. First, there are for each
customer two files. These files were previously extracted from a SQL database and provided as
CSV files. One of these files contains all problem and solution entry items, and one contains all
information entry items. All these individual files are concatenated and sorted by site and in
ascending order by date of creation. This results in a large table where the problem and solution
entry items are mixed with the separate information entry items. They are mixed in that they
are brought from separate documents into the form similar in which they were created.

13

Methodology
Preprocessing

Problem
Solution

Info
Problem
Solution

Info
Problem
Solution

Info
Problem
Solution

Info

tenants

Preprocessing

Shift IDs
Coref IDs
Formatting

Gold
annotated

dataset

Create model
input files

Train (80%)
Dev (10%)
Test (10%)

Figure 3.4 General overview of the preprocessing pipeline. First, the individual tenant files are
concatenated. Second, preprocessing of the master data is conducted. Third, the dataset is split to
training/validation/test datasets. Fourth, gold annotated datasets are created, containing all marked

mentions and coreference cluster. Fifth, depending on the model, different input files for the models are
created.

Second, some preprocessing is conducted. The preprocessing begins with cleaning the data by
removing entry items with no text content or if they are in a form that cannot be processed. The
cluster ids are modified from a combination of numbers and letters to simple numerical values.
The shift id is determined and added for problem and solution entry items where the shift id is
missing.

Third, three datasets are created for train, development, and test, with a distribution of
80%, 10%, and 10%, respectively. Each dataset’s distribution is taken from each site using the
tenant_id. This results in the log files of the different locations being distributed as evenly as
possible across the three data sets.

Fourth, gold annotated files are created for each dataset based on the table containing all the
information. These files contain information such as the mentions, the context, the documents,
and the cluster id, in the form in which it is needed for further processing and evaluation.

Fifth, the specific input files required for the two models are created. These files contain the
same information as the log files, only in a format that the models can use for further processing.
With the help of these files, some mention-pair features are also extracted. Mention-pair features
are based on features of the mentions that are compared to each other. The functional location
code and the creation date time are the two features to be compared.

The functional location code determines if two mentions were created for the exact location
in an industrial production environment. The more similar the functional location codes are,
the closer the locations of the mentions are spatial. To determine how close two mentions are
spatially, the overlap of the functional locations is obtained. Starting with the first character,
the more characters that match, the greater the proximity. The functional location codes are
structured so that they gradually become more specific, starting from an initial rough description.
To normalize the overlap, the number of overlapping characters is divided by the longer functional
location code of the mentions. Therefore, the overlap o(fi, fj) of two functional location codes fi
and fj is calculated by:

o(fi, fj) = number of overlapping characters
max(len(fi), len(fj))

(3.1)

14

Methodology
Preprocessing

When considering following pseudo functional location codes

f1 = AAA-123-BBB-444 f3 = AAA-999-ABC
f2 = AAA-123-BBB-987 f4 = ZZZ-123-BBB

the overlap in some of the possible combinations results in

o(f1, f2) = 12
15 = 0.80 o(f1, f3) = 4

15 = 0.27 o(f1, f4) = 0
15 = 0.00

This indicates that the functional locations of o(f1, f2) are relatively close to each other, o(f1, f3)
are further apart and o(f1, f4) are spatially absolutely separated. The normalized values of this
feature is in the range of 0.0 (there is no overlap) to 1.0 (the whole functional location code
overlaps).

1-8 9-16 17-24 25-32 33-40 41-48 49-56 57-64 65-72 >72
0

100

200

300

400

500

600
44%

17%

10%

4%
2% 1% 1% 3% 2%

16%

Time in hours

N
br

.
of

m
en

tio
n-

pa
irs

Time required to solve a problem in hours

Figure 3.5 Time required to solve a problem in hours. 44% of all problems are solved after 1-8 hours,
i.e., in the time frame of approximately one shift. 71% of all problems are solved within a day. Only 16%

of problems are solved after more than three days (72 hours).

Figure 3.5 shows the results of an analysis of the linked problem-solution pairs. A comparison
of the creation date times shows that most problems are solved relatively quickly after their
occurrence. 44% of all problems are solved within a time frame of one to eight hours. Since the
duration of a shift is usually eight hours, it can be assumed that a significant amount of problems
are solved within one shift. Already 71% of all problems are solved within 24 hours (three shifts).
This amount again underlines the assumption that most problems are solved relatively quickly.
The more time passes, the fewer problems remain to be solved. A further 13% of all problems
are solved between 25 and 72 hours after a problem has occurred. Only 16% of all occurring
problems take longer than 72 hours to be solved.

It should be noted that the number of problem solutions after 72 hours is probably lower.
This is because, in some cases, the solutions are only entered into the log file at a delayed time,
which leads to a certain distortion of the data. To overcome this, for mention pairs with a
time difference of more than 72 hours, a time difference between 1 and 72 hours is assigned

15

Methodology
NeuralCoref

randomly. There is also the reverse case, where the time difference between a problem and a
solution is 0 hours. This case occurs when the problem and solution descriptions are reported in
one entry item. To avoid bias, since it can be assumed that such cases are always coreferent, a
time difference of 1 to 72 hours is also randomly assigned for such mention-pairs.

Since a significant part of problems are solved in a time frame of 1 to 8 hours, it is more
likely that a problem will be coreferent to a solution if the time difference is 3 hours instead of
50 hours. To normalize the feature value, the time difference is divided by 72 (hours). The time
difference is divided by 72, as this time difference has been set as the maximum distance. The
normalized values for this feature are in the range of 0.014 (the smallest time difference is set to
one hour) and 1.0 (the maximum time difference of 72 hours).

Furthermore, two dataset variants are created. These variants represent different filter settings
of the unprocessed log files. The specific filtering of these variants is conducted at the beginning
of the preprocessing pipeline. This means that the remaining preprocessing of the two variants
does not differ. The two variants differ in the following aspects.

1. The variant without funcloc overlap filters out cases where problem-solution pairs were
reported under the same entry item with the same functional location code. This is to
ensure that the results are not skewed toward these cases. There are cases where problems
are reported under a central functional location, such as a reactor. However, then a solution
is reported about a part of that functional location that was actually incorrect.

2. The variant with funcloc overlap does not exclude any entry items for the reason above.

Since the two distinct models require different input formats, the preprocessing differs in a
few aspects. These are described in the following section 3.3 and section 3.4 for the NeuralCoref
model and the CDLM model respectively.

3.3 NeuralCoref
As a state-of-the-art algorithm for within-document coreference resolution, the mention-ranking
NeuralCoref model by HuggingFace is adapted for this thesis. This section describes the specific
characteristics of the NeuralCoref model. It starts with the preprocessing for this model (Section
3.3.1), then explains the underlying architecture of the model in detail (Section 3.3.2) and finally
describes the implementation and training of the model (Section 3.3.3).

3.3.1 Preprocessing
As previously mentioned, the unprocessed log files contain several entry items without an assigned
shift id. Artificial shift ids for the NeuralCoref model are created as follows. A table is created for
each tenant that contains only the entry items that belong to the corresponding tenant. A tenant
corresponds to a specific site. Since linked problem-solution pairs are only valid if they belong to
the same tenant, the shift id must reflect the assignment to a specific tenant. The affiliation of
the entry items is determined using the tenant_id. The tables are sorted by ascending date. For
each tenant, the first and the last date are determined. A loop is conducted from the first date to

16

Methodology
NeuralCoref

the last date in steps of three days. For example, with the first date being 2020-02-14, the next
step (i.e., day) of the loop is 2020-02-17, then 2020-02-20, etc., until the last extracted date of the
specific tenant is reached. All entry items between two dates (e.g., 2020-02-14 and 2020-02-17)
are assigned the same shift id. The artificial shift id is a combination of part of the tenant_id
and the extracted date. A tenant_id 1AA2bc-DE34F and a date 2020-02-14 results in the shift
id 1AA2bc_2020-02-14. This ensures that each entry item in the dataset has an assigned shift id.

It is possible that after the shift ids are created and assigned, there are shifts that do not
have problem and solution entry items (i.e., mentions) but only information entry items. Since
these shifts do not add any value in later processing, as no mention-pairs can be formed, these
shifts are removed from the dataset. In addition, shifts that contain only a single problem or
solution description are also removed from the dataset. This is because these shifts cannot be
preprocessed in the subsequent steps due to the architecture of the NeuralCoref model.

Gold
annotated

dataset

Word vocabulary
Word embedding

Mention pair table Feature extraction Save
*.npy files

Mention Potential Antecedents

P1 ∅

P2 ∅ P1

S1 ∅ P1 P2

S2 ∅ P1 P2 S1

Mention feature
Mention-pair feature

Figure 3.6 NeuralCoref preprocessing pipeline.

Figure 3.6 illustrates the NeuralCoref preprocessing pipeline. Each word of the dataset is
saved in a word vocabulary text file. Word embeddings are created for all these words, using
the embedding provided by fastText for the German language [5]. fastText is an open-source
library developed by the Facebook AI Research Lab. The focus is on scalable solutions for the
tasks of text classification and representation with fast and accurate processing of large amounts
of data. The model is based on the skip-gram model, which uses a central word and tries to
predict words within a specific range before and after the current word. The skip-gram objective
function sums the log-likelihoods of the surrounding n words to the left and right of the target
word wt to obtain the following objective [32]:

Jθ = 1
T

T∑
t=1

∑
−n≤j≤n,6=0

log p(wj+1|wt) (3.2)

Instead of n words, fastText uses bags of character n-grams to represent each subword.
n-grams are continuous sequences of words or characters in a document. fastText uses between
3 and 6 characters for each subword, as the best results were achieved with these parameters.
Each character n-gram is assigned a vector representation. The words are represented as the
sum of these representations. The authors of fastText found that using character n-grams is
more useful in morphologically rich languages such as German. In the case of out-of-vocabulary
(OOV) words, fastText can generate vectors by summing the vectors for the individual characters
n-grams, provided at least one of the characters n-grams was present in the training data. The

17

Methodology
NeuralCoref

fact that the model can also process OOV words is essential for creating word vectors for the
vocabulary of the log files. Since the log files are created in complex industrial environments,
some words, such as machine names or specific technical terms, occur only once in the entire
corpus. This also explains why pre-trained word vectors cannot simply be used. The technical
terms are too specific to occur in other datasets. Added to this is the complexity of manual user
input in the form of unfamiliar abbreviations for words, as well as several spelling errors. Word
vectors based only on more general texts with correct spelling would not be able to provide word
vectors for such cases.

Mention Potential antecedents
P1 ø
P2 ø P1
S1 ø P1 P2
S2 ø P1 P2 S1
P3 ø P1 P2 S1 S2
S3 ø P1 P2 S1 S2 P3

Table 3.1 A generic example of NeuralCorefs mention-pair table. Coreferring mention-pairs are
highlighted in grey [57].

Table 3.1 illustrates the next preprocessing step of creating a mention-pair table of all mentions
within a document. All mentions of a shift, i.e., problem and solution entry items, are gathered
in a table of mention-pairs to highlight the coreferring pairs. Each coreferent mention pairs are
assigned a positive label (1), and non-coreferent mention pairs are assigned a negative label
(0). In the table, ø means that a mention does not corefer with any previous mention. A given
mention can have more than one coreferring antecedent, creating clusters of coreferring mentions.
In this case, several grey boxes would appear in a single line.

There are two things to consider when training a model on such data. First, each mention
has a different number of potential antecedents, which complicates the batching. The size of the
mention-pairs vector ranges from 0 to N , where N is the total number of mentions in a shift.
Second, the table of mention pairs scales with cN , where c is the average number of mentions in
each shift of the dataset.

Category Mention features
Location Mention norm location
Mention Root head embedding
Span vector Mention Before After Doc
a Extracted features during preprocessing for single

mentions for the NeuralCoref model.

Category Mention-pair features
Funcloc Overlap
Date time Time difference
Location Mention-pair distance
b Extracted features during preprocessing for
mention-pairs for the NeuralCoref model.

Table 3.2 Overview of mention features and mentions-pairs features that are extracted for the
NeuralCoref model.

The following preprocessing step is to extract the features of the single mentions and the

18

Methodology
NeuralCoref

features of all mention-pairs. Table 3.2a shows all extracted features of the single mentions and
Table 3.2b shows all extracted mention-pair features of all mention-pairs.

For the single mentions, there are a total of six features that are extracted. Five are word
embeddings, and one is a float value feature. The float value feature is the mention norm location,
i.e., the index of the mention, counting only the mentions within a document, divided by the
total number of mentions in the document. This feature provides information about where a
mention is located in the document.

The other single mention features are word embeddings. The root head embedding feature
extracts the root head word of the mention and creates a word embedding for this word. The
root head word is the most critical in a sentence and is used as a feature because it may provide
valuable information to link a problem to a solution. For example, if a problem and a solution
have the same root head word, the mentions are more likely to be coreferent.

The next feature is the average embedding of the mention. For each word of the mention, the
word embedding is extracted. All these word embeddings are added and divided by the total
number of words in the mention. This feature provides a general representation of the mention
itself.

Two further average word embeddings are created with the context before and after a mention.
The context of a mention is the entry items surrounding the mention. One average embedding is
created with the two entry items before a mention. For each word in these two entry items, the
word embeddings are extracted, added, and divided by the total number of words in these two
entry items. The same procedure is followed for the two entry items after the mention. The last
feature is the average embedding of the whole document. With these features, the context of the
mention is represented.

For the mention-pairs, the following three features are extracted. The first one is the overlap
of the functional location codes. The functional location describes where a problem or solution
occurs in the industrial environment. The overlap is determined by identifying the overlapping
characters of the functional location codes, starting with the first character of both codes. The
overlaps are divided by the more extended functional location code length to normalize the
feature. The more similar the functional location codes are, the closer the locations of the
mentions are to each other. If there is a complete match, it can be assumed that both mentions
can be assigned to the same place.

The second one is the time difference between the mentions. The time difference is determined
using the creation date time. The smaller the time difference, the more likely a mention-pair is
coreferring. To normalize the feature, the time difference is divided by 72.

The third feature is the mention-pair distance. The mention-pair distance is determined by
counting the mentions between the mention-pair. Two neighboring mentions have a distance of 0.
The maximum distance is N − 1, where N is the number of mentions in a document.

After extracting all single mention and mention-pair features, the final step of preprocessing
is to save all these features in several *.npy files for further processing.

19

Methodology
NeuralCoref

3.3.2 Model
The NeuralCoref is a CR model based on the neural mention-ranking model developed by
Clark and Manning ([13, 14]) for within-document CR. Mention-ranking models rank pairs of
mentions by the probability of coreference rather than comparing partial coreference clusters. The
NeuralCoref model is designed to strike a good balance between accuracy and speed/simplicity.
To train the NeuralCoref model, various mention features and mention-pair features are extracted,
which form the input to two parallel feed-forward neural networks (FFNNs). Coreference clusters
are built successively depending on the score (the higher, the better).

Figure 3.7 illustrates the architecture of the NeuralCoref model. The model consists of a
common embedding layer that transforms mentions into vectors and feeds them into two parallel
FFNNs, one for single mentions and one for mention-pairs.

Input Layer h0

Hidden Layer h1

Hidden Layer h2

Mention-Pair Representation rm

ReLU(W1h0+b1)

ReLU(W2h1+b2)

ReLU(W3h2+b3)

Score sm of m having no antecedent

Mention
Embeddings
and Features

a NeuralCoref FFNN for single
mentions.

Candidate
Antecedent
Embeddings
and Features

Mention
Embeddings
and Features

Pair and
Document
Features

Input Layer h0

Hidden Layer h1

Hidden Layer h2

Mention-Pair Representation rm

ReLU(W1h0+b1)

ReLU(W2h1+b2)

ReLU(W3h2+b3)

Score sm of a being an antecedent of m

b NeuralCoref FFNN for mention-pairs.

Figure 3.7 Visualization of the parallel feed-forward neural networks of NeuralCoref. The architectures
for the FFNNs are identical, except the input vector [14].

The scoring and the inputs to the parallel FFNNs differ in the following aspects:

• The single mention FFNN calculates the probability that a mention has no coreference,
i.e., that there is no antecedent for the mention. The input vector for the single mention
FFNN consists of several mention features, e.g., the position and size of the mention in the
document, the average embedding spans of the mention itself, and the context before and
after the mention.

• The mention-pair FFNN calculates the probability that a pair of mentions is coreferring.
The input vector for the mention pair FFNN consists of the single mention vectors of the
two mentions and some additional mention-pair features, e.g., whether the speaker is the
same, whether the mentions match exactly (string match), and the distance between the
mentions.

20

Methodology
NeuralCoref

Table 3.3 shows all extracted single mention features and Table 3.4 shows all extracted
mention-pair features of the NeuralCoref model. The NeuralCoref model has only a small number
of features that are extracted for each mention and each mention-pair. In comparison, some
other CR systems use up to 120 features (cf. [31, 34]).

Category Mention features
Type Type (noun/...) Nested? Doc (talk/news/...)
Location/Size Location (int) Length (int)
Word indices Head 0 Last +1 +2 -1 -2 Root head
Span vectors Mention Before After Sentence Doc

Table 3.3 Extracted features for single mentions of the NeuralCoref model [57].

Category Mention-pair features
Speakers Same? Speaker name in mention/antecedent?
String match Exact match? Relaxed match? Head match?
Locations Distance Sentence distance Overlapping

Table 3.4 Extracted features for mention-pairs of the NeuralCoref model [57].

The extracted features are a mixture of real-valued vectors (e.g., the span vectors that average
over word vectors), integers (e.g., word indices in a dictionary and categorical indices), and
boolean features (e.g., "nested?" indicates whether one pair mention is contained within the
other). All these features are combined into a single array, and the integer and boolean values
are converted into floating-point values.

The feature vectors are concatenated to produce an I-dimensional vector h0, which is the
input to the neural network. If the mention m has no antecedent, i.e. a = na, the mention-pair
features are not considered. In this case, the FFNN for single mentions is trained to produce
anaphoric scores. Except for the input layers, the architectures of the FFNNs are identical.
The FFNNs each consist of three hidden layers of rectified linear units (ReLU) [36] activation
functions.

Each unit in a hidden layer is fully connected to the previous layer and is represented by

hi(a,m) = max(0,W ihi−1(a,m) + bi) (3.3)

where W 1 is a M1 × I weight matrix, W 2 is a M2 ×M1 matrix, and W 3 is a d×M2 matrix.
The output of the last hidden layer is the vector representation for the mention-pair:

rm(a,m) = h3(a,m). (3.4)

All scores are compared to determine whether a mention has an antecedent and which one it
should be, with the highest score being decisive. The NeuralCoref model assigns scores sm(a,m)
to a mention m and an antecedent candidate a, representing the probability that the mention m
has no antecedent or their compatibility for coreference. The score is generated by applying a

21

Methodology
NeuralCoref

single fully connected layer of size one to the representation rm(a,m) generated by the mention
pair-encoder:

sm(a,m) = Wmrm(a,m) + bm (3.5)
where Wm is a 1× d weight matrix. At test time, the mention-ranking model links each mention
to the highest-rated antecedent candidate.

Figure 3.8 illustrates the three training phases conducted all pairs, top pairs and ranking. A
straightforward training schedule is set up to make the training fast. Each time the metrics on
the development set stop improving, the training moves to the next phase.

2 4 6 8 10 12 14 16 18 20

0.62

0.60

0.58

0.56

0.54

0.52

All pairs Top pairs Ranking

Training (h)

Ev
al

 F
1

Figure 3.8 Example of NeuralCoref evaluation metric during training with the three successive training
phases all pairs, top pairs, and ranking [57].

A probabilistic loss (cross-entropy) is used in the first two phases, while a slack-rescaled
ranking loss is used in the last phase. The loss for each training phase is calculated as follows:

All pair loss: −
N∑
i=1

 ∑
t∈T (mi)

log p(t,mi) +
∑

f∈F(mi)
log(1− p(f,mi))

 (3.6)

Top pair loss: −
N∑
i=1

[
max
t∈T (mi)

log p(t,mi) + min
f∈F(mi)

log(1− p(f,mi))
]

(3.7)

Ranking loss:
N∑
i=1

max
a∈A(mi)

∆(a,mi)
(

1 + sm(a,mi)− max
t∈T (mi)

sm(t,mi)
)

(3.8)

Where T (mi) denotes the set of true antecedents of mi (i.e., mentions that precede mi and
are coreferent with it, or na if mi has no antecedent), F(mi) is the set of false antecedents of mi,
A(mi) denotes the set of candidate antecedents of mention mi (ie, mentions preceding mi or na)
and p(a,mi) = sigmoid(s(a,mi)). And finally, ∆(a,mi) is the error-specific cost function

22

Methodology
NeuralCoref

∆(a,mi) =


αFN if a = na ∧ T (mi) 6= {na}
αFA if a 6= na ∧ T (mi) = {na}
αWL if a 6= na ∧ a /∈ T (mi)
0 if a ∈ T (mi)

for "false new", "false anaphoric", "wrong link", and correct coreference decision. The individual
error penalties can adjust the CR model towards making more or fewer coreference links.

The all pair loss is a standard cross-entropy loss on the complete set of mention-pairs. The
top pairs loss is also cross-entropy but is restricted to the (currently) top-scoring true and false
antecedents of a mention. Finally, the ranking loss is a max-margin loss with a slack rescaled
cost ∆. The slack-rescaled max-margin training objective from Wiseman et al. [56] encourages
separation between the highest-scoring true and false antecedents of the current mention.

The training setup of the NeuralCoref model follows in large parts these as Clark and
Manning. The error penalties are set to (αFN, αFA, αWL) = (0.8, 0.4, 1.0). The word embeddings
are initialized with 50-dimensional ones produced by word2vec [33] on the OntoNotes 5.0 dataset.
The hidden layer sizes are set to h1 = 1000, h2 = h3 = 500 and the training objective is minimized
using root mean squared propagation (RMS-Prop) [20]. RMS-Prop is a gradient optimization
method that deals with the problem of vanishing and exploding gradients. The normalization
balances the step size, decreasing the step size for large gradients to avoid exploding and increasing
the step size for small gradients to avoid vanishing. L2 regularization is applied to the model
weights, and dropout [19] with a rate of 0.5 on the word embeddings and the output of each
hidden layer. L2 regularization prevents overfitting by making the weights small but not exactly
0. After training (200, 200, 200) epochs each for all pairs, top pairs, and ranking, the NeuralCoref
model achieves a CoNLL F1 of about 61.2.

3.3.3 Implementation and Training
Table 3.5 lists the training, development, and test split statistics regarding documents, mentions,
and coreference clusters for the dataset variants with and without overlapping functional location
codes. The data split is about 80%/10%/10% for training/validation/test, respectively.

Funcloc Overlap Train Validation Test

no
Docs (Shifts) 1,078 171 244
Mentions 13,384 1,767 2,623
Cluster 5,353 706 1,049

yes
Docs (Shifts) 1,572 229 282
Mentions 30,059 2,878 4,348
Cluster 12,023 1,151 1,739

Table 3.5 Datasets used to train the Neuralcoref model.

The fundamental pipeline of the NeuralCoref model remains the same as in the original.
The extracted mention features and the mention-pair features are combined to produce an I-
dimensional vector h0, which is the input to the neural network. If mention m has no antecedents,

23

Methodology
NeuralCoref

i.e., a = na, the mention-pair features are not included. In this case, the FFNN for single
mentions is trained to produce anaphoric scores. The model assigns a score sm(a,m) to a mention
m and a candidate antecedent a to determine their likelihood to be coreferent. The training is
conducted in three stages all pairs, top pairs, and ranking, and moves to the next stage as soon
as the metrics on the development set stop increasing.

Mention Potential antecedents
P1 ø
P2 ø P1
S1 ø P1 P2
S2 ø P1 P2 S1
P3 ø P1 P2 S1 S2
S3 ø P1 P2 S1 S2 P3

Table 3.6 A generic example of a table of coreferring mention-pairs. Coreferring candidate antecedents
are highlighted grey [57].

The training set comprises all potential antecedents of a mention within one document.
Referring to Table 3.6, sampled instances are (P1, ø), (P2, ø), (P2, P1), (S1, ø), (S1, P1), etc.
This results in six positive instances (grey fields in the table) and 15 negative instances (white
fields in the table). When compiling the mention-pairs of the preprocessed datasets as described,
the distribution of positive and negative instances results in as shown in Table 3.7.

Funcloc Instances
Overlap Dataset Positive Negative

no
Train 5,101 151,799
Validation 617 14,567
Test 938 25,299

yes
Train 18,166 503,333
Validation 1,652 26,276
Test 2,616 44,155

Table 3.7 Distribution of the positive and negative instances for both variants used to train NeuralCoref.

The NeuralCoref model of HuggingFace extracts 18 features and span vectors for single
mentions and eight for mention-pairs. Six features and span vectors are extracted for single
mentions and three features for mention-pairs for the implemented model. Features of the single
mention that are no longer extracted include the type of mention (e.g., noun) or whether the
mention is nested within another mention, as this is not the case in the current setting. Individual
word indices are no longer extracted, as CR is not performed at the level of words but at the
level of sentences and paragraphs. Similar to the original model are the averaged span vectors.
However, instead of the (averaged) span vector of individual words or word pairs, the average
span vectors of the entire mention, i.e., the entire sentence or paragraph, are used. In addition,
the average span vectors of the two entry items in the log files are averaged before and after the
mention.

24

Methodology
CDLM

For the mention-pairs, the features for the model are derived as follows. The only mention-
pair feature that is still retained is the mention-pair distance. All other original mention-pair
features are no longer used because the datasets and the problem definition are different. The
three mention-pair features extracted are the overlap of the functional location codes, the time
difference between two mentions, and the distance between the mentions in the log files. The
first feature is the functional location code describes the location where, for example, a problem
occurred at a machine. Therefore, if a problem’s functional location matches the solution’s
functional location, both mentions have been created for the same location on a machine. The
feature is normalized by dividing the number of overlapping characters by the length of the
longer functional location code.

The second mention-pair feature is the time difference between two mentions. Since a majority
of problems are solved in a time frame of 1 to 8 hours, a problem is more likely to be coreferent
with a solution if the time difference is between 1 and 8 hours instead of 50 hours. To normalize
the feature value, the time difference is divided by 72.

The third feature is the mention distance, i.e., the number of mentions between the mention-
pair. If the two mentions are adjacent, the mention distance is 0. The maximum value is N − 1,
where N is the number of mentions in the document.

Overall, the single mentions put more emphasis on the word embeddings than on the extracted
features (there are five word embeddings on only one feature). For the mention-pairs, only three
features are extracted, as well as the distances between mentions. Still, the word embeddings
outweigh the features by five to four.

Instead of 50-dimensional word2vec pretrained word embeddings, 300-dimensional word
embeddings pretrained by fastText for the German language are used. By using higher dimensional
word embeddings, it is expected that the individual words and, thus, the meaning of the
descriptions will be better represented.

The training setup of the adapted NeuralCoref model largely follows that of Clark and
Manning. In the same way, the authors of the NeuralCoref model have adapted most of the
training structure. The error penalties are set to (αFN, αFA, αWL) = (0.8, 0.4, 1.0). The word
embeddings are initialized with 300-dimensional ones pretrained by fastText. The hidden layer
sizes are set to h1 = 1000, h2 = h3 = 500 and the training objective is minimized using RMS-Prop.
The regularize the network, L2 regularization is applied to the model weights and dropout with
a rate of 0.5 on the word embeddings and the output of each hidden layer. The training is
conducted for 20/20/20 epochs for all pairs/top pairs/ranking.

3.4 CDLM
As state-of-the-art model for cross-document coreference resolution the transformer-based cross-
document language model by Caciularu et al. is built upon. CDLM introduces a new pretraining
approach geared towards multi-document language modeling. Pretraining is performed over
sets of related documents and introduces dynamic global attention that has access to the entire
input to predict masked tokens. The CDLM uses the Longformer as a base but can also be
built on other similarly efficient transformer models. While most NLP research addresses single
texts, typically at the sentence or document level, the CDLM is a new general language model

25

Methodology
CDLM

developed for the multi-document domain [7].
This section describes the specific characteristics of the CDLM model. It starts with the

preprocessing of the log files conducted for this model (Section 3.4.1), then explains the underlying
architecture of the model in detail (Section 3.4.2) and finally describes the implementation and
training of the model (Section 3.4.3).

The implemented model makes use of additional features beyond the Transformer architecture.
Since it differs from the original architecture of the CDLM and to distinguish the model by its
name, the implemented version will be called PR-CDLM from now on.

3.4.1 Preprocessing
As previously described, the unprocessed log files contain a number of entry items without an
assigned shift id. Figure 3.9 provides a schematic overview of how missing shift ids are determined
for the PR-CDLM model.

Solution
Problem

Information

Information
Information

Problem

Information
Solution
Solution

Information
Problem

2021-12-08_05:25:48
2021-12-08_05:32:29
2021-12-08_06:11:07
2021-12-08_08:46:48
2021-12-08_08:49:13
2021-12-08_10:08:16

2021-12-14_17:27:36
2021-12-14_17:30:51
2021-12-14_17:34:32
2021-12-14_18:15:02
2021-12-14_19:02:54

2021-12-08_05:00:00
nan
2021-12-08_05:00:00
2021-12-08_05:00:00
nan
2021-12-08_05:00:00

nan
nan
nan
nan
nan

shift_id beforecreation date timetype
2021-12-08_05:00:00
2021-12-08_05:00:00
2021-12-08_05:00:00
2021-12-08_05:00:00
nan
2021-12-08_05:00:00

2021-12-14_17:00:00
2021-12-14_17:00:00
2021-12-14_17:00:00
2021-12-14_17:00:00
2021-12-14_17:00:00

shift_id after

1

2

Figure 3.9 Schematic representations of how missing shift ids are determined. Top section shows how
missing shift ids are determined using shift ids from entry items with the same creation date. Bottom

section shows how missing shift ids are approximated when no shift id could be determined. The date and
the full hour from the first problem or solution are used to fill the gaps.

The process for determining the shift ids is divided into two stages. First, an attempt is made
to assign missing shift ids using existing shift ids of entry items with the same date and the same
tenant_id. If a problem or solution entry item is found, that does not have a shift id, the creation
date is determined from this entry item using the creation date time. The extracted date is used
to check whether there is an entry item that was created on the same day and has an assigned
shift id. If such an entry item is found, the shift id is copied from the found entry item. The
copied shift id is then assigned to each problem and solution entry item with the same date in
case the respective entry item does not have a shift id. For example, the first problem entry
item in the top section of Figure 3.9 has no assigned shift id. The date 2021-12-08 is extracted
from the creation date time. This date is used to check whether there are any entry items with
the same date and an assigned shift id. The first information entry item has the exact date
and an assigned shift id. Consequently, the shift id from the information entry item is used for
the problem entry item. In this case, information items are not considered to leave the data as
accurate to the original as possible.

26

Methodology
CDLM

Second, if no shift id could be determined via the first stage, an artificial shift id is created.
The artificial shift id is generated from the creation date time and corresponds to the date and the
rounded-off full hour. For example, the first solution entry item in the bottom section of Figure
3.9 has no assigned shift id. In this case, none of the other entry items with the same creation
date have an assigned shift id. Hence, a new shift id must be created. Using the creation date
time 2021-12-14 17:30:51 of the solution entry item results in the shift id 2021-12-14_17:30:51.
The newly created shift id is also used for all entry items with the same creation date that do not
have a shift id. This creates a new artificial shift, including problem, solution, and information
entry items.

It is possible that after the artificial shift ids are created and assigned, there are shifts that
do not have problem and solution entry items but only information entry items. Since these
shifts do not add any value in later processing, as no mentions can be processed, these shifts are
removed from the dataset.

The preprocessing of the PR-CDLM model is finalized by creating two files. One file contains
only all mentions, including further information such as cluster id, funcloc, and creation date
time. Moreover, one file contains all shift entry items, including the information entry items.
Both files are saved as *.json.

3.4.2 Model
The original CDLM is a transformer-based CR model developed for cross-document CR. Existing
language models (LMs) (cf. [18, 28, 41]) are pretrained with variants of the masked language
modeling (MLM) self-supervised objective. These LMs provide powerful representations for
internal text structure (cf. [12, 47]), which are also beneficial for various multi-document tasks
(cf. [59, 63]).

Instead of pretraining over individual documents, the CDLM is trained over groups of
related documents in which informative cross-textual relationships are abundant. The model is
intended to learn to consider and represent such relationships, as they provide valuable signals
for optimizing the goal of language modeling.

Figure 3.10 Comparing the full self-attention pattern and the configuration of attention patterns of the
Longformer [4].

Pretraining and finetuning across multiple documents requires a model handling large amounts
of text. Long-range LMs such as the Longformer [4] were designed to extend the capabilities
of earlier transformers [53] to process longer sequences of text. The CDLM is based on the

27

Methodology
CDLM

Longformer, which sparsifies the full self-attention matrix in transformers by combining a localized
sliding window (called local attention) and a global attention pattern at some specific input
locations (Figure 3.10).

Two key elements are introduced in pretraining the CDLM: First, pretraining over sets of
related documents that contain overlapping information, and second, pretraining with a dynamic
global attention pattern over masked tokens to reference the entire cross-textual context.

The CDLM approach to cross-document language modeling is based on pretraining the model
on document sets describing the same topic. For the CDLM language modeling, the ECB+
corpus [16] is used because it contains several related documents that are readily available. In this
way, the model is encouraged to learn cross-text mapping and alignment capabilities that can be
used for improved unmasking. This pretraining strategy causes the model to use cross-document
information and helps with several downstream cross-document tasks.

<doc-s> </doc-s> <doc-s> </doc-s>

Doc1 Doc2

Longformer

… … … …President Obama will name Obama <CD-mask> new

nominates

Figure 3.11 Visualization of the CDLM pretraining [7]: The input consist of concatenated documents,
separated by special document separator tokens. The masked (unmasked) token colored in yellow (blue)
represents global (local) attention. The goal is to predict the masked token nominates, based on the

global context, i.e., the entire set of documents.

Figure 3.11 illustrates the CDLM pretraining procedure. The CDLM is based on the
Longformer model to support the contextualization of information across multiple documents,
as an efficient Transformer model is needed that scales linearly with input length. However,
the setup of CDLM is general and can be applied to other similar efficient Transformers. To
concatenate related documents, new special document separator tokens, 〈doc-s〉 and 〈/doc-s〉,
are used to mark document boundaries. A masking procedure similar to BERT is used: For
each training example, a sample of tokens (15%) is randomly chosen to be masked. The masked
tokens are attempted to be predicted considering the entire document set by assigning global
attention to them using the global attention weights. In this way, the Longformer contextualizes
information both across documents and across wide-ranging dependencies within a document.
The non-masked tokens use local attention by using the local attention weights.

Figure 3.12 illustrates the setup for the cross-document CR pairwise scoring model of the
CDLM. The documents containing the mentions are concatenated using the special document
separators and encoded using the CDLM together with the token [CLS] at the beginning of the
sequence. Only the single input document is used with a set of document separators for within-
document coreference candidates. Additionally, the candidate mentions are marked as inspired

28

Methodology
CDLM

[CLS] </m><doc-s> <m> </doc-s> <doc-s> </m><m> </doc-s>

mention i tokens mention j tokens

CD-LM

Mention representation mt(i,j)

… … … …

ct mt
i mt

j mt
i omt

j

Figure 3.12 Representation of the cross-document coreference resolution pairwise mention scorer of the
CDLM. mi

t, mj
t and ct are the cross-document contextualized representation vectors for mentions i and j,

and of the [CLS] token, respectively. mi
t ◦mj

t is the element-wise product between mi
t and mj

t . mt(i, j)
is the final produced pairwise-mention representation. The tokens colored in yellow represent global

attention, and tokens colored in blue represent local attention [7].

by Yu et al. [60]. Each mention is wrapped with special tokens 〈m〉 and 〈/m〉 to direct the model
to pay attention to the candidate representations specifically. Global attention is assigned to 〈m〉,
〈/m〉, [CLS], and the mention tokens themselves. The final pairwise-mention representation is
formed like Zeng et al. [61] and Yu et al. [60]: The cross-document contextualized representation
vector for the tth sample is:

mt(i, j) =
[
ct,m

i
t,m

j
t ,m

i
t ◦m

j
t

]
(3.9)

where [·] denotes the concatenation operator, ct is the cross-document contextualized representa-
tion vector of the [CLS] token, and each of mi

t and m
j
t is the sum of candidate tokens of the

corresponding mentions (i and j). The pairwise scorer is trained according to the suggested
finetuning scheme.

Mention representation mt(i,j)

ct mt
i mt

j mt
i omt

j

Hidden Layer h1 ReLU(W2h1+b2)

Score st of mt
i and mt

j being coreferent

Hidden Layer h2 ReLU(W3h2+b3)

W1h0+b1

Figure 3.13 Visualization of the mention-pair scoring model of CDLM.

Figure 3.13 shows the mention representation vector mt(i, j), which is also the I-dimensional

29

Methodology
CDLM

input vector h0 for the neural network. The input to hidden layer h1 is represented by

h1(i, j) = W 1h0(i, j) + b1 (3.10)

where W 1 is a M1 × I weight matrix. The inputs to hidden layer h2 is represented by

h2(i, j) = max(0,W 2h1(i, j) + b2) (3.11)

where W 2 is a M2 ×M1 matrix. The output of the CDLM model is a score st(i, j) of the
likelihood that a mention-pair, mi

t and m
j
t , is coreferring. This is produced by applying a single

fully connected layer of size one to the hidden layer h2(i, j) produced by:

st = max(0,W th2(i, j) + bt) (3.12)

where W t is a 1× d weight matrix.
At test time, agglomerative clustering is applied to merge the most similar cluster pairs.

Agglomerative clustering is a type of hierarchical clustering that is a general family of clustering
algorithms that form nested clusters by merging or splitting them sequentially [35]. Agglomerative
clustering performs hierarchical clustering with a bottom-up approach: Each observation starts
in its own cluster, and the clusters are merged one after the other. In agglomerative clustering,
small clusters are combined into large clusters until a termination criterion is met. There are
different linkage criteria to determine the metric used for the merging strategy (see Figure 3.14):

• Single linkage minimizes the distance between the closest observation of cluster pairs
and is calculated by L(r, s) = min(D(xri, xsj)).

• Complete linkage minimizes the maximum distance between observations of cluster pairs
and is calculated by L(r, s) = max(D(xri, xsj)).

• Average linkage minimizes the average of the distance between all observations of cluster
pairs and is calculated by L(r, s) = 1

nrns

∑nr
i=1

∑ns
j=1 D(xri, xsj).

s
r

a Single linkage.

s
r

b Complete linkage.

s
r

c Average linkage.

Figure 3.14 Visualization of different agglomerative clustering linkage methods.

The training set for the CDLM model is composed of positive instances, which consist of
all the mention pairs that belong to the same coreference cluster, while negative examples are
randomly sampled. The resulting features vector is passed through a multi-layer perceptron

30

Methodology
CDLM

(MLP) pairwise scorer where h1 = 3072 and h2 = 768. The finetuning process for cross-document
coreference resolution took ∼28 and ∼45 hours per epoch, for event coreference and entity
coreference, respectively. The results on event and entity CDCR on the ECB+ test set are
CoNLL F1 scores of 85.6 and 82.9, respectively, outperforming the previous state-of-the-art of
+1.2 (event) and +7.6 (entity).

3.4.3 Implementation and Training
Table 3.8 lists the statistics on training, validation, and testing distribution of documents,
mentions, and clusters for both dataset variants, the one with and the one without the overlap of
functional location codes. That data split is about 80%/10%/10% for training/validation/test,
respectively.

Funcloc Overlap Train Validation Test

no
Docs (Shifts) 2,150 341 525
Mentions 13,222 1,451 2,285
Cluster 5,379 775 1,105

yes
Docs (Shifts) 3,833 576 729
Mentions 30,089 2,501 3,877
Cluster 12,149 1,162 1,624

Table 3.8 Datasets used to train the CDLM model.

The original CDLM model was trained on the ECB+ corpus. This corpus contains several
topics, each described with several documents. The model is trained on topics, i.e., across
multiple documents, to learn cross-document relationships. Therefore, it is a cross-document
coreference model. The preprocessed dataset in the implemented setup is structured differently.
In the dataset, each topic consists of only one document. Nevertheless, only pairs of mentions are
formed from mentions that belong to the same topic, which in the current setting means that the
mentions come from only one document. Therefore, the implemented PR-CDLM model must be
defined as a within-document coreference resolution model, as no cross-document relationships
are considered.

Funcloc Instances
Overlap Dataset Positive Negative

no
Train 12,186 12,186
Validation 1,000 1,000
Test 1,565 1,565

yes
Train 21,171 21,171
Validation 2,187 2,187
Test 3,809 3,809

Table 3.9 Distribution of the positive and negative instances for both dataset variants used to train
CDLM.

31

Methodology
CDLM

Table 3.9 shows the actual number of positive and negative instances for training and validating
the PR-CDLM model. The training set comprises all positive mention-pairs on a document
and a random sample of negative mention-pairs from the same document of the same size. For
this purpose, all possible combinations of mention pairs within a document are formed. Then
the number of positive instances is determined, which in turn equals the number of randomly
selected negative instances from the formed mention-pairs of the same document. The datasets
thus consist of 50% each of positive and negative instances. In all three data sets, the variant
with the overlap of functional location codes has about twice as many instances as the variant
without the overlap. This is to be expected as the variant with overlap consists of twice as many
documents, mentions, and clusters.

Agglomerative
Clustering

Training of
Pairwise-Scoring Models

Final
Testing

Model version 1 Model version N

checkpointscheckpoints

Clustering version 1 Clustering version N

thresholdsthresholds

The best setup based on
the valdidation set

Based on the validation set select:
- Best checkpoint
- Best threshold for binary

classification

Test on the test set with the best model
with the best threshold

Based on the validation set select:
- Best linkage method
- Best threshold for agglomerative

clustering (five default thresholds +
best threshold for binary
classification for each model)

Model evaluation:
- Best model checkpoint
- Best linkage method
- Best threshold for aggl.clustering

Evaluation: precision, recall, F1 Evaluation: CoNLL F1 Evaluation: CoNLL F1

Figure 3.15 Schematic overview of the implemented training pipeline of the PR-CDLM model. The
pipeline consists of three major stages. First, the training of the pairwise-scoring model. Different

thresholds are tested to classify instances as positive or negative. Second, agglomerative clustering is
conducted to form the final cluster, using different linkage methods and thresholds. Third, the best

performing model, based on the F1-score in the second stage, is tested on the test set.

Figure 3.15 visualizes the training pipeline of the implemented PR-CDLM model. The pipeline
consists of three major stages. The first stage is training the pairwise-scoring model. The best
threshold for binary classification (coreferring or not) is determined at this stage. The second
stage is agglomerative clustering. Mention-pairs are merged into cluster based on their score from
the pairwise-scoring model, which forms the coreference chains. The best agglomerative clustering
method is determined using different linkage methods and several thresholds. The third stage,
the final testing, tests the best-performing model identified in the agglomerative clustering stage.
The best model is determined by the best F1 result of the agglomerative clustering phase.

32

Methodology
CDLM

The model is evaluated after each epoch using the validation set to train the pairwise-scoring
model. One checkpoint is conducted after one executed training epoch, i.e., after training for one
epoch on the training set, the current model modifications are used to test them on the validation
set. For each checkpoint, three different thresholds are tested. The pairwise classification of
whether two mentions corefer is a binary classification task. The decision whether a pair of
mentions is coreferring or not depends on the score of the pairwise scoring model. By default, the
deciding threshold is 0.5, i.e., if the assigned score s is between 0.0 ≤ s < 0.5, the mention-pair is
classified as non-coreferent, and if the score is between 0.5 ≤ s ≤ 1.0 the mention-pair is classified
as coreferent. Since the task setting is relatively complex, it is assumed that the scoring of the
pairwise-scoring model is more uncertain. Therefore, different thresholds are used to check if
there is a better threshold than the default value of 0.5. The additional thresholds are determined
using the threshold tuning method and the precision-recall method. The methodologies for
identifying the best threshold are explained in Section 4.1.1. To complete the training of the
pairwise scored model, the model with the best performance, based on the highest achieved F1
score, is tested on the test set.

The next stage is agglomerative clustering, where the final clusters are formed successively.
Although the best pairwise scored model was identified during training, agglomerative clustering
is performed for each model test point to create the final mention cluster. The rationale is that
just because a model performed best in binary classification does not necessarily mean that it is
the best model for clustering. For each agglomerative clustering, three linkage methods are tried:
single, average, and complete linkage. Single linkage minimizes the average distance between
the closest observation of cluster pairs. Average linkage minimizes the average distance between
all observations of cluster pairs. Complete linkage minimizes the maximum distance between
observations of cluster pairs. For each linkage method, five different default distance thresholds
(0.3, 0.4, 0.5, 0.6, 0.7) are applied, and the best determined threshold of the mention scoring
model to check whether this threshold is also beneficial for the agglomerative cluster model. The
agglomerative clustering is evaluated using the CoNLL F1 score.

Finally, the best setup based on the CoNLL F1 score of the validation set is tested on the test
set. Therefore, the test model is based on the checkpoint, linkage method, and agglomerative
clustering threshold of the model with the highest score. The setup is evaluated using the CoNLL
F1 metric.

Model Transformer Truncation Special Tokens
CDLM Longformer 4096 [CLS], 〈m〉, 〈/m〉, 〈doc-s〉, 〈/doc-s〉
PR-CDLM SBERT-all-Mini-L12-v2 256 [CLS], [SEP]

Table 3.10 Comparison of the Transformers on which the original CDLM model is built upon and on
which the implemented version is built upon.

Table 3.10 highlights the differences between the Transformers used for the original CDLM
model and the implemented PR-CDLM model. In contrast to the original CDLM model, no
pretraining is conducted as part of this thesis. The implemented PR-CDLM is, therefore, not
based on the Longformer, as there is no pretrained Longformer in German. Instead, the model
builds on the Sentence-BERT (SBERT) model all-MiniLM-L12-v2 [46], as a pretrained
version is available in German. The SBERT model is intended to be used as a sentence and

33

Methodology
CDLM

short paragraph encoder and maps the input to a 384-dimensional dense vector space for further
processing. By default, input texts longer than 256 tokens are truncated. Consequently, only
much shorter texts can be used as input for the model than in the original CDLM model, which
is based on the Longformer and is only truncated if the input text is longer than 4096 tokens.
Also, special tokens such as 〈m〉 and 〈/m〉 cannot be used to delimit mentions or 〈doc-s〉 and
〈/doc-s〉 to mark document boundaries because the meaning of the tokens is not known to the
model without additional pretraining.

[CLS] [SEP]context [SEP] [SEP] [SEP][SEP] [SEP]

[SEP]
mention i

tokens
mention j

tokens

funcloc
overlap

time
difference

PR-CDLM

context context

context context context

Mention representation mt(i,j)

ct mt
i mt

j mt
i o mt

j pt

Figure 3.16 Representation of the implemented CR pairwise mention scorer. mi
t, and mj

t and ct are the
document contextualized representation vectors of the mentions i and j, and of the [CLS] token,

respectively. mi
t ◦mj

t is the element-wise product between mi
t and mj

t . pt is the representation of the
mention-pair features. mt(i, j) is the final produced mention-pair representation. The tokens colored in
yellow represent global attention, and the tokens colored in blue represent local attention (adapted from

[7]).

Figure 3.16 illustrates the CR pairwise scoring setup. The mentions i and j are enclosed by
the context of each mention, i.e. the two entry items before and after each mention are appended
to each mention and separated by the token [SEP]. In this sense, the model is more similar to
the previous state-of-the-art of Zeng et al. [61], and Yu et al. [60] who train the pairwise scorer
with the local context of the mention pairs. The local context represents the sentences in which
the mentions occur. In the implemented PR-CDLM model, the local context thus consists of the
two entry items before and after a mention. The whole mention pair is encoded using PR-CDLM
together with the token [CLS] at the beginning of the sequence and the sentence separation
tokens [SEP].

The encoded mention-pair is concatenated with two additional mention-pair features. The
first feature is the overlap of the functional location code. The functional location determines
where in a plant or machine, for example, a problem has occurred. If a problem and a solution
have the same functional location, they are more likely to be coreferent because they occur in the
same spatial location. The feature value is the number of overlapping characters, starting with
the first character, divided by the length of the longer technical place code of the two mentions.
Therefore, the feature is normalized to values between 0.0 (no overlap) to 1.0 (complete functional
location code overlaps).

34

Methodology
Summary

The second feature is the time difference between the two mentions. As most problems are
solved in 1-8 hours (i.e., one shift), it is more likely that a problem is coreferring with a solution
when the time difference is, e.g., 3 hours instead of 50 hours. To normalize the feature value,
the time difference is divided by 72 (hours). The time difference is divided by 72 because most
problems are solved within 72 hours. For all mention-pairs where a time difference of more
than 72 hours is extracted, a new time difference between 1-72 hours is randomly assigned. If a
problem is entered simultaneously with the solution, the time difference is 0. In this case, a new
time difference between 1-72 hours is also randomly added. Therefore, the feature is normalized
to values between 0.014 (the smallest time difference is set to 1 hour) and 1.0 (the maximum
time difference of 72 hours).

The final pairwise-mention representation is formed similarly to the original CDLM except for
the additional mention-pair features. The contextualized representations vectors are concatenated
for the tth sample:

mt(i, j) =
[
ct,m

i
t,m

j
t ,m

i
t ◦m

j
t , pt

]
, (3.13)

where [·] denotes the concatenation operator, ct is the contextualized representation of the [CLS]
token, each of mi

t and m
j
t is the sum of candidate tokens of the corresponding mentions (i and

j), and pt is the mention-pairs feature representation.

Figure 3.17 Visualization of the neural network of CDLM.

Figure 3.17 shows the mention representation mt(i, j), which is also the input vector h0 to
the pairwise-scoring model. The FFNN consists of two hidden layers with ReLU activation where
h1 = 1538 and h2 = 384. The training is conducted for five epochs.

3.5 Summary
This thesis aims to develop a CR model that can process larger text spans, i.e., at the level of
sentences and paragraphs. As a database, the log files from a processing industry are taken.
These log files contain three descriptions: problems, solutions, and information. These log files’
problem and solution entry items are defined as mentions for the CR task. Since the mentions
and labels are already known, the first step of a typical CR pipeline, the mention extraction, is
not part of this thesis.

35

Methodology
Summary

Two state-of-the-art CR models are identified to solve this task. The first is HuggingFace’s
NeuralCoref, an adaptation of Clark and Manning’s mention ranking model. The second is a
transformer-based CDLM model by Caciularu et al. developed for cross-document CR.

This section summarises the differences in the preprocessing of the log files for the two models
(Section 3.5.1), as well as the most critical aspects of the model architectures (Section 3.5.2).

3.5.1 Summary of Preprocessing
In order to be able to use the data of the log files generated in an industrial environment, some
preprocessing steps have to be performed. The unprocessed log files must be combined, and
irrelevant data must be dropped. The text types of the entry items are limited to the three
categories problem, solution, and information, and are already given. Problems and solutions are
defined as mentions. The mention extraction is out of scope for this thesis.

Although most of the data preprocessing is the same for both models, the NeuralCoref
model and the PR-CDLM model require different formats of model input data. A significant
difference is that in the NeuralCoref model, the mention and mention-pair features are already
extracted during preprocessing. For the PR-CDLM model, feature extraction is not part of the
preprocessing.

Another critical difference is how the missing shift ids are generated. While the PR-CDLM
model uses a complex two-stage procedure to determine the missing shift ids, the NeuralCoref
model generates the shift ids in a simple way.

Individual datasets are created for both models. Furthermore, there are two variants of the
datasets for both models. One includes the entry items with the overlap of the functional location
codes and one variant without the overlap of the functional location codes. In the variant without
overlapping functional location codes, cases are filtered out in which problem-solution pairs were
reported under the same entry item with the same functional location code. This is to ensure
that the results are not biased toward these cases.

Table 3.11 shows both models’ final datasets after preprocessing. The most striking difference
between the NeuralCoref and the PR-CDLM dataset is the number of documents (the documents
correspond to the shifts). When looking at the variants with and without overlapping functional
location, it is noticeable that NeuralCoref has less than half as many documents as PR-CDLM.
This is due to the different ways the missing shift ids are generated. However, the number
of mentions and clusters remains roughly the same for both datasets (concerning the specific
variants). Since the number of mentions and clusters is about the same, but there are only about
half as many documents for the NeuralCoref dataset, it can be assumed that the NeuralCoref
documents contain, on average, twice as many mentions and clusters as the PR-CDLM documents.

Another significant effect is caused by the different variants with and without overlap. Looking
at the training dataset, it is noticeable that the difference in size between the variants is over
50%. The number of mentions and clusters in the variant without overlap of NeuralCoref and
PR-CDLM are each less than half of the variant with overlap. For the validation and test datasets,
the difference is only about 40%. Since the datasets were created in such a way that, from the
original, time-sorted dataset, the first 80% were used for training, the next 10% for validation,
and the last 10% for testing, it can be concluded that the effect of filtering is most likely to affect

36

Methodology
Summary

Funcloc Overlap Train Validation Test

N
eu
ra
lc
or
ef no

Docs (Shifts) 1,078 171 244
Mentions 13,384 1,767 2,623
Cluster 5,353 706 1,049
Docs (Shifts) 1,572 229 282

yes Mentions 30,059 2,878 4,348
Cluster 12,023 1,151 1,739

PR
-C

D
LM

no
Docs (Shifts) 2,150 341 525
Mentions 13,222 1,451 2,285
Cluster 5,379 775 1,105
Docs (Shifts) 3,833 576 729

yes Mentions 30,089 2,501 3,877
Cluster 12,149 1,162 1,624

Table 3.11 Datasets after the preprocessing of the log files. The different approaches of generating shift
ids results in the Neuralcoref dataset having less than half as many documents (shifts) as the PR-CDLM
dataset. The number of mentions and clusters nevertheless remains about the same for both datasets.

the earlier entries in the log files.

3.5.2 Summary of Models
Two state-of-the-art models of CR are built upon to solve the research task. The first model is the
NeuralCoref model, an adaptation of Clark and Manning’s neural mention ranking model. The
model’s heart consists of two parallel FFNNs, one for single mentions and one for mention pairs.
The input to the FFNNs comprises various mention features and mention-pair features and spans
comprising of the mention and the candidate antecedent, as well as the context of the mentions.
The output of the FFNNs are scores of how likely it is that a mention m and a candidate
antecedent a are coreferent. The higher the score, the higher the likelihood. Coreferences are
resolved for within-document relations. Neuralcoref reaches a CoNLL F1 score of 61.2.

The second model is the transformer-based cross-document language model by Caciularu
et al. This model is developed for cross-document CR and is therefore trained over multiple
documents covering the same topic. To be able to process large amounts of text, the CDLM is
built on the Longformer. The input to the model comprises the complete documents containing
the mention-pairs. Special tokens are introduced to direct the model to specifically pay attention
to the candidate representations, using global attention. The CDLM is developed to resolve
coreferences for cross-document relations and achieves for entity CDCR a CoNLL F1 score of
82.9.

Model Scope Algorithm CoNLL F1
Neuralcoref within-document neural mention-ranking 61.2
CDLM cross-document transformer-based 82.9

Table 3.12 Comparison of the key data of Neuralcoref and CDLM.

37

Methodology
Summary

Table 3.12 compares the two CR models. The most critical data, such as the scope (within-
document/cross-document) to resolve coreferences and the respective algorithms on which the
models are based, are listed. CDLM outperforms Neuralcoref by 21.7 points on the CoNLL F1
score metric. However, it must be noted that the mention extraction is part of the Neuralcoref
model, whereas CDLM uses gold-annotated mentions. Therefore, a direct evaluation of the
results is only possible to a limited extent.

38

4 Evaluation
The evaluation chapter presents the metrics to evaluate binary classification models and coref-
erence resolution models (Section 4.1). Next, it shows the obtained results and highlights the
limitations of the NeuralCoref (Section 4.2) and CDLM (Section 4.3) models. Finally, the chapter
concludes with a summary of the critical findings (Section 4.5).

4.1 Metrics
Machine learning classification tasks are typically evaluated using precision, recall, and F1-scores.
Coreference resolution, however, is usually evaluated by the CoNLL F1-score, which combines
the three metrics MUC, B3, and CEAF to translate the scores better of a system into real-world
performance.

This section explains the metrics for binary classification and coreference resolution models.

4.1.1 Metrics for Classification Models
The task of predicting whether a mention-pair is coreferent or not is a binary classification task.
A classification model predicts the probability that an instance belongs to one class or another.
Metrics to evaluate how well the model performs include accuracy, precision, recall, and F1-score.

To calculate these metrics following categories of predictions are used:

• True Positive (TP): True positive measures the extent to which the model correctly
predicts the positive class and indicates how well the model performs on positive instances.

• False Positive (FP): False positive measures the extent to which the model wrongly
predicts the positive class to instances that are actually negative and is the proportion of
all negative examples that are predicted as positive.

• True Negative (TN): True negatives are the outcomes that the model correctly predicts
as negative.

• False Negative (FN): False negative measures the extent to which the model predicts an
instance as negative when it is actually positive.

These metrics can be visualized with a confusion matrix as shown in Figure 4.1. Such a
matrix helps with determining the performance of a classification model.

The precision score measures the proportion of positively predicted labels that are correct.
Precision can be thought of as a measure of exactness or quality. If the goal is to minimize
false negatives, a model with high precision should be chosen. The precision score is useful for
predicting success when the classes are imbalanced. Mathematically, it represents the ratio of
true positives to the sum of true positives and false positives.

Precision = TP
TP + FP (4.1)

39

Evaluation
Metrics

Po
sit

iv
e

N
eg
at
iv
e

Positive Negative
Actual Classes

P
re

di
ct

ed
C

la
ss

es

TP FP

FN TN

Figure 4.1 Overview of a 2x2 confusion matrix. The predicted classes are compared with the actual
classes. The comparison shows directly where possible weaknesses lie of a classification model.

The recall score represents the ability of the model to predict the positives out of actual
positives. Recall is also known as sensitivity or the true positive rate. A high recall score indicates
that the model is good at identifying positive examples. Mathematically, it represents the ratio
of true positives to the sum of true positives and false negatives.

Recall = TP
TP + FN (4.2)

Accuracy is a classification model performance metric defined as the ratio of true positives and
negatives to all positive and negative observations. Accuracy indicates how often the classification
model will predict the correct label from all made predictions. Mathematically, it represents the
ratio of the sum of true positives and true negatives out of all predictions.

Accuracy = TP + TN
TP + FN + TN + FP (4.3)

The main problem with accuracy is that it hides the details of the model’s performance. Also,
the accuracy metric is unreliable for models trained on imbalanced datasets. For a dataset with
a 95% imbalance, a classifier could predict the major class in all cases and archive an accuracy of
95%, which is not a useful evaluation in this case.

The F1-score represents the model score as a function of precision and recall. F1-score is a
performance metric that gives equal weight to precision and recall for measuring the model’s
performance in terms of accuracy. It is useful in the scenario where the classification model is to
be optimized for precision or recall. Mathematically, it represents the harmonic mean of precision
and recall.

F1 = 2× Precision× Recall
Precision + Recall (4.4)

The threshold of a binary classification model to decide if a prediction is negative or positive
is, by default, 0.5. If the predicted score s is between 0.0 ≤ s < 0.5, the instance is classified as
negative, and if the score is between 0.5 ≤ s ≤ 1.0 the instance is classified as positive. When
dealing with imbalanced classification problems or a task in which predictions are made with
higher uncertainty, it may be useful to try different thresholds, such as the default threshold of

40

Evaluation
Metrics

0.5. As such, a straightforward approach to improving the performance of a classifier is to tune
the threshold.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Best

Recall

Pr
ec
isi
on

Precision-Recall Curve

Prediction
no-skill

Figure 4.2 Example precision-recall curve for an imbalanced dataset. The orange line represents various
precision and recall values for different thresholds. The dashed blue line represents the no-skill line, i.e., a
classifier which cannot make useful predictions. The best value is calculated by the highest F1-score of all

the precision and recall combinations.

One approach to identifying the best threshold is the precision-recall method. A precision-
recall curve is created to visualize the method by calculating the precision and recall scores for
a set of thresholds. Different thresholds lead to different outcomes of predicted positive and
negative labels. The lower the threshold, the more positive labels are assigned, and vice versa. A
line plot is created for the thresholds in ascending order, with recall on the x-axis and precision
on the y-axis. The applied thresholds correspond to all distinct scores by the mention-pair scoring
model. A no-skill model is represented by a horizontal line with a precision that is the ratio of
positive examples in the dataset. A perfect classifier has full precision and recall and, therefore, is
represented in the coordinate (1,1) of the precision-recall curve. For example, the precision-recall
curve of an imbalanced dataset with 95% negative and 5% positive labels might look like Figure
4.2.

The best threshold is determined by calculating the F1-score for each combination of the
precision and recall scores. The highest F1-score determines the best threshold.

Another way to identify the best threshold is using the threshold tuning method. In this
approach, the F1-score is calculated directly for various predetermined thresholds. A plot is
created with ascending thresholds on the x-axis and F1-scores on the y-axis. A threshold tuning
curve could, for example, look like illustrated in Figure 4.3.

The precision-recall and threshold tuning methods are based on the same calculation. The
F1-score is calculated for several thresholds using the determined precision and recall values for
both methods. The difference is that with the precision-recall method, the thresholds depend on
the previously determined probabilities of the mention-pair model. In contrast, the thresholds
for the threshold tuning method are predefined. Depending on the granularity of the predefined
thresholds for the threshold tuning method, both methods should result in the same optimal
threshold value as the same underlying calculation is performed.

41

Evaluation
Metrics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Best

Threshold

F
1-
Sc
or
e

Threshold Tuning Curve

F1-Score

Figure 4.3 Example of a threshold tuning curve. On the x-axis are the thresholds from 0 to 1 for a
binary classifier and on the y-axis are the according F1-scores calculated using precision and recall.

4.1.2 Metrics for Coreference Resolution
Machine learning classification tasks are typically evaluated using precision, recall, and F-scores.
Coreference resolution, however, is usually evaluated by the CoNLL F1 score, which combines
three metrics: MUC, B3, and CEAF. These metrics have been designed to better translate a
system’s scores into real-world performance.

The input to the CoNLL scorer consists of two files. One is the key file containing gold
annotated mentions and coreferences, i.e., the perfect mentions and coreferences. Moreover, one
is the response file containing the predicted mentions and coreferences generated by an entity
linking algorithm. The closer the predicted mentions and coreferences are to those in the gold
file, the better the rating. To illustrate the different metrics, the example from Pradhan et al.
[39] is adapted.

a

b
c d

e

f
g h

i
Solid: Key
Dashed: Response

Figure 4.4 Visualization of key and response cluster based on Pradhan et al. [39]

As seen in Figure 4.4 the key (K) contains two cluster with {a, b, c} and {d, e, f, g} and the

42

Evaluation
Metrics

response (R) contains three cluster with mentions {a, b}, {c, d} and {f, g, h, i}:

K =
K1︷ ︸︸ ︷

{a, b, c}
K2︷ ︸︸ ︷

{d, e, f, g} (4.5)

R =
R1︷ ︸︸ ︷
{a, b}

R2︷ ︸︸ ︷
{c, d}

R3︷ ︸︸ ︷
{f, g, h, i} (4.6)

Mention e is missing in the response and mentions h and i are incorrect in the response. The
following sections use R to denote recall and P for precision.

TheMUC scoring algorithm is a linked-based evaluation scheme that compares the equivalence
classes defined by the gold standard links and the predicted links by the classifier. Hence, it
determines how many links need to be added to obtain the correct clustering [54]. However, this
metric has two shortcomings: (1) as it is linked-oriented, it disregards singleton mentions, and
(2) its link-based F-measure inherently benefits systems producing fewer mentions [29].

a

b
c d

e

f
g h

i
Solid: Key
Dashed: partition wrt Response

a

b
c d f

g h

i
Solid: partition wrt Key
Dashed: Response

Figure 4.5 Visualization with the partitions of the key and response cluster based on Pradhan et al. [39]

MUC applied to the previously mentioned example yields the partitions for the key and
the response, respectively, as shown in Figure 4.5. Based on the partitions, the MUC score is
computed by:

Recall =
∑Nk
i=1(|Ki| − |p(Ki)|)∑Nk

i=1(|Ki| − 1)
(4.7)

= (3− 2) + (4− 3)
(3− 1) + (4− 1) = 0.40 (4.8)

Precision =
∑Nr
i=1(|Ri| − |p′(Ri)|)∑Nr

i=1(|Ri| − 1)
(4.9)

= (2− 1) + (2− 2) + (4− 3)
(2− 1) + (2− 1) + (4− 1) = 0.40 (4.10)

Ki is the ith key entity and p(Ki) is the set of partitions created by intersecting Ki with response
entities. Ri is the ith response entity and p′(Ri) is the set of partitions created by intersecting
Ri with key entities. Compare Figure 4.5 left and right respectively. Nk is the number of key
entities, and Nr is the number of response entities. In this example, the MUC F1 score is 0.40.

43

Evaluation
Metrics

The B3 scoring algorithm [2] was proposed to address the shortcomings of MUC. This metric is
mention-based, i.e., the overall recall and precision are computed based on the recall and precision
of the individual mentions. Since the calculations of B3 are based on mentions, singletons are
considered. However, the major shortcoming of this metric is that B3 assumes that the mentions
of the gold standard and the classifier’s mentions are identical. Therefore, the algorithm needs to
be extended to solve the problem of mismatched mentions [50].

Applied to the example, the B3 recall and precision scores are calculated as follows:

Recall =
∑Nk
i=1

∑Nr
j=1

|Ki∩Rj |2
|Ki|∑Nk

i=1 |Ki|
(4.11)

= 1
7 ×

(
22

3 + 12

3 + 12

4 + 22

4

)
= 1

7 ×
35
12 ≈ 0.42 (4.12)

Precision =
∑Nk
i=1

∑Nr
j=1

|Ki∩Rj |2
|Rj |∑Nr

i=1 |Rj|
(4.13)

= 1
8 ×

(
22

2 + 12

2 + 12

2 + 22

4

)
= 1

8 ×
4
1 = 0.50 (4.14)

Terms with 0 value are omitted. The B3 F1 score is 0.46.
The CEAF [29] metric computes the alignment between gold and system entities. It measures

the similarity of each mention cluster to determine the value of each possible alignment. The
best alignment is then used to calculate CEAF precision, recall, and F-measure.

Similarity between a key entity Ki and a response entity Rj is denoted as φ(Ki, Rj) and is
defined as [29]:

φ(Ki, Rj) = 2× |Ki ∩Rj|
|Ki|+ |Rj|

(4.15)

Applied to the example, CEAF recall and precision are:

Recall = φ(K1, R1) + φ4(K2, R3)
Nk

=
(2×2)
(3+2) + (2×2)

(4+4)

2 = 0.65 (4.16)

Precision = φ(K1, R1) + φ4(K2, R3)
Nr

=
(2×2)
(3+2) + (2×2)

(4+4)

3 ≈ 0.43 (4.17)

The CEAF F1 score is 0.52.
The B3 and CEAF metrics are criticized for inflating a system’s score by overly rewarding

singleton mentions [43]. Virtually all coreference resolution systems developed since 2011 adopt
the CoNLL metric: the unweighted average of MUC, B3, and CEAF scores [40].

Therefore, the CoNLL F1 score for the applied example is:

CoNLL F1 = MUC F1 +B3 F1 + CEAF F1

3 = 0.40 + 0.46 + 0.52
3 = 0.46. (4.18)

44

Evaluation
NeuralCoref

In the scope of this thesis, the macro-averaged F1 score is used to evaluate the coreference
metrics. The macro-F1 score is calculated by [25]

Macro-F1 = 1
Q

Q∑
j=1

2× Pj ×Rj

Pj +Rj

(4.19)

where Rj and Pj are the j-th recall and precision scores, and Q is the number of different classes.
The macro-F1 score will be called F1-score for the following sections.

4.1.3 Summary of Metrics
The evaluation metrics of machine learning models depend on the type of model trained. A
binary classification model is typically evaluated by accuracy, precision, recall, and F1-score.
These metrics are calculated with the help of the true positive, false positive, true negative,
and false negative rates. To visualize these rates, the confusion matrix is typically used. If the
model is trained on an imbalanced dataset or on a task in which predictions are made with
higher uncertainty, it may be useful to tune the threshold to improve the model performance.
Approaches to threshold tuning are, e.g., the precision-recall method and the threshold tuning
method, which both use the same underlying calculation to determine the best threshold with
the help of the best F1-score.

CR is evaluated by the CoNLL F1 score, which combines the three metrics MUC, B3 and
CEAF. These metrics have been designed to better translate the scores of a CR system into
real-world performance.

The metrics for a binary classification model will be used to evaluate the pairwise-mention
scoring models. Moreover, the CoNLL F1 score will be used to evaluate the resolved coreferences
of developed models. .

4.2 NeuralCoref
This section presents and discusses the results (Section 4.2.1) and highlights the limitations
(Section 4.2.2) of the NeuralCoref model.

4.2.1 Results
Table 4.1 shows the results after training the NeuralCoref model. The variant without overlap
reaches a CoNLL F1 score of 55.8, and the variant with overlap has a score of 3.4, which is lower
than the score of HuggingFace’s NeuralCoref of 61.2. Unfortunately, it is not clear why the
results for the variant with overlap are so low in comparison with the other variant.

As the scores for the B3 and CEAF metrics are higher than the MUC metric, it can be
assumed that the model outputs many singletons. This observation is in line with the critique of
B3 and CEAF that they inflate the system’s score by overly rewarding singleton mentions.

One possible explanation for the performance is that the extracted features and spans of the
mentions are not meaningful enough for a good representation. As previously described, only

45

Evaluation
NeuralCoref

Funcloc MUC B3 CEAF CoNLL
Overlap R P F1 R P F1 R P F1 F1

no 36.1 25.6 28.8 87.3 67.5 74.0 59.4 74.5 64.5 55.8
yes 0.9 0.5 0.6 5.3 5.9 5.1 4.4 6.5 5.0 3.6

Table 4.1 Results for Neuralcoref after training.

six instead of 18 single mentions features and only three instead of 8 mention-pair features are
extracted.

Another explanation could be that the averaged embeddings of the mentions are not a good
representation of how they are formed. By averaging whole sentences and giving equal weight
to each word, keywords lose meaning. A sentence consists, in general, of more stop words than
keywords. Therefore, the averaging portion of stop words weighs more than the portion of the
keywords. Thus, mention embeddings become more homogeneous due to the higher proportion
of stop words in sentences. The stop words could be excluded from the embeddings to overcome
this issue.

To assign each word a specific weight the term frequency-inverse document frequency (TF-IDF)
measure could be used [58]. TF-IDF is a statistical measure that evaluates how relevant a word
is to a document in a collection of documents. Typically, the TF-IDF weight is composed of
two terms. The first computes the normalized term frequency (TF), i.e., the number of times
a word appears in a document, divided by the total number of words in that document. The
second term is the inverse document frequency (IDF), computed as the logarithm of the number
of documents in the corpus divided by the number of documents where the specific term appears.
The terms and the overall weight are calculated by:

TF(t) = Number of times term t appears in a document
Total number of terms in the document (4.20)

IDF(t) = log
(

Total number of documents
Number of documents with term t in it

)
(4.21)

TF-IDF(t) = TF(t)× IDF(t) (4.22)

Overall, the current word embedding representation with a few accompanying features is insuffi-
cient to find solutions to problems.

Another consideration is that the model can learn from too few positive instances. There
are only approximately 3% positive instances in the datasets. This distribution is because each
mention has too many antecedents, leading to a highly unbalanced dataset.

Due to the simple way of creating the shift ids for the Neuralcoref model, pairs of mentions
will have been separated. As a result, mentions are assigned to shifts in which they do not
belong to any other cluster. Consequently, for each shift a mention has been assigned to, N − 1,
additional negative instances are created, where N is the number of mentions within a shift.
Therefore, a more sophisticated method for generating the shift ids for the Neuralcoref model
needs to be developed.

46

Evaluation
CDLM

4.2.2 Limitations
The NeuralCoref model is trained for one setup only (on both dataset variants, with and without
overlap of the functional location codes). Therefore, no statement can be made about how
performance would be affected if the context of mentions (e.g., only one entry item before and
after a mention as context instead of two) or the time frame is changed (more or fewer hours
than the current 72 hours).

Furthermore, a statement about the model’s performance cannot be made for the variant
with overlap since an implementation error is expected at an undetermined point.

4.3 CDLM
This section first explains additional implemented baselines, which are modifications of the CDLM
model (Section 4.3.1), presents and discusses the results (Section 4.3.2) and finally highlights the
limitations of this model for the research task (Section 4.3.3).

4.3.1 Baselines
In addition to the pairwise-scoring model of the PR-CDLM, two further model modifications
are implemented to be used as additional baselines. The motivation is to check whether simpler
pairwise-scoring models are sufficient to solve the task of linking solutions to problems. An
overview of the model differences is shown in Table 4.2.

Model internal name Model head Uses mentions’ context Mention pairwise vector
NSP One dense layer no no
NSP+CDLM Multilayer no no
PR-CDLM Multilayer yes yes

Table 4.2 Variants of the mention-pair scoring model. Additional models NSP and NSP+CDLM are
used as additional baselines and to check whether simpler models are sufficient to solve the task of linking

solutions to problems.

The modifications only affect the scoring of the mention pairs. The datasets used for training
and testing are still the same, i.e., the number of positive and negative mention-pairs is distributed
equally to 50% each. Also, three different thresholds are tested for the classification to classify if
mention-pairs are coreferring or not during training. The thresholds are the default threshold
of 0.5 and two additional thresholds, determined with the precision-recall method and the
threshold tuning method. Agglomerative clustering is conducted with the same default thresholds
plus the best determined threshold of the classification model. Finally, dependent on the best
scoring model, evaluated with the CoNLL F1-score, the best performing model is tested on the
test set to determine the final scoring. Both modifications are built upon the SBERT model
all-MiniLM-L12-v2.

The two additional mention-scoring models are as follows. Figure 4.6 shows the architecture
of both of the mention-scoring models. The first NSP model is a simple implementation where,

47

Evaluation
CDLM

[CLS] [SEP] [SEP]

mention i
tokens

mention j
tokens

SBERT

ct

Mention representation mt(i,j)

Hidden Layer h1 W2h1+b2

Score st of mt
i and mt

j being coreferent

W1h0+b1

[CLS] [SEP] [SEP]

SBERT

Score st of mt
i and mt

j being coreferent

mention i
tokens

mention j
tokens

Figure 4.6 The architectures of the additional mention-scoring models. Both models take as input the
encoded mention pair along with the BERT tokens [CLS] and [SEP]. On the left side is the NSP

model where only one dense layer determines the likelihood of coreference of two mentions. On the right
side is the NSP-CDLM model, where ct is the representation vector of the [CLS] token and is also the
mention representation mt(i, j). The score st(i, j) is produced with one hidden layer of size 384 and a

single fully connected layer of size one.

for the SBERT Transformer, the model architecture pretrained for classification is retrieved. The
model is retrieved with the AutoModel class of HuggingFace. The mention representation consists
only of the tokenized mentions i and j, meaning the is no additional context and no pairwise
mention features. The model head consists of only one dense layer, which outputs the likelihood
that mentions i and j are coreferent. This modification is tested to compare to what extent a
basic model architecture can solve coreferences on the level of sentences.

The second NSP+CDLM model combines the simple NSP model with the top layer of the
CDLM model. The mention-pair is concatenated and encoded using the model along with the
[CLS] token at the beginning of the sequence. There are also no additional contexts or pairwise
mention features for this model. The mention representation consists of the contextualized
representation vector of the [CLS] token and is the input to the mention-scoring model. The
neural network has one fully connected hidden layer h1 of size 384. The output is a score st(i, j)
of the likelihood that a mention pair is coreferring. The score is produced by applying a single
fully connected layer of size one to the output neuron st.

Figure 4.7 illustrates two different ways two in which the context of the mentions is created
for the PR-CDLM model. The first way, the simple context, corresponds to the classical approach
of wrapping the mentions with context. The two neighboring entries in the log files are used for
each mention as context. No distinction is made whether the context is an information, problem,
or solution entry item.

The second way, the advanced context, distinguishes between information entry items and
problem and solution entry items (which are the mentions). Only the information entry items
are used to create the context of a mention. Suppose there is a problem or solution description
within the scope of two entry items before or after the current mention. In that case, these

48

Evaluation
CDLM

Advanced ContextSimple Context Logfiles

Solution

Problem

Information 1
Information 2

Information 3

Information 5
Information 4

Solution

Problem

Information 1
Information 2

Information 3

Solution

Problem
Information 3

Information 5
Information 4

Problem

Information 1
Information 2

Information 3
Information 4

Solution

Information 2
Information 3

Information 5
Information 4

Figure 4.7 Extraction of the simple and advanced context for the CDLM model.

descriptions are skipped, and the next entry item (if it is an information item) is used as the
context for the mention. The motivation for the advanced context is the assumption that the
surrounding information entry items can better capture the industrial environment and thus
contribute more to linking the problem-solution pairs.

Model Funcloc Overlap Context

NSP no -
yes -

NSP+CDLM no -
yes -

PR-CDLM

no advanced
yes advanced
no simple
yes simple

Table 4.3 Listing of all dataset and context modifications of the CDLM model.

Table 4.3 lists all dataset and context modifications of the CDLM model. A total of eight
different configurations are tested, including three different mention-scoring models. The NSP
and NSP+CDLM mention-scoring models are trained with the filtered and unfiltered variants of
the dataset and without additional context. The complete CDLM model is also trained for two
different types of context, the simple context, and the extended context, in addition to the two
dataset variants.

49

Evaluation
CDLM

4.3.2 Results
Table 4.4 shows the results after training all modifications of the CDLM model. Besides the
model modifications, dataset variants, context type, and results, the table also lists the best
thresholds and linkage types determined for agglomerative clustering.

Funcloc MUC B3 CEAF CoNLL
Model Overlap Context Thresh. Linkage R P F1 R P F1 R P F1 F1

NSP no - 0.3 complete 31.2 37.4 32.6 84.8 91.7 86.6 84.9 78.7 80.5 66.6
yes - 0.7 complete 51.5 58.0 52.2 79.5 88.2 81.0 78.6 71.4 72.6 68.6

NSP+CDLM no - 0.3 complete 31.5 39.5 33.5 79.7 93.0 84.0 84.4 73.5 77.1 64.9
yes - 0.7 complete 51.4 62.0 53.7 74.5 90.1 78.7 78.8 66.4 69.6 67.3

PR-CDLM

no advanced 0.5 complete 36.2 47.4 39.3 83.2 95.0 86.5 85.7 76.3 79.1 68.3
yes advanced 0.6 complete 60.2 72.0 63.7 82.4 95.5 86.3 86.0 75.5 78.7 76.2
no simple 0.5 average 37.0 51.5 40.6 78.0 96.4 83.3 84.3 70.6 74.7 66.3
yes simple 0.5 complete 60.7 68.7 62.6 85.2 93.5 87.1 85.5 78.8 80.4 76.7

Table 4.4 Test results of all modifications of the CDLM model.

The lowest scoring modification is the NSP+CDLM model, trained on the dataset without
overlap, with a CoNLL F1 score of 64.9. The highest scoring modification is the complete
PR-CDLM model, trained on the variant with overlap of the dataset and the simple context of
the mentions, with a CoNLL F1 score of 76.7. Thus, the difference between the worst and the
best model is 11.8.

All modifications perform better on the dataset variant with overlap than on the variant
without overlap. For the NSP model and the NSP+CDLM model, the CoNLL F1 score differences
for the variant without and with overlap are 2.0 and 2.4, respectively. For the PR-CDLM model,
the differences for the datasets are 7.9 for the advanced context and 10.4 for the simple context.

Looking at the MUC scores of all model modifications without overlap, the F1 scores are
pretty low, ranging from 32.6 for the NSP model to 40.6 for the PR-CDLM model with simple
context. In contrast, the B3 and CEAF scores are pretty high for the variant without overlap.
The uneven distribution suggests that many singletons are produced for the variant without
overlap. This can be assumed because B3 and CEAF inflate the system’s scoring when there are
a large number of singletons.

The MUC scores for the variants with overlap are significantly higher than those for the
variant without overlap. In contrast, the B3 and CEAF scores for the variant with overlap are
slightly lower than those without overlap. So the models trained on the variant with overlap
probably produce fewer singletons and more correct coreference chains.

The NSP and NSP+CDLM models have similar overall performance across all metrics
(depending on the variants with and without overlap). The variant without overlap of the full
PR-CDLM is also in the range of the two previously mentioned models. The PR-CDLM model
benefits most from the unfiltered dataset, as this variant has the best performance, regardless of
the type of context.

When analyzing the results of agglomerative clustering, it can be seen that the best linkage
method is complete linkage. Complete linkage produced the best-performing cluster for all
modifications, except for the PR-CDLM model for the variant without overlap and the simple
context, for which average clustering produced the best results. The best thresholds for the

50

Evaluation
CDLM

NSP and NSP+CDLM model are for the variant without overlap, the lowest tested threshold of
0.3, and for the variant with overlap, the highest tested threshold of 0.7. For the PR-CDLM
model, the best thresholds are 0.5 for all modifications, except the variant with overlap with
advanced context, for which a threshold of 0.6 yields the best results. For no modification, the
best-performing threshold of the mention-pair scoring model is the best-performing threshold for
agglomerative clustering.

The main findings of the training with different model modifications and dataset variants
are as follows. First, simpler mention-pair scoring models cannot solve the coreference task at
the level of sentences and paragraphs in the current setup. The results show that the NSP and
NSP+CDLM models perform worse on average than the full PR-CDLM model.

Second, filtering out cases where a problem-solution pair is entered under the same entry item
with the same functional location code does not lead to an improvement. One reason for this,
however, may be that the dataset without overlap variants contains only about half as many
documents, mentions, clusters, and instances. Thus, the advantage of the variant with overlap
is that more training data is available. In order to be able to draw a definite conclusion about
the effect of filtering, the size of the dataset with overlap must be limited to that of the dataset
without overlap.

Third, the best linkage method for agglomerative clustering is complete linkage. Except for
one model modification, the best results were obtained with this linkage method. Complete
linkage minimizes the maximum distance between observations of cluster pairs.

Fourth, the best-determined threshold for the mention-scoring model is not also the best
threshold for the agglomerative clustering task. Worth mentioning is that the best threshold
values determined for the NSP and NSP+CDLM models are the minimum and maximum values
tested. For the variant without overlap, the minimum threshold of 0.3 is determined. And for
the variant with overlap, the maximum value of 0.7. Due to this fact, it is not sure that the
best threshold for agglomerative clustering is in the range of 0.3 to 0.7. To conclude, a more
comprehensive range of thresholds must be tested for the NSP and NSP+CDLM models.

The PR-CDLM model’s best thresholds for agglomerative clustering are 0.5 (three times) and
0.6 (once). These thresholds ensure that for this model, the best threshold for the agglomerative
clustering task is in the tested range.

MUC B3 CEAF CoNLL
R P F1 R P F1 R P F1 F1

Barhom et al. [3]* 81.0 80.8 80.9 66.8 75.5 70.9 62.5 62.8 62.7 71.5+

Cattan et al. [8]* 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 73.1+

Allaway et al. [1]* 83.9 84.7 84.3 74.5 70.5 72.4 70.0 68.1 69.2 75.3+

Caciularu et al. [7]* 88.1 91.8 89.9 82.5 81.7 82.1 81.2 72.9 76.8+ 82.9+

PR-CDLM 60.7 68.7 62.6 85.2 93.5 87.1 85.5 78.8 80.4 76.7−

Table 4.5 Best performing model in comparison with the current state-of-the-art for CDCR. Models
with (*) are tested on the ECB+ corpus. Results are including(+)/excluding(−) singletons in the

evaluation, indicating that the PR-CDLM might perform similar to the state-of-the-art as singletons
inflate the results [9].

Table 4.5 compares the best performing implemented model with the current-state-of-the art

51

Evaluation
Results

models for CDCR. However, this comparison can only be evaluated to a limited extent. The
four state-of-the-art models were trained and evaluated on the ECB+ corpus. The ECB+ corpus
was developed for the (CD)CR task to create a possibility to compare different CR models.
Nevertheless, the comparison is made here to get an approximate assessment of the performance
of the PR-CDLM model.

According to the results, PR-CDLM performs on average as well as the other CDCR models.
These models were trained and evaluated on a simpler dataset and on the setup with singletons.
Evaluation on the dataset with singletons has proven to inflate the results [9]. For Barhom et al.
[7], reevaluation on the setup without singletons yielded -4pp, so it can be assumed that this
pattern affects all other models. To sum up, on the setup without singletons and with a more
complex dataset, domain-specific PR-CDLM could ve considered competitive to the other CDCR
models of a general domain.

4.3.3 Limitations
Currently, the PR-CDLM model is only trained as a within-document CR model. The datasets
have to be created differently to use the cross-document component of the original CDLM. A
topic must not simply be equal to a shift and thus include only one document (as one shift equals
one document). Instead, a topic must be defined as a period of, e.g., one to three days. Moreover,
each shift in the period (one shift equals eight hours) equals one document. Thus, a topic would
comprise three to nine documents.

Furthermore, only one set of mention-pair features is tested. A statement about the effect of
different feature settings cannot be made.

4.4 Results
Table 4.6 shows all results of each modification of the Neuralcoref model and the CDLM model.

Funcloc MUC B3 CEAF CoNLL
Model Overlap Context Thresh. Linkage R P F1 R P F1 R P F1 F1

Neuralcoref no - - - 36.1 25.6 28.8 87.3 67.5 74.0 59.4 74.5 64.5 55.8
yes - - - 0.9 0.5 0.6 5.3 5.9 5.1 4.4 6.5 5.0 3.6

NSP no - 0.3 complete 31.2 37.4 32.6 84.8 91.7 86.6 84.9 78.7 80.5 66.6
yes - 0.7 complete 51.5 58.0 52.2 79.5 88.2 81.0 78.6 71.4 72.6 68.6

NSP+CDLM no - 0.3 complete 31.5 39.5 33.5 79.7 93.0 84.0 84.4 73.5 77.1 64.9
yes - 0.7 complete 51.4 62.0 53.7 74.5 90.1 78.7 78.8 66.4 69.6 67.3

PR-CDLM

no advanced 0.5 complete 36.2 47.4 39.3 83.2 95.0 86.5 85.7 76.3 79.1 68.3
yes advanced 0.6 complete 60.2 72.0 63.7 82.4 95.5 86.3 86.0 75.5 78.7 76.2
no simple 0.5 average 37.0 51.5 40.6 78.0 96.4 83.3 84.3 70.6 74.7 66.3
yes simple 0.5 complete 60.7 68.7 62.6 85.2 93.5 87.1 85.5 78.8 80.4 76.7

Table 4.6 Results on all variants of the NeuralCoref and CDLM models for coreference resolution.

Overall, the transformer-based CDLM modifications score higher than the feature-based
NeuralCoref model. Neuralcoref’s best CoNLL F1 value of 55.8 is 9.1 points lower than the worst
CDLM modification, which achieves a CoNLL F1 value of 64.9. Except for the NeuralCoref model,
the results for the models trained with the variant with overlap are always higher. However, it

52

Evaluation
Summary

should be noted that the implemented NeuralCoref model trained on the variant with overlap
may contain an error.

All modifications have the issue that they create a large number of singletons. This can be
assumed because the B3 and CEAF values are relatively high compared to the MUC values.
Therefore, the scores of the systems are artificially inflated (cf. [45, 62]).

4.5 Summary
Two distinct CR pipelines are implemented to resolve coreferences on the level of sentences and
paragraphs. The first pipeline is based on the feature-driven NeuralCoref model, developed
for within-document CR. The second model is a transformer-based model developed for cross-
document CR. The pipelines consist of each a mention-scoring stage and a resolution stage. In
the mention-scoring stage, the likelihood of a mention-pair being coreferring or not is determined.
For the NeuralCoref model, only the individual scores for each pair of mentions are assigned. For
the CDLM models, it is already decided in this stage if two mentions are coreferring or not. The
decision is dependent on an identified best-performing threshold. The performance of this stage
is for the CDLM models evaluated using the precision, recall, and F1 metrics.

The mentions are merged into clusters during the resolution stage depending on their previously
assigned scores. As the NeuralCoref model is a mention-ranking model, the highest-scoring
antecedent is merged with the current mention. This way, the clusters are built incrementally. For
the CDLM model, agglomerative clustering is used to form the cluster. Agglomerative clustering
is a type of hierarchical clustering. Several distance thresholds and linkage methods are tested
with the result that complete linkage combined with a threshold of 0.5 is the best setting for the
agglomerative clustering for this task. The coreference resolution is evaluated using the CoNLL
F1 score, a combination of the three metrics MUC, B3, and CEAF.

Overall, the transformer-based CDLM modifications achieve higher scores than the feature-
based NeuralCoref model. Nevertheless, both models have the issue that they produce a high
number of singletons which inflate the results. Hence, the final results may look better than they
are.

53

5 Future Work
The future work chapter shows possible improvements and extended approaches that can be
implemented for the models. The chapter begins with improvements that apply to both model
variants. Then it moves on to specific problems and improvements for the NeuralCoref model
(Section 5.1) and on to the PR-CDLM model (Section 5.2). Finally, it presents an end-to-end
prototype (Section 5.3).

As previously mentioned, both models have the problem of generating too many singletons
and inflating the evaluation results. In order to not artificially inflate the results with a large
number of singletons, the singletons should be excluded from the evaluation to obtain a more
realistic picture of the model’s performance. Alternatively, two parallel evaluations can be
conducted, one with and one without the singletons, to assess the impact of the singletons.

Also relevant to both models is that a comprehensive ablation study needs to be conducted
to determine the usefulness of the currently defined setups and pairwise features. It needs to be
assessed whether the context of two entry items before and after a mention reflects the context
well or whether a different number of entry items leads to better performance. It also needs to
be examined whether the 72-hour time frame is reasonable or whether a different limit would
yield better results. It must also be verified whether it makes sense to randomly generate a time
difference between 1 and 72 hours if it exceeds 72 hours. In addition, it must be checked whether
the log files contain other valuable information besides the time difference and the overlap of the
functional location code that can be used.

5.1 NeuralCoref Model
As discussed in section 4.2, the implemented NeuralCoref model has some issues and possible
improvements. First, it must be investigated why the model does not work with the dataset
variant with the overlapping functional location codes, as it only reached a CoNLL F1 score of
about 3.6. Possible errors are that either the dataset was not preprocessed correctly, the mentions
and mention-pair features were extracted incorrectly, or there is a bug in the code.

As a further improvement, the shifts for the NeuralCoref model need to be generated more
sophisticatedly. In order to have a uniform definition, the shifts should be analogous to those of
the PR-CDLM model. An approach must be found that all coreferent mentions occur within a
shift for within-document CR, or all coreferent mentions are part of one topic for cross-document
CR. At the very least, it must be verified whether the defined time frame of 72 hours for a shift
is reasonable or whether a longer or shorter period provides improved results.

As previously discussed, the NeuralCoref model is trained on an imbalanced dataset. The
distribution is 3% positive instances to 97% negative instances. With so few positive instances,
the model does not know where to look and what it has to learn. With such a distribution, the
task would need to be defined as an anomaly detection task. The distribution of the dataset
needs to be balanced to be able to train a CR model. There are several ways to create a more
balanced dataset. First, the number of antecedents per mention can be limited when creating
the mention-pair table. Right now, a mention-pair is created for every antecedent of a mention
within the scope of a document. This means that for a document with 100 mentions, 100 pairs

54

Future Work
CDLM Model

of mentions are created for the 100th mention (99 for each antecedent + one for na, i.e., the
mention has no antecedent). If this 100th mention has only one coreferring mention in the
document, this yields 99 additional negative instances and only one positive instance. By limiting
the mention-pair distance to, e.g., five, there would only be four negative instances and one
positive instance (if the coreferring antecedent is within the defined distance). The positive
instances can be created regardless of the defined distance to avoid losing any positive instances.
This will lead to a more balanced dataset the model can be trained on. Second, after creating all
mention-pairs, the number of negative instances can be analogous to the PR-CDLM instances
preparation, limited to the number of positive instances. This way, there would be a distribution
of 50% each. After creating such a dataset, the model must be re-trained, and the results must
be compared with the previously obtained results.

A further improvement discussed earlier is to assign weights to the word embeddings using the
TF-IDF measure. The assigned TF-IDF weights eliminate uninformative stop words when creating
the average word embeddings of the mentions and context text. Thereby, more meaningful
vector representations can be created, better representing the texts’ content. Due to a better
representation, it can be assumed that the task of linking problems and solutions can be solved
more effectively.

5.2 CDLM Model
Specific to the PR-CDLM model, the definition of documents and topics must be addressed
as discussed in section 4.3. Currently, each shift is defined as a topic and a document. Since
the PR-CDLM is trained on topics, in the current setup, this results in the training only being
conducted on single documents. To address this shortcoming, a topic should not be defined as a
shift but as a time frame of, e.g., three days. Consequently, each shift belongs to a topic within a
specific time frame. A topic would, therefore, consist not only of one shift (one document) but of
up to nine shifts (documents) for three days. A shift lasts, on average, eight hours, so three shifts
per day and nine shifts within three days. With such a setup, the cross-document component of
the CDLM can be properly utilized. This can also result in additional positive instances, as in
such a setup, the cases are considered when related problems and solutions appear in adjacent
shifts.

The CDLM is a general model, and other similar Transformers can be used. Therefore,
another fundamental research question is whether other pre-trained language models are better
suited to solve the task. Since the log files are created in German, Transformers like German
BERT or other pretrained Transformer in the German language1 should be tested as underlying
models of the CDLM. So the question here is which architecture and training task is most suitable
to build the CDLM on top to link problems and solutions in the log files.

1Overview of HuggingFace pretrained Transformers in German: https://bit.ly/3D6sJNy

55

Future Work
End-to-End Prototype

5.3 End-to-End Prototype
This thesis contributes to an end-to-end pipeline that identifies problems and solutions (mentions)
in a log file and then uses CR to link related problems and solutions. The objective is to have a
revised log file in which all problems and solutions are tagged, and it is indicated which problems
and solutions are related to each other. Figure 5.1 illustrates a high-level overview of the pipeline.

Log files
from the

past 24-72
hours

Data Preparation

Preprocessing Feature
Extraction

Resolution

Mention-pair
Scoring

Clustering
Resolved

Coreferences

Problem-Solution
Classifier
Mention

Extraction

Figure 5.1 End-to-end problem-solution linking pipeline. The input to the pipeline are the log files from
the past 24-72 hours. The events are classified from a Problem-Solution classifier to the classes: problem,
solution, information. Then, during the data preparation phase the data is preprocessed and features are
extracted from the mentions, i.e., the events that previously were classified as problem or solution. Next,
mention-pair scores are calculated, which are used to cluster the mentions to coreference chains. Finally, a

file with the resolved coreferences is saved.

The input to the pipeline are the log files from the past 24 to 72 hours. With the help of
a problem-solution classifier, the problems and solutions in these log files are identified. In a
CR pipeline, this is the equivalent of the mention extraction step. Therefore, instead of gold
annotated log files, actually extracted mentions are used for this pipeline. These identified
mentions are the input to the model developed in this thesis. As the current best model is a
PR-CDLM implementation, the data preparation is conducted as described in section 3.4.1,
and the resolution is as described in Section 3.4.3. The output of the pipeline are the resolved
coreferences of the past 24 to 72 hours.

This pipeline helps to improve the data quality of the log files. Thus, problems can be
specifically searched for, and solutions to them can be identified.

56

6 Conclusion
This master thesis aimed to determine how coreference resolution can be used to improve the data
quality in the logs of daily operations, i.e., restore missing links between problem and solution
records. Log files from daily operations in the processing industry were used as the database in
the German language. These log files contain various entry items, such as problem and solution
descriptions, and other entry items, such as various information descriptions.

The thesis contributes to a larger project of the solution recommender system, i.e., given a
problem description, a system suggests solutions based on previously solved similar problems.
These solution suggestions can be learned from the historical data of the log files. To learn correct
solution suggestions presupposes that the data quality of the log files is high enough for such a
model to learn the correct solution suggestions. The issue, however, is that such log files contain
some incorrect entry items. Such issues are, for example, that related problems and solutions
are not connected. As a result, there are fewer instances to learn which problems and solutions
need to be connected. Another problem is that the condition of the entry is not clearly defined.
Therefore, the entry items vary in complexity and can range from one word to several sentences.

Related problems and solutions must be linked to increasing data quality in the log files.
This task is defined as a coreference resolution task in this thesis. Coreference resolution is
a well-studied research topic in the field of NLP, where attempts are made to link anaphoric
expressions with their antecedents. In this thesis’s scope, the log files’ problems and solutions
are defined as mentions. The information entry items form the context of the mentions. A shift
is defined as a document. The mention extraction was not part of this thesis. Therefore, it was
attempted to only resolve the coreferences in the context of a classical coreference pipeline.

The thesis proved that the CR problem definition is applicable to the current domain problem
by performing the following steps:

1. The task of problem-solution linking was defined as a coreference resolution task which
involved mapping the general definitions of general CR and CDCR to the domain-specific
applied task. As the log files contain problem and solution descriptions in the form of
sentences, coreference resolution was applied on the level of sentences and paragraphs.
Next, the data was transformed and preprocessed according to the derived definitions of
data structures used in (CD)CR.

2. Two diverse models were evaluated, selected, and adjusted: 1) the feature-driven neural
network model for CR proposed by Clark and Manning ([13, 14]), which has been used as
state-of-the-art for a long time, and 2) the transformer-based neural model for CDCR by
Caciularu et al. [7], which is currently state-of-the-art.

3. The CDLM model was extended by 1) using a German transformer model, 2) adding a
domain-specific feature vector to the mentions pairwise representation, and 3) a thorough
evaluation of parameters for agglomerative clustering. In addition, as an ablation study,
two simpler model modifications were implemented to test whether simpler models can
solve the coreferences.

57

Conclusion

4. The evaluation has shown that the transformer-based PR-CDLM model with additional
features performs best in the current domain (CoNLL F1 = 76.7) and yields roughly the
same score as the current state-of-the-art models (which achieve an average CoNLL F1 score
of about 75.75). PR-CDLM demonstrates a significant advantage over pure transformer-
based models, without additional features and added context (best CoNLL F1 = 68.6), and
over pure feature-driven models (CoNLL F1 = 55.8).

58

Bibliography
[1] Allaway, E.; Wang, S., and Ballesteros, M., “Sequential cross-document coreference resolu-

tion”, CoRR, vol. abs/2104.08413, 2021.
[2] Bagga, A. and Baldwin, B., “Algorithms for scoring coreference chains”, in In The First

International Conference on Language Resources and Evaluation Workshop on Linguistics
Coreference, 1998, pp. 563–566.

[3] Barhom, S.; hwartz, V.; Eirew, A.; Bugert, M.; Reimers, N., and Dagan, I., “Revisiting
joint modeling of cross-document entity and event coreference resolution”, in Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 4179–4189.

[4] Beltagy, I.; Peters, M. E., and Cohan, rman, “Longformer: The long-document transformer”,
CoRR, vol. abs/2004.05150, 2020.

[5] Bojanowski, P.; Grave, E.; Joulin, A., and Mikolov, T., Enriching word vectors with subword
information, 2016.

[6] Bosua, R. and Venkitachalam, K., “Aligning strategies and processes in knowledge man-
agement: A framework”, Journal of Knowledge Management, vol. 17, May 2013.

[7] Caciularu, A.; Cohan, A.; Beltagy, I.; Peters, M. E.; Cattan, A., and Dagan, I., “Cross-
document language modeling”, CoRR, vol. abs/2101.00406, 2021.

[8] Cattan, A.; Eirew, A.; Stanovsky, G.; Joshi, M., and Dagan, I., “Streamlining cross-
document coreference resolution: Evaluation and modeling”, ArXiv, vol. abs/2009.11032,
2020.

[9] ——, “Realistic evaluation principles for cross-document coreference resolution”, in Proceed-
ings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics,
Association for Computational Linguistics, Aug. 2021, pp. 143–151.

[10] Chua, A., “The dark side of successful knowledge management initiatives”, Journal of
Knowledge Management, vol. 13, pp. 32–40, Jul. 2009.

[11] Clark, K., “Neural coreference resolution”, 2015.
[12] Clark, K.; Khandelwal, U.; Levy, O., and Manning, C. D., “What does BERT look at? an

analysis of BERT’s attention”, in Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, Florence, Italy: Association for
Computational Linguistics, Aug. 2019, pp. 276–286.

[13] Clark, K. and Manning, C. D., “Deep reinforcement learning for mention-ranking coreference
models”, in Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, Austin, Texas: Association for Computational Linguistics, 2016, pp. 2256–2262.

[14] ——, “Improving coreference resolution by learning entity-level distributed representations”,
in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Berlin, Germany: Association for Computational Linguistics,
2016, pp. 643–653.

59

Bibliography

[15] Cruz, A. F.; Rocha, G., and Cardoso, H. L., “Coreference resolution: Toward end-to-end
and cross-lingual systems”, Information, vol. 11, p. 74, 2020.

[16] Cybulska, A. and Vossen, P., “Using a sledgehammer to crack a nut? lexical diversity
and event coreference resolution”, in Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), Reykjavik, Iceland: European Language
Resources Association (ELRA), May 2014, pp. 4545–4552.

[17] Devlin, J.; Chang, M.; Lee, K., and Toutanova, K., “BERT: pre-training of deep bidirectional
transformers for language understanding”, CoRR, vol. abs/1810.04805, 2018.

[18] Devlin, J.; Chang, M.-W.; Lee, K., and Toutanova, K., “BERT: Pre-training of deep bidi-
rectional transformers for language understanding”, in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota:
Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[19] Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I., and Salakhutdinov, R.,
“Improving neural networks by preventing co-adaptation of feature detectors”, CoRR,
vol. abs/1207.0580, 2012.

[20] Hinton, G. and Tielemann, T., “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude”, COURSERA: Neural Networks for Machine Learning,
2012.

[21] Hochreiter, S. and Schmidhuber, J., “Long short-term memory”, Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[22] Huang, Y. et al., Anaphora: A cross-linguistic approach. Oxford University Press on Demand,
2000.

[23] Joshi, M.; Levy, O.; Zettlemoyer, L., and Weld, D., “BERT for coreference resolution:
Baselines and analysis”, in Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 5803–5808.

[24] Jurafsky, D. and Martin, J. H., Speech and language processing : an introduction to natural
language processing, computational linguistics, and speech recognition. Upper Saddle River,
N.J.: Pearson Prentice Hall, 2009.

[25] Kafrawy, P. E.; Mausad, A., and Esmail, H., “Experimental comparison of methods for multi-
label classification in different application domains”, International Journal of Computer
Applications, vol. 114, pp. 1–9, 2016.

[26] Lee, K.; He, L.; Lewis, M., and Zettlemoyer, L., “End-to-end neural coreference resolution”,
in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017, pp. 188–197.

60

Bibliography

[27] Lee, K.; He, L., and ettlemoyer, L., “Higher-order coreference resolution with coarse-to-fine
inference”, in Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018,
pp. 687–692.

[28] Liu YinhanOtt, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer,
L., and Stoyanov, V., Roberta: A robustly optimized bert pretraining approach, 2019.

[29] Luo, X., “On coreference resolution performance metrics”, in Proceedings of Human Lan-
guage Technology Conference and Conference on Empirical Methods in Natural Language
Processing, Vancouver, British Columbia, Canada: Association for Computational Linguis-
tics, Oct. 2005, pp. 25–32.

[30] Manning, C. “Cos 484: Natural language processing - coreference resolution”. (2019),
(visited on 09/12/2022).

[31] Marneffe, M.-C. d.; Recasens, M., and Potts, C., “Modeling the lifespan of discourse entities
with application to coreference resolution”, Journal of Artificial Intelligence Research,
vol. 52, pp. 445–475, 2015.

[32] Mikolov, T.; Chen, K.; Corrado, G., and Dean, J., “Efficient estimation of word representa-
tions in vector space”, CoRR, vol. abs/1301.3781, 2013.

[33] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G., and Dean, J., “Distributed representations
of words and phrases and their compositionality”, in Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’13, Lake
Tahoe, Nevada: Curran Associates Inc., 2013, 3111–3119.

[34] Moosavi, N. S. and Strube, M., “Search space pruning: A simple solution for better
coreference resolvers”, in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
San Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 1005–1011.

[35] Müllner, D., Modern hierarchical, agglomerative clustering algorithms, 2011.
[36] Nair, V. and Hinton, G. E., “Rectified linear units improve restricted boltzmann machines”,

in ICML 2010, 2010, pp. 807–814.
[37] Ng, V., “Supervised noun phrase coreference research: The first fifteen years”, in Proceedings

of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala,
Sweden: Association for Computational Linguistics, Jul. 2010, pp. 1396–1411.

[38] Olubunmi, F., “Knowledge management as an important tool in organisational management:
A review of literature”, Apr. 2015.

[39] Pradhan, S.; Luo, X.; Recasens, M.; Hovy, E.; Ng, V., and Strube, M., “Scoring coreference
partitions of predicted mentions: A reference implementation”, in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
Baltimore, Maryland: Association for Computational Linguistics, Jun. 2014, pp. 30–35.

61

Bibliography

[40] Pradhan, S.; Moschitti, A.; Xue, N.; Uryupina, O., and Zhang, Y., “CoNLL-2012 shared
task: Modeling multilingual unrestricted coreference in OntoNotes”, in Joint Conference
on EMNLP and CoNLL - Shared Task, Jeju Island, Korea: Association for Computational
Linguistics, Jul. 2012, pp. 1–40.

[41] Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.,
and Liu, P. J., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”, Journal of Machine Learning Research, vol. 21, no. 140, p. 1,

[42] Rahman, A. and Ng, V., “Supervised models for coreference resolution”, in Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2 -
Volume 2, ser. EMNLP ’09, Singapore: Association for Computational Linguistics, 2009,
968–977, isbn: 9781932432626.

[43] Recasens, M. and Hovy, E., “Blanc: Implementing the rand index for coreference evaluation”,
Nat. Lang. Eng., vol. 17, no. 4, 485–510, 2011, issn: 1351-3249.

[44] Recasens, M. and Hovy, E., “A deeper look into features for coreference resolution”, in
Proceedings of the 7th Discourse Anaphora and Anaphor Resolution Colloquium on Anaphora
Processing and Applications, ser. DAARC ’09, Goa, India: Springer-Verlag, 2009, 29–42,
isbn: 9783642049743.

[45] Recasens, M.; Màrquez, L.; Sapena, E.; Martí, M. A.; Taulé, M.; Hoste, V.; Poesio, M.,
and Versley, Y., “SemEval-2010 task 1: Coreference resolution in multiple languages”, in
Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala, Sweden:
Association for Computational Linguistics, Jul. 2010, pp. 1–8.

[46] Reimers, N. and Gurevych, I., “Sentence-bert: Sentence embeddings using siamese bert-
networks”, CoRR, vol. abs/1908.10084, 2019.

[47] Rogers, A.; Kovaleva, O., and Rumshisky, A., “A primer in BERTology: What we know
about how BERT works”, Transactions of the Association for Computational Linguistics,
vol. 8, pp. 842–866, 2020.

[48] Sapena, E.; Padró, L., and Turmo, J., “A constraint-based hypergraph partitioning approach
to coreference resolution”, Computational Linguistics, vol. 39, no. 4, pp. 847–884, Dec.
2013.

[49] Soon, W. M.; Ng, H. T., and Lim, D. C. Y., “A machine learning approach to coreference
resolution of noun phrases”, Computational Linguistics, vol. 27, no. 4, pp. 521–544, 2001,
issn: 0891-2017.

[50] Stoyanov, V.; Gilbert, N.; Cardie, C., and Riloff, E., “Conundrums in noun phrase corefer-
ence resolution: Making sense of the state-of-the-art”, in Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP, Suntec, Singapore: Association for Computational
Linguistics, Aug. 2009, pp. 656–664.

[51] Teece, D. J.; Pisano, G., and Shuen, A., “Dynamic capabilities and strategic management”,
Strategic Management Journal, vol. 18, no. 7, pp. 509–533, 1997.

62

Bibliography

[52] Uryupina, O. and Moschitti, A., “A state-of-the-art mention-pair model for coreference
resolution”, in Proceedings of the Fourth Joint Conference on Lexical and Computational
Semantics, Denver, Colorado: Association for Computational Linguistics, Jun. 2015, pp. 289–
298.

[53] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.,
and Polosukhin, I., “Attention is all you need”, CoRR, vol. abs/1706.03762, 2017.

[54] Vilain, M.; Burger, J.; Aberdeen, J.; Connolly, D., and Hirschman, L., “A model-theoretic
coreference scoring scheme”, in Proceedings of the 6th Conference on Message Understanding,
ser. MUC6 ’95, Columbia, Maryland: Association for Computational Linguistics, 1995,
45–52.

[55] Wiseman, S.; Rush, A. M., and Shieber, S. M., “Learning global features for coreference
resolution”, in Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, San Diego,
California: Association for Computational Linguistics, Jun. 2016, pp. 994–1004.

[56] Wiseman, S.; Rush, A. M.; hieber, S., and Weston, J., “Learning anaphoricity and antecedent
ranking features for coreference resolution”, in Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), Beijing, China: Association for
Computational Linguistics, Jul. 2015, pp. 1416–1426.

[57] Wolf, T. “State-of-the-art neural coreference resolution for chatbots”. (Jul. 7, 2017), [On-
line]. Available: https://medium.com/huggingface/state-of-the-art-
neural-coreference-resolution-for-chatbots-3302365dcf30 (visited on
09/16/2022).

[58] Wu, H. C.; Luk, R. W. P.; Wong, K.-F., and Kwok, K.-L., “Interpreting tf-idf term weights
as making relevance decisions”, ACM Trans. Inf. Syst., vol. 26, 13:1–13:37, 2008.

[59] Yang, L.; Zhang, M.; Li, C.; Bendersky, M., and Najork, M., “Beyond 512 tokens:
Siamese multi-depth transformer-based hierarchical encoder for document matching”,
CoRR, vol. abs/2004.12297, 2020.

[60] Yu, X.; Yin, W., and Roth, D., “Paired representation learning for event and entity
coreference”, CoRR, vol. abs/2010.12808, 2020.

[61] Zeng, Y.; Jin, X.; Guan, S.; Guo, J., and Cheng, X., “Event coreference resolution with
their paraphrases and argument-aware embeddings”, in Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, Barcelona, Spain (Online): International
Committee on Computational Linguistics, Dec. 2020, pp. 3084–3094.

[62] Zhekova, S. K. andDesislava, “Singletons and coreference resolution evaluation”, in RANLP,
RANLP 2011 Organising Committee, 2011, pp. 261–267.

[63] Zhou, X.; Pappas, N., and Smith, N. A., “Multilevel text alignment with cross-document
attention”, CoRR, vol. abs/2010.01263, 2020.

63

https://medium.com/huggingface/state-of-the-art-neural-coreference-resolution-for-chatbots-3302365dcf30
https://medium.com/huggingface/state-of-the-art-neural-coreference-resolution-for-chatbots-3302365dcf30

	Aufgabenstellung
	Erklärungen
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Setting and Motivation
	Research Objective
	Outline

	Background and Related Work
	Coreference Resolution
	Approaches for Coreference Resolution
	Within-Document Coreference Resolution
	Cross-Document Coreference Resolution

	Summary

	Methodology
	Scope and Limitation
	Preprocessing
	NeuralCoref
	Preprocessing
	Model
	Implementation and Training

	CDLM
	Preprocessing
	Model
	Implementation and Training

	Summary
	Summary of Preprocessing
	Summary of Models

	Evaluation
	Metrics
	Metrics for Classification Models
	Metrics for Coreference Resolution
	Summary of Metrics

	NeuralCoref
	Results
	Limitations

	CDLM
	Baselines
	Results
	Limitations

	Results
	Summary

	Future Work
	NeuralCoref Model
	CDLM Model
	End-to-End Prototype

	Conclusion
	Bibliography

