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ABSTRACT
Textual information retrieval systems based on multilingual dense
retrievers hold the potential to break down language barriers and
close the lexical gap. However, large-scale labelled data is needed
to train dense retrievers and they are sensitive to domain shifts.
For most specialised domains, the availability of labelled data is
scarce and collecting it is resource-intensive. Thus, automated pro-
cesses for domain adaptation in low-resource setups are required.
This thesis experimentally explores possibilities for performing
domain adaptation of multilingual semantic search in a zero-shot
setting utilising unlabelled Germand and English documents from
the chemical process industry and a small labelled test set for model
evaluation. We compare the influence of four variables on domain
adaptation in a multilingual setup. The first variable is the query-
generation method. We compare an extractive approach sampling
keyword queries from the corpus based on the underlying doc-
ument language model. An inventive approach that uses a pre-
trained multilingual t5-based generative model to generate queries
and a prompt-based approach utilising a GPT-4oinstance to create
queries. The second variable we explore is the influence of using
knowledge distillation to pseudo-label the generated dataset to
account for the possibly poor quality of generated queries. The
third variable we explore is the influence of model size on domain
adaptation. We fine-tune a small LLaMA-based embedding model
and a larger XLM-RoBERTa model with the generated datasets,
analysing the effect of their size on their domain-adaptation capac-
ities. The fourth and last variable is the influence of the dataset
language (German or English). Our domain-adaptation approaches
yielded no systematic improvements for the English data. For the
German data, however, multiple combinations of query generation
approaches, pseudo-labelling, and model architecture lead to im-
proved retrieval performance compared to the best baseline model.
Our best-performing model improves the retrieval of German target
domain data by 3.58
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1 INTRODUCTION
Text information retrieval (IR) describes acquiring the relevant
textual information from all available textual information, given a
user-entered natural language query. The query and the text are a
word sequence divided into several tokens from a specific language
[131].

Traditionally, textual IR was performed using lexical methods,
such as probabilistic relevance frameworks like BM25 [94, 95]. How-
ever, these methods suffer from the lexical gap since they do not
include semantic information and, thus, cannot recognise synonyms
or distinguish ambiguous words. Nowadays, natural language pro-
cessing (NLP) is widely applied to textual IR tasks to close the gap.
The most common models are dense retrievers, and their invention
resulted in the concept of semantic search. Dense retrieval mod-
els map the user query and the available textual information to a
shared dense vector space. The generated representations include
semantic information and are closer to one another in the shared
vector space if they are semantically similar. Thus, dense retrievers
utilise (approximate) nearest neighbour search to fetch relevant
information. However, large-scale labelled data is needed to train
dense retrievers, and they are sensitive to domain shifts [107].

Ramponi and Plank [86] define a domain as a coherent type of
text corpus, i.e. the specific dataset used for training. The type is
a variety of latent factors, e.g. topic (chemistry vs. sports), genre
(social media vs. news article) or style (formal vs. informal) [86].
For most specialised domains, the availability of labelled data is
scarce and collecting it is resource-intensive. Doing that manually
for every language and every domain is not feasible [102]. Thus,
automated processes for domain adaptation in low-resource setups
are required and have been subject to extensive research in the
past years [91, 102, 131]. Nonetheless, most of these approaches are
developed on and tested for monolingual, English, dense retrieval,
while the field of multilingual semantic search is rapidly advancing
at the same time, holding the promise of breaking down language
barriers and expanding information access across diverse linguistic
contexts [10, 26, 61, 89, 120, 129].

However, the possibility of combining domain-adaptation tech-
niques with multilingual approaches to semantic search has yet to
be explored. Therefore, this project aims to experimentally examine
the advantages and disadvantages of different domain adaptation
techniqueswhen utilised in amultilingual setup. Our project is, thus,
experiment-driven, and our research question, "How to perform do-
main adaptation for multilingual semantic search in a low-resource
setup?" formalises our objective.

We defined our target domain through two small annotated
chemical process industry test datasets, one containing German
and one containing English query document pairs.

The chemical process industry encompasses various sectors
involved in transforming raw materials into valuable products
through chemical reactions and processes. This industry is crit-
ical in producing chemicals, petrochemicals, pharmaceuticals, and
materials like plastics and composites, with applications across
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diverse fields such as agriculture, manufacturing, and energy. It
involves complex, large-scale industrial processes that often require
continuous operations. Plants within this industry must operate
24/7, producing significant amounts of data from various sources,
including sensors, logs, shift notes, and observations from field
operators. The operations rely on seamless collaboration between
multiple departments to ensure efficient production and maintain
safety standards. Given the intricate nature of chemical processes,
the continuous generation of data and the need for uninterrupted
operation, information transfer across shifts and departments is
a pivotal aspect of the industry. Data gathered from automated
systems and human inputs—such as shift logs, process notes, and
operational observations—can provide critical insights into the
plant’s performance. However, this information is often vast and
unstructured, making it difficult for operators and decision-makers
to extract the most relevant insights, especially when dealing with
process upsets or emergencies. Reliable access to this information is
crucial, as it directly impacts knowledge transfer, decision-making,
and production safety. Semantic search systems can address the
challenge of knowledge transfer by enabling more efficient and
accurate retrieval of domain-specific information from historical
logs. However, labelled datasets from the chemical process industry
domain for dense retriever training are rarely available. However,
we can use the vast amount of generated data during operations to
create labelled datasets.

Thus, apart from the small labelled testset, we were also provided
extra unlabelled German and English documents from the chemical
process domain. We further describe the datasets in section 3.

In our analysis of how to adapt multilingual dense retrievers
to the chemical process domain in a low-resource setup, we ex-
perimentally compare four variables: query generation methods,
relevance labels’ effect, model size, and language.

For the first variable, query-generation methods, we compare an
extractive approach sampling keyword queries directly from the
unlabelled document corpus vocabulary based on the underlying
document language model. Qgen [69], a state-of-the-art inventive
query generation approach that uses a pre-trained multilingual
t5-based generative model to generate queries and a prompt-based
approach utilising a GPT-4o instance to create queries.

For the second variable, the influence of pseudo-relevance la-
bels, we apply the GPL method suggested by Wang et al. [113],
using knowledge distillation to pseudo-label the generated datasets,
accounting for the possibly poor quality of the generated queries.

For the third variable, model size, we fine-tune two multilin-
gual dense retrievers, differing in size and architecture, on the
generated unlabelled and pseudo-labelled datasets — one small
LLaMA-embedding model 1 with a BERT base and another larger
XLM-RoBERTa-based model (XLM-R) 2. We further describe the
models in section 4.3.

To explore the fourth and last variable, language, we apply all
other variables separately to the German and English data. Thus, we
generate language-specific datasets and train the two multilingual
dense retrievers for each language separately, analysing the effect
and interaction of language and the other variables.

1https://huggingface.co/thuan9889/llama_embedding_model_v1
2https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1

In section 5.1, we further explain our experimental setup;
Our overall best-performing model reaches a retrieval perfor-

mance averaged over Precision@10, Recall@10, F@10, MRR@10,
average Precision@10 and ndcg@103 of 71.65% on the German
test data. That is an improvement of 3.58% compared to the best-
performing German baseline model. The best-performing model is
a multilingual XLM-R model with 278M model parameters and a
dense vector dimension of 768. We fine-tuned it on German positive
query document pairs, created by a t5-encoder-decoder model with-
out relevance labels using Multiple Negatives Symmetric Ranking
loss.

Our Contributions are:
For the German data, we ...
• ... extend QGen [69] to a multilingual semantic search setup

leading to better retrieval performance in a highly spe-
cialised domain

• ... verify Ni et al.’s [80] finding that larger models adapt
better to new domains in low resource [80] settings.

• ... show that pseudo-relevance labels can improve query re-
sults, but query generation methods without any relevance
labels already lead to substantial performance boosts

• ... verify Dai et al.s [23] finding that enriching the prompt
with knowledge about the nature of the unlabelled docu-
ments improves the quality of the generated queries

However, our domain adaptation approaches do not improve the
retrieval performance for the English data, likely due to the larger
amount of English data used for training multilingual dense re-
trievers, making the possible retrieval improvement of multilingual
English dense retrievers when applied to English data relatively
small, even for out-of domain data. In section 5 we explain our
results in detail.

The rest of this paper is structured as follows: In section 2, we
present related work to give an overview of the research field, ex-
ploring the possibilities of adapting multilingual semantic search
to specialised domains. Afterwards, in section 3, we explore our
unlabelled and test data. In section 4, we introduce our method. In
section 5, we introduce and discuss our specific experimental setup
and findings for each experiment, summarising the advantages and
disadvantages of the analysed domain adaptation techniques and
discussing interactions and individual effects of the four analysed
variables: query generation, pseudo-labelling, model size and lan-
guage. Then, we finalise our work by drawing a section 6 and giving
an outlook in section 7.

To make this thesis more comprehensive, independent of readers’
knowledge levels, we included a short history of performing textual
information retrieval in appendix D and recap the architecture of
information retrieval systems and dense retrievers in appendix E.

2 RELATEDWORK
A growing body of research describes dense information retrieval
systems [48, 68, 131] and the topic of adapting dense retrievers to
new domains in low-resource settings gained attention within the
last years [53, 57, 113, 119].

The following table [11] categorises existing domain-adaptation
approaches:
3We introduce all metrics in appendix A
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Table 1: Domain-Adaptation Approaches

Adaptation Level Method Data Requirements Target Domain
Data Query Generation [13, 23, 31, 59, 69, 87, 102, 113, 122, 134] Only Text

Knowledge Distillation [16, 17, 17, 40, 42, 49, 60, 68, 84, 106, 106, 113] Text and Queries
Model Size [126] Labelled Data

Capability [80] Labelled Data
Training Negative Selection [38, 48] Positive Query Document Pairs

Multi-task [3, 27, 75] Labelled Data
Domain-Invariant [18, 28, 29, 32, 64, 67, 110, 111] Labelled Data
Parameter-Efficient [15, 43, 54, 58, 65, 85, 105] Labelled Data

Ranking Integrating Sparse Retrieval [16, 21, 48, 51, 85, 91, 115, 119] Labelled Data

Since we focus on data-level and model-level approaches to
domain adaptation, this section introduces related work on both
strategies.

2.1 Data Level Domain-Adaptation
Several studies focus on generating labelled datasets for low-resource
domains. While query generation methods use unlabelled docu-
ments to generate queries given a document, knowledge distillation
approaches automatically establish missing links between queries
and documents, forming (pseudo) query-document pairs and gen-
erating relevance judgments, making the data more informative
for model training. In practice, query generation and knowledge
distillation are often combined.

2.1.1 Query Generation.
We distinguish two main query generation approaches. Extractive
approaches utilise various parts of the unlabelled documents or
external knowledge as (pseudo) queries. Inventive approaches use
a generative model to create (pseudo) queries.

2.1.1.1 Extractive Approaches
Extractive approaches differ in the part of the unlabelled document
or the type of external knowledge from which they extract the
synthetic query.

Summary-based methods extract a key segment from the un-
labelled document to form the (pseudo) query. For example, the
document title [73, 74], random sentences from the first section
[15], n-grams [15], or keywords [71].

Proximity-based methods focus on positional proximity within
the unlabelled document. One approach, ICT, selects a random
sentence from a passage as the query and the remainder as the
positive document [54]. Other methods involve selecting random
spans, sentences, or paragraphs from the unlabelled document as
pseudo queries [30, 70].

Hyperlink-based methods leverage anchor-document relation-
ships to generate query-document pairs, assuming they reflect
query-document relevance [69, 130]. Examples include using the
first section of a document as a query and hyperlink-connected sen-
tences from another document as positive pairs [15, 123]. Despite
its effectiveness, the availability of hyperlinks limits this approach
[104].

2.1.1.2 Inventive Approaches
We distinguish inventive query generation approaches by the type
of model they use to generate the (pseudo) query.

Prompt-based approaches utilise prompt-based generative LLMs,
which can be presented with documents and a prompt to generate
a query [9, 22, 23, 96] For example, Dai et al. 2022b utilise FLAN to
generate pseudo-queries for model training in a few-shot setting
and a zero-shot setting. The authors prompt FLAN to create queries.
The prompt includes a description of the search intent (e.g., find a
counterargument and answer the query), an unlabelled document
and, for the few-shot setting, an annotated query document example.
Bonifacio et al. 2022 also generate prompt-based query using gpt-3
as the generative LLM.

Shakeri et al. [101] utilise a pre-trained language model and
reframe the task of question-answer generation to machine reading
comprehension. Based on that, they train a seq2seq network that
generates a question-answer pair given an input text. Reddy et
al. [87] adapt this idea and add a selection step to the approach,
enabling them to generate better question-answer pairs.

The QGenmethod [69] uses a query generator trained on general
domain data to generate domain queries for the target corpus.

Alberti et al. [5] use a large text corpus to construct question-
answer-pairs in three stages: First answer extraction, second ques-
tion generation and third roundtrip filtering. Lewis et al. [55] ex-
tended this approach by adding passage selection and global filter-
ing.

2.1.2 Knowledge Distillation.
The general definition of knowledge distillation inmachine learning
is to transfer knowledge from a more capable model (teacher) to
a less capable model (student). For domain adaptation of dense
retrievers, we use a teacher to generate (more) precise (pseudo)
relevant judgments for the query document pairs. Afterwards, the
generated (pseudo) labelled data is used to train the student model
[17, 106, 113].

Different models function as teachers in a knowledge distilla-
tion setting. For example, pre-trained cross-encoder [40, 42, 84] or
enhanced bi-encoder (e.g. ColBERT [49]) [16, 17, 60, 68, 106].

GPL [113] adds knowledge distillation to the QGen method [69]
by generating (pseudo) labels from a cross-encoder (the teacher)
and uses them as soft labels to train a dense retriever (the student).
Combining knowledge distillation with query generation is espe-
cially useful since the pseudo-relevance scores can be used to filter
out generated queries that are irrelevant to the document.

2.2 Model Level Domain-Adaptation
In addition to tackling the problem of domain-adapting dense re-
trievers in low-resource scenarios on the data level, we can adapt
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themodels themselves. Zhan et al. [126] showed that cross-encoders
are more capable of generalising to out-of-domain test data than bi-
encoders and sparse retrievers. However, their high computational
costs during inference make their practical application impractical.
Ni et al. [80] scaled up the size of a T5 dense-retriever through
multi-stage training and reached a better zero-shot retrieval per-
formance on several BEIR [107] datasets. They suggest that bigger
models are more capable of adapting to new domains than smaller
models.

2.3 Multilingual Dense Retriever
While all of the approaches mentioned above use monolingual,
English, dense retriever, the field of multilingual semantic search
grows [7, 14, 26, 61, 76, 89, 120, 129], independent from the field of
adapting dense retrievers to new domains. Whereas [37] considers
multilingual dense retrieval and adapting dense retrievers to do-
mains with specialised language in low-resource setups, they do
not investigate the possibility of combining both.

In general, developing multilingual semantic search systems is
challenging due to the scarcity of labelled datasets in languages
other than English. Notable exceptions include mMARCO [10], a
machine-translated multilingual version of MS MARCO with 13
languages, and Mr. TYDI [128], covering 11 languages.

Multilingual dense retrievers are trained on monolingual texts
in multiple languages, allowing a single model to generate multi-
lingual text representations. It is possible to fine-tune these models
on high-resource languages and apply them to low-resource ones
in zero-shot settings. Adding small amounts of target language
data to the fine-tuning procedure further improves performance.
The essential mechanism of multilingual dense retrieve is that they
create a shared multilingual embedding space, mapping different
language embeddings to similar feature vectors [36, 46, 52, 78].

LaBSE [26], a recentmultilingualmodel, generates 768-dimensional
sentence embeddings and has 471 million parameters. It excels in
sentence alignment due to its multilingual pre-training, but its high
dimensionality and large parameter count make it costly to adapt
for downstream tasks. To address this, LEALLA [77], a distilled
encoder model, produces lower-dimensional multilingual sentence
embeddings with reduced computational demands while maintain-
ing competitive performance. The authors train LEALLA using
LaBSE through knowledge distillation, combining feature and logit
distillation.

LASER [6] takes a different approach by using an encoder-decoder
LSTM model trained on a translation task, excelling in exact trans-
lation tasks but less effective with non-exact sentence similarity.
Another approach is mUSE [19], trained on general domain data
with a translation ranking task. However, it requires hard negatives
for optimal performance, resulting in higher computational costs
[35]. Reimers and Gurevych [89] also explore knowledge distillation
to extend monolingual models into multilingual ones.

However, studies exploring the possibilities of adapting mul-
tilingual semantic search systems to low-resource domains are
scarce. Thus, this project offers a new perspective on combining
approaches from different research branches.

Figure 1: English Queries

3 DATA EXPLORATION
Since our data exploration informs some of our methodological
choices, we introduce it in the following sections.

3.1 Labelled Testdata
The test sets contain 19 unique German queries, matching 405
different German documents and another 19 unique English queries,
matching 455 different English documents. 11 English queries lead
to the same documents. However, only two German queries share
the same document as a "response ".

The test data queries have a simple sentence structure:
The most frequent English query accounts for 10Another feature

of the two query datasets is that they are not direct translations
of each other, making models trained for translation tasks, such
as LaBSE [26], less suitable for data processing. The most frequent
German query contains only one word4, while the most frequent
English query includes three words and an average number of
tokens per query of 3.211. The German queries generally consist of
one to two words; the longest consists of five words. Some English
queries are complete sentences, but most also consist of two to three
words; the longest contains seven words. Therefore, the queries
we generate for model training should also consist of one to seven
words for the English data and one to five for the German data.
Overall, the test queries consist of keywords instead of a complete
sentence or a question, making the data very suitable for keyword
search and not as ideal for semantic search due to the not very
complex queries [131]. However, the query data also contains a

4I use the terms word and token interchangeably
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Figure 2: German Queries

difficulty score for each query document pair. This query difficulty
is a complexity score, describing how a query matches the relevant
document on an ordinal 1-3 scale:

(1) simple, i.e., a query contains some terms directly present
in a document,

(2) medium, i.e., a query contains some synonyms to the terms
from a document,

(3) hard, i.e., a query matches a document on an abstract level,
i.e., if a query contains "problem with a pump", it can match
a document that reports about leakage in a pump.

Figure 3 and fig. 4 visualise the query difficulty distributions.
The difficulty of queries also differs between the two languages. 58%

of the German queries have a difficulty score of one, while 85% of
the English queries have a difficulty of one. Thus, for both lan-
guages, one is the most frequent category. However, 21% of the
German queries have a difficulty of two and another 20% a difficulty
of three. In the English query data, both categories each contain
less than 8% of the query data. Thus, English queries nearly always
contain words that also occur in the document, making it rather
suitable for a search based on lexical similarity. However, that is
different for the German query data, even though the simplicity
of the queries’ structure would suggest otherwise. Since we want
our textual information retrieval to be comparable across the two
languages, we will focus on dense retrieval instead of a lexical sim-
ilarity approach, as it should also be appropriate for the English
data and the only approach applicable to the German data.

Figure 3: English Queries

Figure 4: German Queries

3.2 Unlabelled Documents
In section 4we formalised the document corpus as𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑚},
where 𝑑𝑖 represents an individual document within the corpus.
For our bilingual set-up 𝐷 is actually further divided into 𝐷 =

{𝐷𝐷𝐸 , 𝐷𝐸𝑁 }, where:

• 𝐷𝐷𝐸 = {𝑑𝐷𝐸
1 , 𝑑𝐷𝐸

2 , ..., 𝑑𝐷𝐸
𝑚 } represents the German sub-

corpus containing documents written in German, and
• 𝐷𝐸𝑁 = {𝑑𝐸𝑁1 , 𝑑𝐸𝑁2 , ..., 𝑑𝐸𝑁𝑛 } represents the English sub-

corpus containing documents written in English

The two separate sub-corpora 𝐷𝐷𝐸 and 𝐷𝐸𝑁 consist of docu-
ments that capture human-written information related to the opera-
tions, issues, and maintenance activities occurring within chemical

5



Anna Bringmann

and process industry plants5. The primary function of these docu-
ments is to ensure that critical operational knowledge is preserved
across shift changes, minimising the risk of information loss.

More specifically, the documents in each sub-corpora include:

• Operational Logs: Records detailing ongoing work pro-
cesses, including descriptions ofwork operations completed,
operational statuses, and tasks performed by different per-
sonnel during their shifts.

• Repair and Maintenance Reports: Information regarding
equipment issues, troubleshooting steps taken, repairs per-
formed, and related technical details.

• Problem and Incident Reports: Descriptions of problems or
incidents encountered during plant operations, including
observed faults, their potential causes, and any remedial
actions.

• Questionnaires and Forms: Occasionally, the documents
may include filled-out questionnaires or structured forms,
mainly when documenting routine inspections or safety
checks.

• Informal Greetings andAnnouncements: Short, non-operational
messages including greetings and well-wishes (e.g., "Happy
New Year," "Merry Christmas", "Happy Easter"). These mes-
sages serve a social or morale-boosting purpose but are
unrelated to the plant’s technical or operational content.

The English corpus contains 47,145 unlabelled documents, and
the German one contains 79,201 unlabelled documents. However,
to eliminate the "number of documents" as a confounder variable,
we use 20,000 unlabelled documents for query generation for each
language.

4 METHOD
We formalise the textual IR task as:
Given the natural language query𝑞 and a collection of𝑚 documents
𝐷 = 𝑑𝑖

𝑚
𝑖=1 the IR system returns a list 𝐿 = [𝑑2, 𝑑2, ...., 𝑑𝑛] of 𝑛

relevant documents sorted by the retrieval model’s relevance scores.
To calculate these relevance scores, sparse information retrieval
models perform lexical matching, while dense retrievers perform
semantic matching.

Based on this formalisation of textual IR systems, a way of for-
malising dense retrievers arises:
Dense retrieval models encode the query and the document corpus
as dense vectors. Thus, they compute relevance scores through
some similarity function between these dense vectors:

Rel(𝑞, 𝑑) = 𝑓𝑠𝑖𝑚 (𝜙 (𝑞),𝜓 (𝑑)) (1)

where 𝜙 (·) ∈ R𝑙 and 𝜓 (·) ∈ R𝑙 are functions that map the query
and the documents into 𝑙-dimensional vector space. A deep neural
network performs this mapping, and the similarity 𝑓𝑠𝑖𝑚 is measured
by, for example, the inner product or the cosine similarity. Dense
retrievers, thus, measure the semantic interaction of query and
text based on the learned representation of both in latent semantic
space. The closer the query and text are to one another in latent
space, the more similar they are [131].

5One plant for each sub-corpus

As shown in table 1, we need to generate queries through either
an extractive or a more complex generative approach to use the un-
labelled German and English documents from the chemical process
industry for domain adaption.

4.1 Query Generation
Dai et al. [23] analyse that information retrieval tasks can take
different forms depending on the search intent and the query dis-
tribution 𝑄 . Both define how the query and document pair match.
For example, question-answering tasks require the information re-
trieval system to retrieve passages answering the passed question.
In contrast, some argument retrieval tasks search for support, and
others search for counterarguments to an argument passed as the
query. Therefore, we want our generated queries to be as similar
to the test queries as possible to fit the real-life search intent and
query distribution 𝑄 = {𝑞1, 𝑞2 . . . , 𝑞𝑘 }. We analyse the test data
and the unlabelled documents in section 3.

4.1.1 ExtractiveQuery Generaion.
Since the queries in the original data consist of several keywords
instead of entire sentences, we utilise an extractive query gen-
eration approach to construct synthetic queries. Since extractive
approaches primarily generate queries consisting of keywords and
should thus create data similar to the original one.

Sun et al. [104] found that utilising a hyperlink-based approach
to construct queries from documents performs best. However, we
cannot apply thismethod since hyperlink information is unavailable
in our data.

Another limiting factor is that our documents only contain short
passages, while many extractive learning methods rely on rather
long documents containing multiple passages. Thus, only perturba-
tion methods or sampling keywords of random n-grams from the
unlabelled documents are methods applicable to our data.

4.1.1.1 Keyword Query Generation
To generate queries as similar as possible in query distribution
to those in our test set, we will apply the keyword method sug-
gested by Ma et al. [71]. Based on the document language model,
they predict representative keywords for a given document. This
approach assumes that search users have a reasonable intention
of what terms appear in the "ideal" document that satisfies their
information needs. The generated keywords as the query are thus
the pieces of text that represent this "ideal" document.

Using Bayes Theorem, we can formulate this query-generation
idea as a probabilistic model:

𝑃 (𝑑 |𝑞) ∝ 𝑃 (𝑞/Θ𝑑 )𝑃 (𝑑) (2)

Where:

• 𝑞 = 𝑞1, ..., 𝑞𝑚 is the query
• 𝑑 = 𝑤1, ...,𝑤𝑛 is a document
• Θ𝑑 the document language model estimated for every doc-

ument
• 𝑃 (𝑑) the prior (usually assumed to be uniform and can thus

be ignored)
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The uniform prior assumption simplifies the formula so that the
query likelihood 𝑃 (𝑞/Θ𝑑 ), which is the query generation probabil-
ity given the document languagemodel, approximates the relevance
of a document to a query 𝑃 (𝑑 |𝑞).

The document language model found best performing for query
sampling is the multinomial unigram language model [124]. Each
word of the query is generated independently. The formal notation
of the query likelihood is thus:

𝑃 (𝑞 |𝑑) =
𝑚∏
𝑖

𝑃 (𝑞𝑖 |Θ𝑑 ) =
𝑖∏

𝑤∈𝑉
𝑃 (𝑤 |Θ𝑑 )𝑐 (𝑤,𝑞) (3)

Where:
• 𝑉 is the corpus vocabulary
• 𝑐 (𝑤,𝑞) is the count of word𝑤 in query 𝑞

Smoothing techniques are applied to eliminate zero probabili-
ties for unseen words and improve the accuracy of the estimated
document language model. For keyword queries, Dirichlet prior
smoothing works best [125]. We formalise it as:

𝑃 (𝑤 |𝑑) = 𝑐 (𝑤,𝑑) + 𝜇𝑃 (𝑤 |𝐶)
|𝑑 | + 𝜇 (4)

Where:
• 𝑐 (𝑤,𝑑) is the count of word 𝑤 in document 𝑑 , the term

frequency (tf)
• 𝜇 is a smoothing parameter defined as the average number

of words in a document for the whole corpus
• 𝑃 (𝑤 |𝑐) is a background (collection) language model based

on word counts in the entire document collection, the doc-
ument frequency (df)

• |𝑑 | is the length of the document (total word count)
We use this document language model with prior smoothing to

sample a set of words given the input document. Each sampled set
of words is a generated pseudo-query, but the word set with the
highest likelihood is deemed most "representative" of the document.

We sample a positive integer 𝑙 from a Poisson distribution as
the word set length (the number of keywords to sample from the
document) to simulate the varying query length. We formalise the
Poisson distribution as:

𝑃 (𝑥) = 𝜆𝑥𝑒−𝜆

𝑥
, 𝑥 = 1, 2, .., (5)

Where:
• 𝜆 is a hyper-parameter indicating the interval’s expectation.

Ma et al. [71] use 𝜆 = 3. The average number of tokens per query
in the English test data is 3.211, making 𝜆 = 3 adequate for sampling
the query length. However, the average German query length in
the test data is 2.263. Thus, we set 𝜆 = 2 for sampling the query
length for the German data.

Thus, for each word set, we independently sample 𝑙 words from
the corpus vocabulary 𝑉 = {𝑤𝑖 }𝑁1 according to the multinomial
unigram language model with Dirichlet prior smoothing.

We use to perform the keywords query extraction:
We describe our implementation of algorithm 1 in section 4.4.
A downside of this keyword generation approach is that the

query keywords are drawn with replacement, leading to search
queries with repeated tokens, which makes them less close to the

Algorithm 1: Sampling a Pair of Representative Word Sets

Input :Document 𝑑 , Vocabulary 𝑉 = {𝑤𝑖 }𝑁1 , probability
of word𝑤𝑖 generated by the document language
model with Dirichlet smoothing 𝑃 (𝑤𝑖 |𝑑), Query
likelihood score function 𝑄𝐿(𝑤𝑖 , 𝑑)

1 //Choose length
2 𝑙 = Sample(𝑋 ), 𝑋 ∼ Poisson(𝜆), 𝑥 = 1, 2, 3, ...
3 𝑆1, 𝑆2 = ∅, ∅
4 //Paired sampling
5 for 𝑘 ← 1 to 𝑙 do
6 𝑆1 = 𝑆1∪ Sample(𝑉 ),𝑤𝑖 ∼ 𝑃 (𝑤𝑖 |𝑑)
7 𝑆2 = 𝑆2∪ Sample(𝑉 ),𝑤𝑖 ∼ 𝑃 (𝑤𝑖 |𝑑)
8 end
9 //Higher likelihood deemed more representative

10 𝑆1 score =
∏𝑙

𝑖 𝑄𝐿(𝑤𝑖 , 𝑑),𝑤𝑖 ∈ 𝑆1
11 𝑆2 score =

∏𝑙
𝑖 𝑄𝐿(𝑤𝑖 , 𝑑),𝑤𝑖 ∈ 𝑆2

12 if 𝑆1 score > 𝑆2 score then
Output :𝑆1, 𝑑

13 else
Output :𝑆2, 𝑑

14 end

queries in the test set and to real-life search queries. Even though
the generated keyword queries are similar in structure to the test
queries, it remains questionable whether using these simple queries
for fine-tuning a pre-trained large language model (LLM) is enough
to enhance the semantic, domain-specific representation it gener-
ates, as the synthetical queries themselves will only contain words
which can also be found in the corpus vocabulary, as they are only
extracted, not generated. Therefore, at least for the German data,
the test set contains more difficult queries than the ones generated
by this approach, as shown in fig. 4. Thus, we compare the positive
query document pairs generated through the extractive learning
approach to two inventive query generation approaches that create
more diverse and complex queries using pre-trained large language
models.

4.1.2 InventiveQuery Generation.
Compared to the previously introduced extractive approach, the
inventive generated queries are not extracted from the text passages.
Instead, they are created by a pre-trained large language model,
given a text passage. Hence, their wording is more diverse, making
the generated queries closer to a semantic search use case and real-
life search intents. Models trained on this kind of synthetic data
reach performances close to fully supervised models [102, 113].

Different inventive query generation methods exist, depending
on the large language model used to generate the queries. We use
a prompt-based generative model for query generation and adapt
QGen, a state-of-the-art approach using a t5-based encoder-decoder
for query generation [69], to ourmultilingual setup. In the following
sections, we introduce botch approaches.

4.1.2.1 Prompt-Based Query Generation
Dai et al. [23], and Bonifacio et al. [10] showed that prompt-based
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query generation leads to excellent retrieval performance, with
Promptagator even exceeding the performance of GPL evaluated
with ndcg@10 on different BEIR datasets. [113]. Therefore, we also
apply a prompt-based query generation method.

We formalise the prompt-based query generation problem as:
Following our notation in section 3.2, 𝐷 = {𝐷𝐷𝐸 , 𝐷𝐸𝑁 } is the

document corpus
Where:

• 𝐷𝐷𝐸 = {𝑑𝐷𝐸
1 , 𝑑𝐷𝐸

2 , . . . , 𝑑𝐷𝐸
𝑚 }

• 𝐷𝐸𝑁 = {𝑑𝐸𝑁1 , 𝑑𝐸𝑁2 , . . . , 𝑑𝐸𝑁𝑛 }
Although we used language-specific prompts, we will simplify

the problem by focusing on a monolingual scenario in the following
notation. Thus here 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}

Let P be a set of two different prompts:

P = {𝑝1, 𝑝2} (6)

For each document 𝑑𝑖 ∈ 𝐷 , the goal is to generate a set of 𝑞
search queries using a generative LLM. We perform this generation
by applying each prompt 𝑝 𝑗 ∈ P to each document 𝑑𝑖 , producing
two sets of queries for each document.

We define𝐺 (𝑑𝑖 , 𝑝 𝑗 ) as the process that generates𝑞 search queries
for document 𝑑𝑖 using prompt 𝑝 𝑗 , where 𝐺 is the generative LLM:

𝐺 (𝑑𝑖 , 𝑝 𝑗 ) = {𝑞
𝑑𝑖 ,𝑝 𝑗

1 , 𝑞
𝑑𝑖 ,𝑝 𝑗

2 , . . . , 𝑞
𝑑𝑖 ,𝑝 𝑗

𝑘
} (7)

Where:

• 𝑞
𝑑𝑖 ,𝑝 𝑗

𝑘
is the 𝑘-th query generated for document 𝑑𝑖 using

prompt 𝑝 𝑗 .

We set k to three. Thus, three synthetic queries are generated for
each document 𝑑𝑖 and each prompt 𝑝 𝑗 .

We define the prompt-based query generation task as generating
two sets of queries for each document 𝑑𝑖 :

∀𝑑𝑖 ∈ 𝐷,𝑄𝑑𝑖
1 = 𝐺 (𝑑𝑖 , 𝑝1) and 𝑄

𝑑𝑖
2 = 𝐺 (𝑑𝑖 , 𝑝2) (8)

Where 𝐷 is the document corpus, 𝑄1 and 𝑄2 are the two sets of
generated queries, and 𝑝1 and 𝑝2 are the two prompts used for
query generation.

We use algorithm 2 to generate the prompt-based queries:
We had access to a GPT-4o [82] instance and thus used that as our

generative LLM 𝐺 . For a free, open-source version, Dai et al. [23]
show that FLAN [116] can replace GPT. For the GPT-4o instance,
we set the top_p nucleus sampling to 0.65, the frequency penalty to
0.0005, the presence penalty to 0.0005 and the temperature to 0.65.

4.1.2.2 QGen
Generative Pseudo Labelling [113], a state-of-the-art approach for
pseudo labelling and hard negative selection, builds upon a query
generation approach called QGen [69], which applies a query gener-
ator trained on general out-of-domain data to generate in-domain
queries for the document corpus. To allow finer analysis of the
variables influencing the domain-adaptation performance of multi-
lingual dense retrievers in a low-resource setup, we apply QGen
without the GPL extension. However, we follow the GPL setup and
thus introduce the method in section 4.2.1

Algorithm 2: Prompt-Based Query Generation
Input :Document corpus 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, Set of

prompts P = {𝑝1, 𝑝2}, Generative LLM 𝐺

1 𝑄𝑝1 , 𝑄𝑝2 = [], []
2 foreach 𝑑𝑖 ∈ 𝐷 do
3 for 𝑘 ← 1 to 3 do
4 //Generate 𝑘-th queries using document 𝑑𝑖 and both

prompts
5 𝑞

𝑑𝑖 ,𝑝1
𝑘

= 𝐺 (𝑑𝑖 , 𝑝1)
6 𝑞

𝑑𝑖 ,𝑝2
𝑘

= 𝐺 (𝑑𝑖 , 𝑝2)
7 // Add generated queries to the respective query set
8 𝑄𝑝1 = 𝑄𝑝1 ∪ {𝑞

𝑑𝑖 ,𝑝1
𝑘
}

9 𝑄𝑝2 = 𝑄𝑝2 ∪ {𝑞
𝑑𝑖 ,𝑝2
𝑘
}

10 end
11 end

Output :𝑄𝑝1 , 𝑄𝑝2

4.2 Pseudo Relevance Labelling
Knowledge distillation can be used to generate fine-grained rele-
vance labels, enhancing the quality of the training data, and it can
be combined with query generation methods. This combination
possibility is beneficial since query generation methods tend to gen-
erate noisy data, and the pseudo-relevance scores can be used to
filter it. Wang et al. [113] showed that combining query generation
approaches with pseudo-relevance labels can substantially boost
model performance. However, since generating pseudo-relevance
labels is computationally expensive, we only use one method, com-
paring it to the performance of the generated datasets without
relevance labels.

4.2.1 Generative Pseudo Labelling.
Wang et al. [113] suggested generative pseudo labelling (GPL), a
state-of-the-art supervised query generation method, building on
QGen [69] as mentioned in section 4.1.2. GPL [113] extends QGen
by utilising what they call hard negatives instead of in-batch nega-
tives and (pseudo-)labels generated by a cross-encoder instead of
only coarse-grained relevance labels for model training. Genera-
tive Pseudo Labelling consists of three steps. First, a DocT5Query
encoder-decoder generates three synthetic queries for every docu-
ment. Then, two pre-trained dense retrievers each mine the 50 most
similar documents for each generated query as hard negatives. In
the third step, a pre-trained cross-encoder scores the positive and
negative query-document pairs, generating fine-grained pseudo-
relevance labels for the data. The cross-encoder scores are used as
pseudo-labels:

𝛿 = 𝐶𝐸 (𝑞, 𝑑+𝑖 ) −𝐶𝐸 (𝑞, 𝑑
−
𝑖 ) (9)

Where:
• 𝐶𝐸: cross-encoder score
• 𝑞: the query
• 𝑑+

𝑖
: the positive document

• 𝑑−
𝑖
: the negative document

8
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The resulting relevance label 𝛿 is a logit ranging from −𝐼𝑛𝑓 to +𝐼𝑛𝑓 .
The higher the value, the more relevant the passage for the query.
The resulting labelled training dataset is generated by uniformly
sampling one negative and one positive document for each query.

We formalise the GPL task as:

∀𝑑𝑖 ∈ 𝐷,𝑄𝑑𝑖
𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑

= {𝑞𝑖 , 𝑑+𝑖 , 𝑑
−
𝑖 , 𝛿𝑖 } (10)

Where:
• 𝐷 is the unlabelled document corpus
• 𝑄

𝑑+𝑖
𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑

is the generated dataset containing the generated
query 𝑞𝑖 , the positive document 𝑑+

𝑖
, the hard negative doc-

ument 𝑑−
𝑖
and the pseudo-relevance label 𝛿𝑖 for document

𝑑𝑖
• 𝑞𝑖 = 𝐺𝑔𝑒𝑛 (𝑑𝑖 ) Where:

– 𝐺𝑔𝑒𝑛 is the query generation model
• 𝑑+

𝑖
= 𝑑𝑖

• 𝑑−
𝑖
= 𝐺𝑛𝑒𝑔 (𝑞𝑖 , 𝑑+𝑖 ) Where:

– 𝐺𝑛𝑒𝑔 is the negative mining model
• 𝛿𝑖 = 𝐺𝑐𝑟𝑜𝑠𝑠 (𝑞𝑖 , 𝑑+𝑖 , 𝑑

−
𝑖
) Where:

– 𝐺𝑐𝑟𝑜𝑠𝑠 is the pseudo-labelling cross-encoder model
The following figure summarises the GPL query generation pro-

cedure:

Figure 5: Generative Pseuo Labelling

We will follow this setup suggested by Wang et al. [113] to
generate our second set of labelled training data. However, we will
replace all models used in the original GPL code with multilingual
models to adapt the approach to our multilingual setup. section 4.4.4
holds more details about our implementation.

4.3 Models
We fine-tune two multilingual dense retrievers for each generated
German and English dataset. Since pre-trained Transformers re-
quire heavy computation to perform semantic search tasks, for
example, finding the most similar pair in a collection of 10,000
sentences requires about 50 million inference computations ( 65
hours) with BERT. We decided only to use sentence transformer
models, as they reduce the time to fulfil the task to about 5 sec-
onds [106]. We estimated 15 sentence transformer models with
various architectures on our test data without further fine-tuning.
We picked the two best-performing models of different sizes and

architectures for fine-tuning. We measured performance using Pre-
cision@10, Recall@10, F1@10, MRR@10, Average Precision@10
and NDCG@10. In appendix A, We define these metrics. table 6
states the performance of the top five baseline models. The two
best-performing models on all metrics for English, as well as Ger-
man data, were a LLaMA-based model [108, 109] and a multilingual
paraphrase-XML-R model [88, 90]. Both are single-representation
bi-encoder6. Table 2 summarises their attributes:

The LLaMA-based model [108] is a lighter, more efficient model
for generating sentence embeddings under constrained computa-
tional resources. In contrast, the XLM-R model [90] is more power-
ful and better equipped for multilingual data, with deeper layers, a
larger hidden size and a more extensive vocabulary size. According
to Ni et al. [80], larger models perform better on domain-adaptation
tasks; we thus expect the XLM-R model to outperform the LLaMA-
based model.

4.3.1 Loss functions for model fine-tuning.
We use theMultiple Negatives Symmetric Ranking Loss to fine-
tune our models on the generated data without pseudo-relevance
labels. It extends theMultiple Negatives Ranking loss

4.3.1.1 Query-oriented Loss Function
The query-oriented loss function is the exact negative log-likelihood
(NLL) [48]. It maximises the probability of retrieving the relevant
(positive) document 𝑑+

𝑖
for a given query 𝑞𝑖 over any negative

document 𝑑′ ∈ 𝐷− . (the set of irrelevant documents). We formalise
this as:

𝐿(𝑞𝑖 , 𝑑+𝑖 ) = −𝑙𝑜𝑔
𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑

+
𝑖 ) )

𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑
+
𝑖
) ) +∑𝑑 ′∈𝐷− 𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑

′ ) )
(11)

Where:
• 𝑑+

𝑖
is a relevant document for query 𝑞𝑖

• 𝜙 (·) and𝜓 (·) are the query and text encoder
• 𝑓 (·) measures the similarity between query embedding

𝜙 (𝑞𝑖 ) as well as text embedding𝜓 (𝑑+
𝑖
)

• 𝐷− is the set of all documents except the positive one(s)

4.3.1.2 Multiple Negatives Ranking Loss
Since the Query-oriented Loss Function iterates over all indexed
documents in the normalisation term computing, it is very time-
consuming. The negative sampling trick was introduced to the
negative log-likelihood to tackle that issue, leading to the Multiple
Negatives Ranking Loss (MNRL) [48, 84]. It reduces computational
costs compared to the exact formulation by sampling a set of neg-
atives from all documents. Its objective can be summarised as in-
creasing the likelihood of positive documents while decreasing the
likelihood of sampled negative documents. We formalise the MNRL
as:

𝐿(𝑞𝑖 , 𝑑+𝑖 ) = −𝑙𝑜𝑔
𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑

+
𝑖 ) )

𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑
+
𝑖
) ) +∑𝑑 ′∈𝑁𝑞𝑖

𝑒 𝑓 (𝜙 (𝑞𝑖 ),𝜓 (𝑑 ′ ) )
(12)

Where:
6Since several studies [16, 21, 48, 51, 85, 91, 115, 119] on monolingual, English data,
suggest improved domain adaptation if more complex retrieval systems combining
retriever and re-ranker are used. We also tried integrating different cross-encoders for
re-ranking, but since none improved the retrieval results, we used the two bi-encoders
by themselves
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Table 2: Model Overview

Aspect LLaMA-based Embedding Model Paraphrase-XLM-R-Multilingual-v1
Architecture BERT-based XLM-RoBERTa-based

6 layers 12 layers
12 attention heads 12 attention heads

Hidden Size 384 768
Model Size 22.7M parameters 278M parameters

Vocabulary Size 30,522 250,002
Max Sequence Length 256 128

Pooling Layer Mean pooling (384-dim) Mean pooling (768-dim)
Dropout 0.1 for attention and hidden layers 0.1 for attention and hidden layers

Special Features Embedding normalization after pooling N/A

• 𝑁𝑞𝑖 is a small set of negative samples for the query 𝑞𝑖
It was derived from the InfoNCE loss [81], which contrasts a positive
pair of examples with randomly sampled examples. If the loss uses
in-batch negatives for a dense retriever trained in batches, the set
of negatives 𝑁𝑞𝑖 for the query 𝑞𝑖 are all documents in the batch,
apart from the positive document 𝑑+

𝑖

4.3.1.3 Multiple Negatives Symmetric Ranking Loss
To balance retrieval, the Multiple Negatives Symmetric Ranking
Loss extends theMNRL by jointly optimising a query and a document-
oriented loss function. The document-oriented loss function is the
negative log-likelihood oriented at the document text [119]. It en-
sures that the relevant query 𝑞𝑖 is ranked higher than negative
queries 𝑞− ∈ 𝑄− and can be formalised as:

𝐿𝑇 (𝑞𝑖 , 𝑑+𝑖 ) = −𝑙𝑜𝑔
𝑒 𝑓 (𝜓 (𝑑

+
𝑖 ),𝜙 (𝑞𝑖 ) )

𝑒 𝑓 (𝜓 (𝑑
+
𝑖
),𝜙 (𝑞𝑖 ) ) +∑𝑞−∈𝑄− 𝑒

𝑓 (𝜓 (𝑑+
𝑖
),𝜙 (𝑞− ) )

(13)
Where:

• 𝑄− is a set of sampled negative queries.
Given this definition, the Multiple Negatives Symmetric Ranking
Loss can be formalised as:

𝐿𝑀𝑁𝑆𝑅𝐿 (𝑞𝑖 , 𝑑+𝑖 ) = 𝐿(𝑞𝑖 , 𝑑+𝑖 ) + 𝐿𝑇 (𝑞𝑖 , 𝑑
+
𝑖 ) (14)

This loss function ensures that queries and documents are opti-
mised symmetrically for retrieval, using a smaller set of sampled
negatives to maintain computational efficiency. Since we use gener-
ated queries, optimising query and document loss simultaneously
is helpful as it integrates the data generation mechanism of the
queries generated given the document into the loss formulation.

4.3.1.4 MarginMSE Loss
We utilise the MarginMSE loss [113] to optimise our models on the
pseudo-labelled generative data. It improves the Multiple Negatives
Ranking Loss, which only considers matching passages relevant.
However, that cannot be guaranteed with synthetically generated
queries and hard negative documents since the generated queries
might not match the positive documents, and the retrieved nega-
tive documents might also be relevant to the query. We define the
MarginMSE loss as:

𝐿𝑀𝑎𝑟𝑔𝑖𝑛𝑒𝑀𝑆𝐸 (𝑞𝑖 , 𝑑+𝑖 , 𝑑
−
𝑖 , 𝛿𝑖 ) = −

1
𝑀

𝑀−1∑︁
𝑖=0
|𝛿𝑖 − 𝛿𝑖 |2 (15)

Where:
• 𝛿𝑖 is a relevance label
• 𝑀 is the batch size
• 𝛿𝑖 is the score margin of student dense retriever:

– 𝛿𝑖 = 𝜙 (𝑞𝑖 )𝑇𝜓 (𝑑+𝑖 ) − 𝜙 (𝑞𝑖 )
𝑇𝜓 (𝑑−

𝑖
)

Since we use cross-encoder scores as pseudo-relevance labels, we
use the dot product as the similarity measurement due to the scores’
infinite range.

4.4 Implementation
We ran all our experiments on a Tesla V100-PCIE-16GB GPU. Thus,
optimising our code for memory use and efficiency was quite rel-
evant. We used several checkpoints so that re-running the script
does not re-do an already executed step.

4.4.1 Data Pre-Processing.
Before using the unlabelled and the test data, we remove duplicate
documents as well as queries with the same ID and text, replace
NAs with 0, remove leading and trailing whitespaces, newlines,
and tabs from the text data, and, to ensure data consistency, we
replace German umlauts so that ü becomes ue, ä becomes ae, ö
becomes oe, and ß becomes ss. Since some documents contain
repeated punctuation, which does not convey semantic meaning,
we remove every punctuation mark occurring more than once (with
a whitespace in between or not), except for the first one.

4.4.2 KeywordQuery Generation. We
generally followed Mas et al.s [71] setup for the keyword genera-
tion. However, since our documents are shorter, containing fewer
tokens and a smaller vocabulary than the documents they used, we
adapted some thresholds based on the descriptive statistics of our
unlabelled document corpora. For example, in the original code,
a randomisation mechanism excluding short documents sets the
token threshold to 100, defining documents containing less than
100 tokens as short. Our average document length is 10.9 tokens.
Thus, We used a value of 10 instead. Ma et al. [71] also exclude stop-
words during the tokenisation of the documents. Still, since they
developed their code for a monolingual, English setting, we added
stopwords specialised for the German language and used those for
the keyword generation with the German unlabelled documents.
Also, the original PROP [71] offers parallel processing on multiple
workers. Since we adapted the method and only used one worker,
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we simplified the code by excluding the parts needed for parallel
processing.

4.4.3 Prompt-BasedQuery Generation.
We constructed two prompts for the prompt-based query genera-
tion, each containing a description of the generative model’s role
and a more detailed task description. The two prompts contain vary-
ing amounts of information about the query to generate and the
general nature of the document corpus. Prompt one is less informa-
tive, while prompt two contains query generation restrictions and
information about the nature of the unlabelled document corpus.

The two English prompts 𝑃1 and 𝑃2 we use are:
𝑃1 =Extract from the following text {text} {query_num} search

queries. Consider the entire context, as it is crucial for understanding
the text. The texts are from the context of chemical and pharmaceutical
production environments. The queries need to be meaningful, as if you
are supposed to use them to google. A query should contain between 1
to 7 words. Reply with a list of queries separated by semicolon. Keep
only the text of queries, no enumeration.

𝑃2 =Generate {query_num} search queries for the following text
{text}. The queries need to be meaningful as if you are supposed to use
them to google. A query should contain between 1 to 7 words. Minimise
using tokens with digits. Avoid using persons names. Reply with a list
of strings where each string is a query, the queries need to be separated
by a semicolon. Keep only the text of queries, no enumeration. Consider
the entire context, as it is crucial for understanding the text. The texts
are logs from a chemical production factory.

The two German prompts are:
𝑃1 =Entnimm aus dem folgenden Text {text} {query_num} Suchan-

fragen. Berücksichtige dabei den gesamten Kontext, da er für das
Verständnis des Textes entscheidend ist. Die Texte stammen aus dem
Kontext der chemischen und pharmazeutischen Produktionsumge-
bungen. Die Anfragen müssen sinnvoll sein, als ob sie zur Google-
Suche verwendet werden sollen. Eine Anfrage sollte zwischen 1 bis
5 Wörter enthalten. Antwort mit einer Liste von Anfragen, getrennt
durch Semikolon. Behalte nur den Text der Anfragen, keine Aufzäh-
lung.

𝑃2 =Generiere {query_num} Suchanfragen für den folgenden Text
‘text’. Die Anfragen müssen sinnvoll sein, als würdest du sie zum
Googlen verwenden. Eine Anfrage sollte zwischen 1 und 5 Wörtern en-
thalten. Minimiere die Verwendung von Token mit Ziffern. Verwende
keine Namen von Personen. Antworte mit einer Liste von Zeichenket-
ten, wobei jede Zeichenkette eine Anfrage darstellt, die Anfragen sollen
durch ein Semikolon voneinander getrennt sein. Behalte nur den Text
der Anfragen, keine Aufzählung. Berücksichtige den gesamten Kon-
text, da er für das Verständnis des Textes entscheidend ist. Die Texte
sind Logs aus einer Firma im Bereich chemische Prozessindustrie.

During query generation, we set {query_num} to 3 and replaced
{text} with the text of the unlabelled document. We analyse the
effects of using two different prompt-s in section 5.1

4.4.4 GPL.
Since the GPL [113] train method includes training a model on the
generated dataset, We reimplemented only its query generation,
negative selection and pseudo-labelling parts. We also replaced
the monolingual English models with multilingual models capable

of processing German and English data. We tried to find a model
similar to the initially used monolingual English model architec-
ture. We replaced the T5-based model for query generation with
a multilingual T5 model fine-tuned on the MMARCO dataset for
query generation [2]. To replace the ms-marco-MiniLM-L-6-v2
cross-encoder [1] used for pseudo labelling the generated data, we
used the msmarco-MiniLM-L6-en-de-v1 cross-encoder [1]. For the
negative selection, we use the two best-performing baseline models
[90, 108].

4.4.5 Indexing.
Since the amount of data we need to search during inference is
relatively small (20,500 documents), we do not index it. Instead, we
keep the embeddings in memory and perform an exhaustive search,
computing the cosine similarity of the query and all text vectors to
select the top documents for a query.

4.4.6 Model Fine-tuning.
We experimentally set our learning rate for each query generation
method and model combination. For the in-batch negative training
with Multiple Negatives Symmetric Ranking Loss7, we use the most
significant possible batch sizes to increase the negative document
distribution, as the batch size directly determines the number of
available negatives. For the smaller LLaMA-based model [108], that
was a batch size of 200, and for the larger XLM-R Model [90], a
batch size of 80.

For the training on the pseudo-labelled datasets withMarginMSE
loss, we used a fixed batch size of 32 as suggested by Wang et al.
[113].

For both negative selection approaches, we set the warmup ra-
tio to 0.1 and used the default AdamW optimiser, which includes
learning rate scheduling. Also, we fine-tuned our models using an
Early Stopping mechanism, measuring precision@3 on a validation
set with a patience of five. For training with Multiple Negatives,
Symmetric Ranking Loss, and in-batch negatives, the validation
set consists of 20% of the generated training data for the specific
query method and relevance label combination. For training with
MarginMSE loss, we set the size of the evaluation data depending on
the data generation method used since that influences the dataset
size. For the GPL-generated pseudo-relevance labelled data with
1,120,000 examples, we keep it at 20%; for all other query gener-
ation methods with 4,480,000 pseudo-labelled training examples,
we reduce the validation dataset size to 1% of the training exam-
ples since a larger amount of validation data exceeds the memory
capacities of our GPU. For all validation datasets independent of
query generation mechanism and relevance label, we added 10,000
unlabelled documents to the validation dataset. We chose preci-
sion@3 as an evaluation metric to leave a margin for errors such
as false negatives, even though we generated three distinct queries
for every document with every query generation method; thus, in
theory, each query should only match one relevant document in
the whole corpus. Since we used this early stopping mechanism,
we set the number of Epochs to 500, evaluated the model, and saved
it every 500 steps.
7We also tried MegaBatchMarginLoss, GISTEmbedLoss and CachedGISTEmbedLoss
[103], for fine-tuning the models with in-batch negatives, however, a batch size >=
500 as well as holding two models in memory exceeded the capacities of our GPU
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5 EXPERIMENTS
5.1 General Experimental Set-Up
Figure 6 visualises our experimental set up.

We highlighted the experimental variables in different colours.
However, for simplicity, we excluded language as a variable. We
separately apply the complete experimental setup for the English
and German unlabelled documents. The three query generation
methods on the left are highlighted in yellow, the pseudo labelling
in the middle in green, and the two different sentence transformers
on the right in blue.

The evaluation of our experiments involves fine-tuning the two
models on the differently generated datasets. After fine-tuning, we
measure their performance on the test set reporting Precision@10,
Recall@10, F1@10, MRR@10, MAP@10, and NDCG@10. Appen-
dix A contains a definition of the metrics.

In total, we generated twelve different datasets. Three were gen-
erated by the different query generation methods without relevance
labels, three for each query method with pseudo-relevance labels
and hard negatives and that times two since the datasets exist sepa-
rately for German and English data. Thus, we trained 12 models in
total since we trained the models on all datasets for all languages.

5.2 Results
Table 3 provides a comprehensive evaluation of the different models
trained on English data. Table 4 summarises the results for the
German models. Each is structured according to our explorative
variables. The three distinct data generation strategies: Keyword,
Prompt or QGen. The use of either no pseudo labels or fine-
grained pseudo-relevance labels (GPL) and the two different
models: the LLaMA-based embedding model and the XLM-R
based. We analyse the influence of each experimental variable in
the following subsections.

5.3 Languages
We start with the variable language since it has the most prevalent
influence on model performance.

5.3.1 English Data.
The results for the English Data are summarised in table 3. As indi-
cated by the bold number, the best-performing model for English
data, on average across all metrics, was the XLM-R baseline model.
Thus, our domain adaptation approach did not lead to the retrieval
of more relevant documents or a better document ranking. We dis-
cuss possible reasons in section 5.3.3, but for the further analysis of
the other three variables we explored - query generation method,
pseudo-relevance labelling and model size - we will focus solely on
the German retrieval performance.

5.3.2 German Data.
A German model reached the overall best average performance
of 71.65% across all metrics. Our domain adaptation strategy thus
improved the retrieval performance by 3.58%. The combination
of domain-adaptation variables to create that model is: Fine-tuning

on QGen data 8 without pseudo-relevance labels, using the XLM-R
architecturemodel with a larger model size compared to the LLaMA-
based model. In the following sections, we analyse the influence
of the other variables on target domain retrieval performance in
detail.

5.3.3 Discussion.
Even though the best-performing model is German, all other Ger-
man models are outperformed by the English baseline XLM-R
model, even though the domain adaptation approaches lead to sub-
stantial performance improvements on the German testset. That
allows us to formulate some theories about why the domain adap-
tation approaches only improved retrieval for the German but not
the English data.

The LLaMA-based [108] and the XLM-R [90] model demonstrate
strong performance in the English baseline configuration. For in-
stance, XLM-R’s baseline shows high scores across the board, espe-
cially with metrics like Precision@10 (89.50%) and F1@10 (54.70%).
This strong performance may indicate that these models already
capture relevant information, and further domain-specific adapta-
tion fails to yield substantial improvements. Multilingual models are
primarily trained on a significantly larger and more diverse set of
English than German data. This might also be true for the LLaMA-
based and the XLM-R model [114]. English is more commonly
represented in multilingual pre-training corpora, which means that
multilingual models are better optimised for English retrieval tasks,
in general [121]. This helps explain why the baseline models per-
form better on English test data. Thus, the effectiveness of domain
adaptation might depend on language. Domain adaptation meth-
ods, such as keyword-based or prompt-based training, may be more
effective in German because the baseline model had more room for
improvement. While English models already perform well due to
better pre-training and more abundant data, the German baseline
performance, especially of the XLM-R model, was lower, leaving
more opportunity for adaptation methods to make a noticeable
difference. The improvement in retrieval performance for the Ger-
man data after domain adaptation reflects how specialised training
helps models overcome some inherent challenges of handling non-
English languages in multilingual settings. However, the overall
worse performance of German models compared to English ones is
primarily due to the stronger baseline for English and the larger
amount of training data available for English. Future work could
involve fine-tuning with larger, domain-specific German corpora or
monolingual German models to close the performance gap between
languages.

8thus, GPL generated data but only the query document pairs without the relevance
labels or hard negatives
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Figure 6: Experimental Set Up

5.4 Query Generation Methods and Pseudo
Relevance Labelling

5.4.1 Generated data.
The following table summarises the amount of queries generated
by each query generation method for both German and English:

The Keyword querymethod generated 32,584 German and 54,930
English queries. This approach produced the fewest queries overall,
particularly for the German dataset. The difference between lan-
guages arises since documents in the unlabelled German corpus
contain an average of 12.236 tokens, with a total vocabulary of
8.429. In contrast, records in the unlabelled English corpus contain
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Table 3: English Data, Performance on Testset

English Precision@10 Recall@10 F1@10 MRR@10 aP_N@10 ndcg@10 AVG
LLaMA-based baseline 84.70% 41.70% 52.30% 97.40% 87.00% 51.50% 69.10%

keyword no labels 81.55% 42.45% 52.11% 98.25% 93.47% 52.71% 70.09%
pseudo-relevance labels 84.14% 44.26% 54.22% 96.49% 92.33% 53.02% 70.74%

QGen no labels 83.79% 42.75% 52.73% 96.20% 91.35% 51.27% 69.68%
pseudo-relevance labels (GPL) 83.23% 42.88% 52.92% 93.71% 91.92% 51.34% 69.33%

prompt-1 no labels 83.07% 44.53% 54.09% 96.64% 93.65% 56.00% 71.33%
pseudo-relevance labels 84.41% 44.23% 54.29% 93.86% 91.88% 53.34% 70.33%

prompt-2 no labels 82.31% 42.82% 52.65% 97.37% 93.35% 52.94% 70.24%
pseudo-relevance labels 80.63% 40.51% 50.27% 96.05% 92.32% 49.84% 68.27%

XLM-R baseline 89.50% 43.40% 54.70% 100.00% 90.30% 51.30% 71.53%
keyword no labels 78.47% 41.24% 50.60% 97.08% 92.85% 50.96% 68.53%

pseudo-relevance labels 66.57% 36.91% 43.89% 93.04% 82.26% 44.91% 61.26%
QGen no labels 77.97% 39.80% 49.03% 100.00% 92.23% 49.38% 68.07%

pseudo-relevance labels (GPL) 76.31% 38.33% 47.84% 96.78% 90.03% 47.30% 66.10%
prompt-1 no labels 80.66% 41.97% 51.53% 96.20% 92.27% 51.61% 69.04%

pseudo-relevance labels 63.96% 33.38% 41.15% 91.80% 83.34% 42.28% 59.32%
prompt-2 no labels 80.16% 41.61% 51.17% 98.25% 93.07% 51.39% 69.27%

pseudo-relevance labels 74.63% 37.95% 46.60% 97.37% 89.15% 47.76% 65.58%

Table 4: German Data, Performance on Testset

German Precision@10 Recall@10 F1@10 MRR@10 aP_N@10 ndcg@10 AVG
LLaMA-based baseline 71.10% 54.30 % 54.30% 90.40% 82.10% 56.20% 68.07%

keyword no labels 67.73% 47.40% 46.02% 83.33% 80.67% 51.77% 62.82%
pseudo-relevance labels 70.38% 50.27% 47.74% 85.59% 83.39% 55.00% 65.40%

QGen no labels 71.05% 53.07% 49.16% 90.64% 89.93% 59.79% 68.94%
pseudo-relevance labels (GPL) 71.58% 53.52% 49.36% 94.74% 91.28% 59.29% 69.96%

prompt-1 no labels 71.46% 50.85% 49.31% 88.01% 85.77% 58.26% 67.28%
pseudo-relevance labels 70.20% 49.89% 47.14% 90.35% 88.98% 55.61% 67.03%

prompt-2 no labels 71.22% 50.77% 48.96% 89.47% 87.20% 59.18% 67.80%
pseudo-relevance labels 70.73% 51.73% 48.07% 94.74% 91.36% 57.79% 69.07%

XLM-R baseline 66.30% 52.80% 44.00% 92.10% 79.80% 53.90% 64.82%
keyword no labels 70.28% 49.80% 47.65% 85.57% 84.39% 51.88% 64.93%

pseudo-relevance labels 58.29% 43.26% 39.46% 84.80% 81.44% 46.36% 58.94%
QGen no labels 72.82% 57.97 % 50.90 % 95.09% 91.62% 61.53% 71.65%

pseudo-relevance labels (GPL) 69.85% 54.12% 48.67% 95.61 % 92.07% 58.94% 69.88%
prompt-1 no labels 71.37% 54.71% 49.58% 92.31% 89.71% 59.72% 69.57%

pseudo-relevance labels 69.91% 50.83% 47.82% 89.47% 86.77% 55.07% 66.65%
prompt-2 no labels 71.96% 55.13% 49.87% 93.42% 90.85% 61.15% 70.39%

pseudo-relevance labels 71.70% 57.26% 49.82% 93.89% 92.31% 61.01% 71.00%

Table 5: Amount of Generated Queries

Query Generation Methods German Queries English Queries
Keyword queries 32 584 54 930

GPL 59 912 53 864
Prompt 1 queries 95 324 94 009
Prompt 2 queries 81 260 72 674

an average of 95.134 tokens and a total vocabulary of 13.126 tokens.
This impacts the results of the keyword generation method since it
relies on fixed thresholds for the number of tokens in a document
to qualify it for query generation. The larger average document
size and vocabulary in the English document corpus, thus, lead to
more English keyword-generated queries than in German.

GPL generated 59,912German queries and 53,864 EnglishQueries,
showing a more balanced output across both languages than the
other query generation methods.

The first prompt generates the most prompt-based queries over-
all, with 95,324 for German and 94,009 for English. The queries
generated by the second prompt are also substantial: 81,260 Ger-
man queries and 72,674 English queries. However, this output is
somewhat lower than the number generated by the first prompt.
This method’s high output can be attributed to challenges in paral-
lel processing of the two prompts and the caching mechanism. This
leads to duplicated queries across seeds. Also, the generative model
sometimes returns more than the specified number of queries for a
document.

Regarding language differences, all methods produce more Ger-
man than English queries, except the extractive approach.
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The GPL dataset consists of 1,120,000 labelled examples for the
pseudo-labelled generated data, while all other datasets consist of
4,480,000 labelled examples.

5.4.2 Model Performance - German data.
The keyword-based approach without pseudo-relevance labels per-
forms worse than the baseline models on most metrics. For example,
for the LLaMA-based model, Precision@10 drops to 67.73% (from
71.10%), and the average score falls to 62.82%. Even when pseudo-
relevance labels are used, the average score only improves to 65.40%,
which is still below the baseline. However, for the XLM-R models,
adding pseudo-relevance scores to the keyword generation leads
to sharp performance drops. This indicates that the keyword-based
method, especially with pseudo-relevance labels, does not align
well with the retrieval task. The bad performance might also be
attributed to the small amount of German queries generated by the
keyword approach, thus leading to fewer training examples.

The prompt-based approach performs better than the keyword-
based method but seldom surpasses the QGen approach. Thus,
prompt-based methods offer some improvement, likely because the
prompts help guide the model in generating more domain-specific
queries. However, that improvement is marginal for the LLaMA-
based model. At the same time, Prompt-based methods work well
with XLM-R, indicating an interaction between model size or ar-
chitecture and this query generation approach. For XLM-R, the
second, more complex prompt also yields significantly better re-
trieval performance results, indicating that adding knowledge about
the needed query structure and the unlabeled document corpus
enables the generative model to create better prompts. This find-
ing supports the findings introduced by Dai et al. [23], which also
found that enriching the prompts with further in-domain knowl-
edge improves retrieval performance. However, they used labelled
data examples to do so.

Both LLaMA and XLM-R show that QGen consistently outper-
forms keyword-based and prompt-based approaches, with XLM-R
benefiting the most. This suggests that the t5-encoder-decoder
model generates the semantically richest queries. However, a quick
analysis of the QGEN Queries revealed they are most similar in
structure to actual questions compared to the keyword and prompt-
generated queries. Thus, the QGen queries might be more similar
to the source-domain data used to train the two dense retrievers,
facilitating knowledge transfer to the new domain [92, 132].

5.5 Models - German Data
In comparing the two models, LLaMA-based and XLM-R, across
the German retrieval task, the results indicate some interesting dif-
ferences in their performance, particularly in relation to the query
generation methods and overall performance. The LLaMA-based
model’s baseline performance is stronger than that of XLM-R. It
achieves a higher average score (68.07%) compared to XLM-R’s
64.82%. This suggests that the LLaMA-based model is better out-of-
the-box for German retrieval tasks, likely due to better representa-
tion of domain-specific information and a stronger initial language
understanding. However, the performance gains from query gen-
eration methods are generally more incremental for the LLaMA

model, while the XLM-R model shows more significant improve-
ments when enhanced through fine-tuning on generated target
domain data. The effect is fascinating since the different architec-
ture and larger size of the XLM-R model are probably related to the
more effective fine-tuning, supporting the findings of Ni et al. [80].

6 CONCLUSION
In this thesis, we addressed the research question: "How to per-
form domain adaptation for multilingual semantic search in a low-
resource setup?" We experimentally explored domain adaptation
for multilingual semantic search in a zero-shot setting, using unla-
belled German and English documents from the chemical process
industry alongside a small labelled test set for evaluation. We ex-
amined the impact of four key variables on domain adaptation in a
multilingual context.

Firstly, we assessed different query generation methods, includ-
ing an extractive approach that samples keyword queries, a genera-
tive approach using a multilingual T5-based model, and a prompt-
based method using GPT-4o.

Secondly, we evaluated the role of pseudo-labelling through
knowledge distillation to address potential issues with the quality
of generated queries, following the approach suggested by Wang
et al. [113].

Thirdly, we studied the influence of model size by fine-tuning a
smaller LLaMA-based embeddingmodel and a larger XLM-RoBERTa
model, investigating their respective capacities for domain adapta-
tion.

Finally, we considered the effect of dataset language, analysing
performance for English and German test data.

By systematically analysing these variables, we aimed to iden-
tify effective strategies for domain adaptation in multilingual low-
resource settings.

The explored domain adaptation approaches for the English
setup did not yield performance gains, probably because multilin-
gual models were already strong baseline performers on English
data, leaving less room for improvement.

For the German data, we conclude that effective domain adap-
tation for multilingual semantic search in a low-resource setup
requires careful query generation and model architecture optimisa-
tion.

The XLM-R model, though initially weaker, showed significant
improvements with advanced query generation techniques, like
QGen, on German test data. In contrast, the LLaMA-based model
had stronger baseline performance but responded less to query
generation enhancements. This indicates a possible interaction
between model size or architecture and the effectiveness of domain
adaptation approaches that rely on fine-tuning the model with
generated in-domain data. With the larger model showing more
adaptability to domain-specific content.

Additionally, the use of pseudo-labelling had limited impact.
Thus, successful domain adaptation in low-resource multilingual
settings requires a combination of well-designed query generation
strategies and exemplary model architectures, focusing on model
scalability and query informativeness.
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7 OUTLOOK
This thesis is only a tiny step towards adapting multilingual dense
retrievers to low-resource domains. For future research, explor-
ing the unified optimisation of a multilingual dense retriever on
generated labelled data for multiple languages simultaneously is
an interesting direction. Another is further exploring the use of
unlabelled data generated in day-to-day industry processes for
generating labelled datasets through query generation methods.
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A METRICS
The recall@k [133] states the fraction of returned relevant docu-
ments in all relevant documents in the corpus

Recall@k =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

𝐷𝑟𝑒𝑡𝑟𝑞,𝑘

𝐷𝑟𝑒𝑙𝑞

(16)

Where:
• 𝑄 is the query set over which the recall@k values are aver-

aged
• 𝑞 is a single query
• 𝐷𝑟𝑒𝑡𝑟𝑞,𝑘 is the number of relevant documents for the query

𝑞 returned at top k positions by the retriever
• 𝐷𝑟𝑒𝑙𝑞 is the total number of relevant documents for query

𝑞.
The precision@k [133] states the fraction of relevant texts in all
top-k retrieved texts for the query set 𝑄

Precision@k =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

𝐷𝑟𝑒𝑡𝑟𝑞,𝑘

𝑘
(17)

The average precision (𝐴𝑃𝑞 ) [133] averages the Precision values at
the position of each correctly returned document for a query.

AP𝑞 =
1

𝐷𝑟𝑒𝑙𝑞

𝐿∑︁
𝑘=1

Precision@k × I(𝑞, 𝑘) (18)

Where:
• Precision@k describes the per-query precision at position

k
• 𝐿 is the length of a retrieved list
• I(𝑞, 𝑘) is 1 if the document at position 𝑘 is relevant for query

𝑞, 0 otherwise
The mean average precision (MAP) [133] states the mean precision
scores over a set of Queries 𝑄 .

MAP =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

𝐴𝑃𝑞 (19)

The F1 score [133] is the harmonic mean of precision and recall,
balancing both metrics to give a single measure of retrieval quality.
It is beneficial when there is an uneven class distribution or when
both false positives and false negatives are important.

F1@k =
2 × Precision@k × Recall@k
Precision@k + Recall@k

(20)

The discounted cumulative gain (𝐷𝐶𝐺𝑞 ) [133] takes the position of
the relevant retrieved documents into account and wants relevant
texts to be at the top of the list

𝐷𝐶𝐺𝑞@𝑘 =

𝐿∑︁
𝑘=1

2𝑔𝑖 − 1
𝑙𝑜𝑔2 (𝑖 + 1)′

(21)

Where:
• 𝑔𝑖 is a graded relevance score for the i-th retrieved text

The normalised discounted cumulative gain (NDCG@k) [133] states
the sum of the normalised DCG values at a specific position 𝑘 .

NDCG@k =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

𝐷𝐶𝐺𝑞@𝑘

𝐼𝐷𝐶𝐺𝑞@𝑘
(22)

Where:
• 𝐼𝐷𝐶𝐺@𝑘 is the ideal discounted cumulative gain at a spe-

cific rank position 𝑘 .
The mean reciprocal rank (MRR) [133] forms an average over a set
of Queries 𝑄 for the reciprocal of the rank of the first retrieved
positive document.

𝑀𝑅𝑅 =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

1
𝑟𝑎𝑛𝑘𝑞

(23)

B BASELINE MODELS
The following table summarises the top five baseline model’s per-
formance on the test set without fine-tuning.

Table 6: Baseline Results

Metric German Data English Data
Mean Precision@10 LLaMA-based (0.711) XLM-R (0.895)

XLM-R (0.663) LLaMA-based (0.847)
XLM-RoBERTa (0.611) multilingual-MiniLM (0.774)

LaBSE (0.579) distiluse (0.768)
all-MiniLM-L12 msmarco-distilbert (0.736)

Mean Recall@10 LLaMA-based (0.543) XLM-R (0.434)
XLM-R (0.528) LLaMA-based (0.417)

Multilingual-e5-small (0.518) multilingual-MiniLM (0.361)
all-MiniLM-L12 (0.420) Multilingual-e5-small (0.361)

BioLORD (0.416) all-MiniLM-L12 (0.359)
Mean F1@10 LLaMA-based (0.477) XLM-R (0.547)

XLM-R (0.440) LLaMA-based (0.523)
Multilingual-e5-small (0.391) multilingual-MiniLM (0.463)

all-MiniLM-L12 (0.383) distiluse (0.459)
XLM-RoBERTa (0.370) msmarco-distilbert (0.445)

Mean MRR@10 XLM-R (0.921) XLM-R (1.000)
LLaMA-based (0.904) LLaMA-based (0.974)
all-MiniLM-L12 (0.895) DPR-XM (0.965)

DPR-XM (0.796) quora-distilbert (0.954)
LaBSE (0.772) multilingual-MiniLM (0.947)

Mean Average Precision@10 LLaMA-based (0.821) XLM-R (0.903)
XLM-R (0.798) LLaMA-based (0.870)

all-MiniLM-L12 (0.758) quora-distilbert (0.854)
XLM-RoBERTa (0.720) multilingual-MiniLM (0.828)

DPR-XM (0.720) DPR-XM (0.824)
Mean NDCG@10 LLaMA-based (0.562) LLaMA-based (0.515)

XLM-R (0.539) XLM-R (0.513)
all-MiniLM-L12 (0.462) multilingual-MiniLM (0.453)

Multilingual-e5-small (0.455) distiluse (0.450)
XLM-RoBERTa (0.441) msmarco-distilbert (0.450)

C FURTHER IMPLEMENTATION DETAILS
C.1 Prompt-Based Query Generation
Our implementation of algorithm 2 includes a caching mechanism
and the option to send the documents to the GPT-4o instance in
parallel to speed up the process.

C.2 Negative Selection
We reimplemented the NegativeMiner since we load the corpus
query and qrel data differently for the prompt-based and keyword-
generated queries. The original NegativeMiner implements the
BEIR data loader directly; we pass the query, corpus, and qrel files
instead.
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D HISTORY OF TEXTUAL INFORMATION
RETRIEVAL

The textual information retrieval task was theorised as early as
1950 by T. Joyce and R. M. Needham [47]. They asked how texts can
be indexed and picked representative terms to retrieve relevant in-
formation. Following that idea, the "bag-of-words" assumption led
to a vector space model that encoded the query and the document
in sparse term-based vectors [97, 99]. Many different approaches
to constructing these sparse vectors exist. A first approach, called
tf-idf, allows for a relevance measure based on the text vector’s and
query vector’s lexical similarity [4, 93, 98]. As a second approach,
inverted indexing utilises the same representation idea as tf-idf
but makes text retrieval more efficient by organising documents
in term-oriented posting lists [135, 136]. Probabilistic relevance
frameworks are a third approach to solving the text retrieval task
and modelling the relevance of documents. They enable a more
in-depth understanding of the retrieval mechanisms. One example
of such a framework is BM25 [94, 95], but multiple more (statistical)
language modelling approaches exist [124].
The rise of machine learning approaches led to the use of learning
to rank algorithms for text retrieval tasks [56, 63]. These algorithms
apply supervised machine learning models to rank the relevance of
retrieved documents but require human feature engineering.
The availability of more computational power and the application
of stochastic gradient descent for neural networks resulted in neu-
ral information retrieval, a deep learning approach to text retrieval
tasks. This approach no longer required hand-designed feature
engineering [33, 34, 44, 79]. Neural information retrieval models
map the query and the text corpus into low-dimensional vectors in
latent representation space. Thus, they encode the textual input in
dense vectors. This process is also called embedding. The similarity
between the query and the document vector estimates the relevance
of a text for a query. Thus, the relevance of information is no longer
estimated by lexical but by semantic similarity. Contrary to this
approach, the sparse vectors constructed by classical vector space
models encode explicit term dimensions. In contrast, the dense
vectors constructed by neural IR models encode the latent semantic
characteristics of language. The so-called transformer architecture
was the subsequent historical development in the textual informa-
tion retrieval task after neural IR. Nowadays, transformers are the
basis for most NLP tasks. They were initially proposed to model any
sequence data by utilising the self-attention mechanism through
which every token attends to every other token in the sequence
[20, 39, 112]. Their two significant advantages are that they can be
trained in parallel and scaled up quickly. The use of transformers
for NLP tasks, as well as the availability of large-scale labelled re-
trieval datasets like MS MARCO[8], gave rise to pre-trained large
language models [12, 24, 25, 66]. The pre-trained LLMs use differ-
ent self-supervised loss functions and are trained on large-scale
general document corpora. Fine-tuning the models enables their
transfer to downstream tasks [62, 131]. They facilitated a broader
representation of semantics and language in general. The most com-
mon pre-trained language model is called BERT [24]. It employs a
deep bi-directional architecture and word masking to improve text
encoding into dense vectors. BERT can encode the general English
language. The recent developments after BERT can be categorised

into three different research fields. Firstly, different pre-training
approaches are explored [66]. Secondly, the bi-directional repre-
sentation is refined [72], and thirdly, a compressed and thus more
lightweight version of BERT was developed, called distilBERT [100].
Nowadays, pre-trained dense retrievers are the "gold standard" for
solving textual IR tasks due to their astonishing representation
of documents and ability to answer more complex queries [131].
However, most pre-trained dense retrievers were trained on Eng-
lish data containing general, informal knowledge. Transforming
them to other languages or specialised domains requires further
fine-tuning of labelled data in the desired domain and language.
Such data, as mentioned in Section 1, is rarely available.

E INFORMATION RETRIEVAL SYSTEMS
Most information retrieval systems consist of pipelines that com-
bine multiple steps as visualised in Figure 7.

Figure 7: Information Retrieval Systems

The first stage performs the retrieval. Thus, the model selects
several candidate documents relevant to the user query. The model
which implements this stage is called the retriever. During the
second, the re-ranking stage, the selected candidates are ordered
by importance. The model which implements this stage is called
the reranker. Textual IR systems can utilise one to many re-ranking
stages to refine the results. A model called the reader performs the
third stage of textual information retrieval. We only add it if the
information retrieval task is more fine-grained than document-level
retrieval. The reader analyses the documents the retriever returned
and localises the response to the query [131].

E.1 Dense Retrievers
In semantic search systems, the retriever, reader, and re-ranker
are dense retrievers. However, dense retrievers can be divided into
two mainstream architecture types: cross- and bi-encoders. We
introduce both in the following subsection.
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E.2 Bi-encoders, Cross-encoders or Both?
First, we introduce bi-encoders and, afterwards, cross-encoders.
However, Figure 8 allows a direct, visual comparison of both archi-
tecture types. We finalise this section by analysing the advantages
and disadvantages of both architectures.

Figure 8: Dense Retriever Architecture Types

As shown in Figure 8, bi-encoders are based on a two-tower ar-
chitecture, utilising two encoders. They perform the self-attention
mechanism for query and document separately, mapping each to
the same dense vector space and then using a similarity measure-
ment to measure the distance between both [44, 113, 131]. Their
two-tower architecture makes bi-encoders flexible since document
and query encoder architecture can differ. It resulted in two differ-
ent bi-encoder structures. The first is called single-representation
bi-encoder. It embeds the query and text separately using two dif-
ferent pre-trained large language models [48, 84, 118]. We place
the special [CLS] token at the beginning of the query, and the
text and their encodings represent their semantic meaning. The
relevance score for a query text combination is then computed
through some similarity function using the [CLS] token embed-
dings. The downside of the single-representation bi-encoder struc-
ture is that it does not accurately capture the semantic informa-
tion of query and text. The second bi-encoder structure is called
multi-representation bi-encoder. It aims at enhancing the semantic
information stored in the embeddings by combining multiple query
and document embeddings to measure their similarity from differ-
ent "semantic viewpoints". These contextualised embeddings are
learned and stored during training and indexing. This second bi-
encoder structure improves the retrieval performance compared to
the single-representation structure. However, storing the multiple
generated views makes their index large, leading to higher com-
putational and memory costs. Examples for multi-representation
bi-encoders are poly-encoder [45], ME-BERT [68], ColBERT [49],
ColBERTer [41], MVR [127] and MADRM [50].

In contrast to bi-encoders, cross-encoders receive the concate-
nated query and text pair, distinguished by a separation token
[SEP], as input as shown in Figure 8[83]. They utilise a cross-
attention mechanism to compute the interaction between any two
tokens in the input and encode every token in vector space. Thus,
cross-encoders enable the tokens to interact across queries and text

[33, 117]. Using the learned representations, we can then compute
match representations for the query-text pair. Primarily, the encod-
ing of the [CLS] token is used for this semantic matching [113, 131].
Nevertheless, we can also average over all token embeddings to
calculate the similarity measurement [88]. The cross-encoder’s out-
put is a fine-grained relevance score for the query text pair, and a
higher score indicates higher relevance of the text, given the query.

Utilising a bi-encoder or a cross-encoder has different up- and
down-sides. Their two-tower architecture makes bi-encoders com-
putationally more efficient than cross-encoders since approximate
nearest neighbour search enables fast recall of large-scale vectors,
and only the query, but not the textual information, must be en-
coded during query time. Since cross-encoders calculate relevance
scores for every possible query and text pair, end-to-end informa-
tion retrieval is not possible, as they do not create independent
representations of query and text. Thus, the encoding must be re-
computed every time for every query text pair [113, 131]. However,
bi-encoders need more training data than cross-encoders since they
independently map the documents to vector space. They also reach
lower retrieval accuracy.

Due to these pros and cons, bi- and cross-encoders are suited for
different tasks in information retrieval systems [131]. Bi-encoders
are used in first-stage retrieval to fetch the candidate documents,
while Cross-encoders are adapted as re-rankers or readers. In gen-
eral, cross-encoders perform better if applied to zero-shot retrieval
tasks on out-of-domain data, and multiple methods of domain adap-
tation dense retriever in low-resource setups rely on cross-encoder
architectures [113].
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