

F. Deifuß, C. Ihle, M. Schubotz, B. Gipp, “procd: A privacy preserving robust
implementation to discover contacts in social networks,” in Proceedings of the
16th International Symposium of Information Science (ISI), 2021.

Preprint from: https://www.gipp.com/pub/

procd: A privacy-preserving robust implementation
to discover contacts in social networks

Fabian Deifuß

University of Wuppertal,

Germany

fabian.deifuss@uni-wuppertal.de

Cornelius Ihle

University of Wuppertal,

Germany

ihle@gipplab.org

Moritz Schubotz

FIZ Karlsruhe,

Germany

moritz.schubotz@fiz-karlsruhe.de

Bela Gipp

University of Wuppertal,

Germany

gipp@uni-wuppertal.de

Abstract

Current instant messengers store the users’ phone book contacts typically

unencrypted or hashed on a central server. In case of a server’s corruption, all

contacts are either directly available in plaintext or can be unmasked using a

simple dictionary attack. To solve this problem, we present procd [pʁoːst] a

python implementation for privacy preserving contact discovery. procd is a

trustless solution that requires neither plaintext numbers nor hashes of single

phone numbers to retrieve contacts. Instead, we transfer hashed combinations

of multiple phone numbers, which increases the effort for dictionary attacks to

an unfeasible level using today’s hardware.

Keywords: private contact discovery; private set intersection; secure multi-

party computation; private information retrieval

1 Introduction

State-of-the-art social networks and messaging services store a social graph of

its users to suggest communication options. Having a service provider storing

and sharing a social graph is not privacy-preserving and should be avoided

whenever possible.

procd [pʁoːst] - Private RObust Contact Discovery is our approach to

private contact discovery with increased robustness against brute force attacks

and without the need to store a social graph. We instead use a minimal social

graph each user already has on its phone, the address book. Thus, the contact

data remains distributed and owned by the user

Our goal is to find a way to increase the complexity of a brute force attack to

a point where it is computationally infeasible to find an input that hashes to the

processed values. For a dictionary attack on contacts, an attacker

systematically tries each possible phone number as an input to match and

unmask a hashed value to reveal numbers and connections.

2 Related Work

One of the most promising implementations, has the Signal messenger1. Signal

clients hash their phone number locally before uploading (Marlinspike, 2017)

it to the Signal servers. However, even though this is better than uploading and

storing everything in plaintext, a typical phone number only consists of about

ten digits. Hence, these hashes are vulnerable to dictionary attacks (Bošnjak et

al., 2018). Signal is aware of this issue and therefore has to rely on a hardware

solution called Software Guard Extension (SGX) from Intel. This, however,

moves the trust issue to another party - the hardware manufacturer.

3 Method

For our approach, we aim to meet three criteria:

1. No exchange of plaintext contact information

2. Robustness against brute-force attacks

3. No dependency on single proprietary hardware solutions

We hence, propose an unbalanced private set intersection with increased input

complexity.

3.1 Pairwise Hashing

Instead of hashing a single phone number, we form a hash of a pair of numbers.

Each hashed pair consists of a user’s phone number and one of her contacts.

In pairwise hashing, the server only ever sees the published hashes and does

not gather any registered client’s information. Even though the input

complexity increases drastically, most benefits vanish if an attacker already

has information like the (1) relation between the targets or (2) the individual's

phone number. Therefore, it is necessary to salt the hash with a privately

disclosed secret known only to the two parties trying to communicate.

1 https://signal.org/blog/private-contact-discovery/

Once a client knows about already registered contacts, a Diffie-Hellman key

exchange (Li, 2010) is used to enable authentication and initiate private

communication. The public keys can be extracted from our public database.

However, we cannot just post each party’s public key linked to their phone

number. Hence, we apply a way to get a hold of each other’s public key without

exposing the corresponding phone number, neither in plaintext nor hashed. As

mentioned earlier, we suppress false positives by hashing our combinations in

two different orders, starting with Bob or starting with Alice. This way it is

possible to store one’s public key alongside the hash known by both parties.

3.2 Experiment

A REST API serves as an interface to GET an intersection of already registered

contacts and POST a user registration to our exemplary service. Figure 1 shows

all used system entities and their interfaces.

The REST API processes the user requests and inserts or retrieves information

from the public PostgreSQL database, which holds all hashed phone number

combinations together with their public keys. The client constructs two

dictionaries of number combinations before interacting with the API. These

two dictionaries differ in the order of phone numbers, but both can contain a

common secret (salt), unique to each contact. The first dictionary (Dict1) is

used to publish all contacts to the contact discovery service. The second

dictionary (Dict2) is not published but is used to verify any retrieved hash from

the service and filter false positives. Additionally to the dictionary, a user’s

public key is appended to the hash combinations before publishing so that the

desired public key can be retrieved and used for an encrypted communication

initiation through the messaging service.

FIG. 1 System Overview

4 Evaluation

In the following paragraphs, we analyze and discuss our architecture with

regard to each of the three criteria we aimed for.

4.1 Robustness Against Dictionary Attacks

The workload to compute hashes is horizontally scalable. Thus, the critical

metric to evaluate the feasibility of computing a specific dictionary is the price

to pay for the necessary computing resources.

On a modern computer (6 cores, 2.8GHz), it takes 0.00063 milliseconds (6.3e-

7 seconds) to compute a SHA1 hash. This translates to 1.5e+6 hashes per

second. Assuming the desired output hash is computed after half of the

possible combinations (input complexity of 8e+20 without salt), it would take

approximately 8 million years of computing to get the desired hash. A

comparable VM rental on Azure is about 0.30$ per hour. Hence an attacker

would need 21 billion USD for a successful dictionary attack.

Table 1 shows the estimated time required to compute the desired hashes for a

contact list of 200 entries on modern hardware (single machine) with their

estimated costs alongside the different hashing complexities.

TABLE 1 Dictionary Attack Cost Estimation

Input Complexity Estimated time Estimated cost of

computation

German number hash (1e+6) 1 second <0.01 USD

Number hash (4e+11) 1.5 days 10 USD

Pairwise German number hash

(1e+12)

7.3 days 52 USD

procd German number hash

(5e+18)

10.000 years 262 million USD

Pairwise WhatsApp User hash

(8e+20)

8 million years 21 billion USD

procd WhatsApp User hash

(4e+27)

40 trillion years 105 quadrillion USD

Using our methodology, the upfront cost of resources necessary to compute a

specific dictionary in question is incredibly high. Further, increasing the hash’s

complexity through a salt is reasonable, as unmasking a single hash would

otherwise lead to the exploitation of the corresponding dictionary. Hence, not

only a registered phone number but its entire address book would be exposed.

4.2 Comparison

Compared with the contact discovery methods of other state-of-the-art mobile

messaging applications, none of the popular applications meets all our criteria.

TABLE 2 Privacy Protection Overview (Kales et al., 2019)

 WhatsApp Telegram Signal Threema paired procd

Processes phone

numbers in plaintext

x x - - - -

Processes hashes of

contacts

- - x x x x

Uses Salted hashes to

prevent dictionary

attacks

- - - - - x

Relies on trusted

hardware

- - x - - -

Cost to unmask a

single phone number

(self-discovery)

$0 $0 $10 $10 $10 $276

Cost to unmask

German

numbers(10^6)

$0 $0 $0.01 $0.01 $52 $262M

5 Conclusion

We introduced a new unique method (pairwise phone number hashing) for

private contact discovery and increased our robustness against dictionary

attacks effectively using a common shared secret. Additionally, we

implemented a mechanism to retrieve a public key to initiate communication.

With our procd approach, we successfully improved unbalanced private set

intersections for the specific use case of contact discovery.

Our experiment shows that a trustless private contact discovery design is

possible, and no exchange of plaintext data is needed.

6 References

Bošnjak, L., Sres, J., & Brumen, B. (2018). Brute-force and dictionary attack on hashed real-

world passwords. https://doi.org/10.23919/MIPRO.2018.8400211

Cimpanu, C. (n.d.). New Platypus attack can steal data from Intel CPUs. ZDNet.

https://www.zdnet.com/article/new-platypus-attack-can-steal-data-from-intel-cpus/

Evans, Vladimir. Rosulek, M., David. Kolesnikov. (2018). Pragmatic Introduction to Secure

Multi-Party Computation. NOW PUBLISHERS INC.

Ihle, C., Schubotz, M., Meuschke, N., & Gipp, B. (2020). A First Step Towards Content

Protecting Plagiarism Detection. Proceedings of the ACM/IEEE Joint Conference on Digital

Libraries in 2020, 341–344. https://doi.org/10/ghg7rw

Kales, D., Rechberger, C., Schneider, T., Senker, M., & Weinert, C. (2019). Mobile Private

Contact Discovery at Scale (No. 517).

Lee, K., Kaiser, B., Mayer, J., & Narayanan, A. (2020). An empirical study of wireless carrier

authentication for SIM swaps. Sixteenth Symposium on Usable Privacy and Security (SOUPS

2020), 61–79. https://www.usenix.org/conference/soups2020/presentation/lee

Li, N. (2010). Research on Diffie-Hellman key exchange protocol. 2010 2nd International

Conference on Computer Engineering and Technology, 4, V4–634–V4–637.

https://doi.org/10/bdtfv3

Marlinspike, M. (2017). Technology preview: Private contact discovery for Signal. Signal

Messenger. https://signal.org/blog/private-contact-discovery/

Yanai, A. (2020). Private Set Intersection. https://decentralizedthoughts.github.io/2020-03-29-

private-set-intersection-a-soft-introduction/

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Pairwise Hashing
	3.2 Experiment

	4 Evaluation
	4.1 Robustness Against Dictionary Attacks
	4.2 Comparison

	5 Conclusion
	6 References

